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CHAPTER 2 

METHODOLOGY 

 

 

 

2.1 Introduction 

 

Fuzzy set theory was discovered by Zadeh [86] in 1965. The theory of fuzzy sets actually has 

been a generalization of the classical theory of sets in the sense that the theory of sets should 

have been a special case of the theory of fuzzy sets. But unfortunately it has been accepted that 

for fuzzy set A and its complement A
C
, neither A A

C 
is empty set nor A A

C 
is the universal 

set. Whereas the operations of union and intersection of crisp sets are indeed special cases of the 

corresponding operation of two fuzzy sets, they end up giving peculiar results while defining     

A A
C 

and A A
C
.  

Also from usual definition of complement of fuzzy sets, it can be visualized that the complement 

of a fuzzy set can remain included in the set itself which is not desirable from mathematical point 

of view. After a considerable period of time, the requirement of a new definition of complement 

of fuzzy set is realized by many researchers. Baruah ([8, 9, 10, 11, 12, 13, 14]) also expressed 

some dissatisfaction regarding the existing definition of complementation of fuzzy set as well as 

probability-possibility consistency principles. To overcome the drawbacks that exists in the 

conventional fuzzy set theory, Baruah ([8, 9, 10, 11, 12, 13, 14]) realize the way towards 
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developing of new definition of complement of fuzzy sets by introducing the notion of reference 

function. 

The most standard method considered in finding the membership function of fuzzy numbers is 

the method of α-cut. In this chapter, an alternative method has been proposed to find the 

membership function of a fuzzy number. Dubois and Prade[30, 31, 32] and Kaufmann and 

Gupta[38] have defined a fuzzy number X = [a,b,c] with membership function 

 

 

μN(x) = L(x), if a ≤ x ≤ b, 

                                                              = R(x), if b ≤ x ≤ c, and      ….…..…………….(2.1.1) 

  = 0, otherwise, 

 

 

where L(x) being a continuous non-decreasing function in the interval [a, b], and R(x) being a 

continuous non-increasing function in the interval [b, c], with L(a) = R(c) = 0 and L(b) = R(b) =1. 

Dubois and Prade named L(x) as left reference function and R(x) as right reference function of 

the concerned fuzzy number. A continuous non-decreasing function of this type is also called a 

distribution function with reference to a Lebesgue-Stieltjes measure.  

The basic problem in constructing normal fuzzy number was the misunderstanding in defining 

the partial presence of an element in an interval. Indeed various explanations regarding the 

possible relationship between probability and fuzziness have come up, and no concrete 

conclusion could be arrived at.  Baruah ([8, 9, 10, 11, 12, 13, 14])  has recently shown that two 

laws of randomness can define a normal law of fuzziness. This has led to a proper measure 
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theoretic explanation of partial presence, and construction of fuzzy numbers can be based on 

that. Accordingly, the Dubois-Prade’s left reference function L(x) is the distribution function in 

the interval a ≤ x ≤ b and the right reference function R(x) is the complementary distribution 

function in b ≤ x ≤ c . Thus the functions L(x) and (1- R(x)) would have to be associated with 

densities 
 

  
(L(x)) and  

 

  
 (1 - R(x)) in [a, b] and [b, c] respectively. Thus two laws of 

randomness are necessary and sufficient to construct a normal fuzzy number, which leads to the 

Randomness-Fuzziness Consistency Principle based on the superimposition of sets. This chapter 

presents the discussion about the proposed methods, a description about the procedures of the 

methods, the advantages and applications. 

 

2.2 COMPLEMENTATION OF FUZZY SET ON THE BASIS OF REFERENCE 

FUNCTION 

 

According to the Zadehian definition, if a normal fuzzy number N = [α, β, γ] is associated with a 

membership function μN (x), where  

μN(x) = Ψ1(x), if α ≤ x ≤ β, 

        = Ψ2(x), if β ≤ x ≤ γ, 

= 0, otherwise. 

The complement N
C
 will have the membership function μN

C
 (x), where 

 

μN
C
 (x) = 1 - Ψ1(x), if α ≤ x ≤ β, 

                     = 1 - Ψ2(x), if β ≤ x ≤ γ, and 

= 1, otherwise. 
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We first cite two counterexamples that this definition is defective. 

Counterexample - 1: First, we would like to ask the readers a simple question. Can a statement 

and its complement ever be the same? Common sense says that the answer is negative. Consider 

now the set of real numbers with constant fuzzy membership function equal to 1/2 everywhere. 

Therefore according to the Zadehian definition, its complement too will have the constant fuzzy 

membership function equal to (1 – 1//2) = 1/2 everywhere. 

 

In other words, here is an example of a statement defining a fuzzy number, which is exactly the 

same as the statement defining its complement! Accordingly, if the Zadehian definition of the 

complement of a fuzzy set is true, we have arrived at a contradiction that a statement and its 

complement can be the same. Some people might still argue that a half truth is half wrong too, 

and therefore they are equivalent! We therefore proceed to cite a second counterexample. 

 

Counterexample - 2: We would like to ask the readers another simple question. Can a statement 

ever include its complement? Once again, common sense says that the answer is negative. 

Consider now the set of real numbers with constant fuzzy membership function equal to 3/4 

everywhere. Therefore according to the Zadehian definition, its complement will have constant 

fuzzy membership function equal to (1 – 3/4) = 1/4 everywhere. 

 

In other words, here is an example of a statement that actually includes its complement! 

Accordingly, if the Zadehian definition of the complement of a fuzzy set is true, we have arrived 

at a contradiction that a statement can include its complement. 
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Our counterexamples are based on the fact that if a glass is partially filled with water, then the 

height of empty portion is to be counted from the height upto which the glass is partially full. 

These two counterexamples should be enough to establish that the very definition of complement 

of a fuzzy set is wrong. In fact, here logic has been forced to follow mathematics. Where is the 

error then? Fuzzy membership function and fuzzy membership value are two different things. In 

the Zadehian definition of complementation, these two things have been taken to be the same, 

and that is where the error lies. 

Baruah ([8, 9, 10, 11, 12, 13, 14]) gave an idea of definition of fuzzy set on the basis of reference 

function. According to Baruah ([8, 9, 10, 11, 12, 13, 14])  to define a fuzzy set, two functions 

namely fuzzy membership function and fuzzy reference function are necessary. Fuzzy 

membership value is the difference between fuzzy membership function and fuzzy reference 

function. 

Let µ1(x) and µ2(x) be two functions such that 0≤ µ2(x) ≤ µ1(x) ≤1. For fuzzy number 

denoted by {x, µ1(x), µ2(x) ; xϵX}, we call µ1(x) as fuzzy membership function and µ2(x) a 

reference function such that (µ1(x) - µ2(x)) is the fuzzy membership value for any x in X.  

 The meaning of the definition is as follows. In the definition of complement of fuzzy set, 

the fuzzy membership value and fuzzy membership function have to be different, in the sense 

that for a usual fuzzy set the membership value and the membership function are of course 

equivalent. However, our definition is not to contradict with others definition of fuzzy set and we 

do not really need our definition to describe the usual fuzzy sets. In defining complement of a 

fuzzy set, the use of reference function is very essential to get proper result. 
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Now let us discussed with the help of following diagram 

 

 

 

 

Figure 2: Complement of a fuzzy set on the basis of reference function 

 

Now if A and B are two fuzzy sets with new definition of fuzzy sets and let these are 

A(μ1, μ2)={x, μ1(x), μ2(x); xϵX} and B(μ3, μ4)={x, μ3(x), μ4(x); xϵX}. 

Then the operations of intersection and union are defined as  

A(μ1, μ2) B(μ3, μ4) ={x, max(µ1(x), µ3(x)), min(µ2(x), µ4(x)); xϵX }. 

A(μ1, μ2)∩B(μ3, μ4) ={x, min(µ1(x), µ3(x)), max(µ2(x), µ4(x)); xϵX }. 

Two fuzzy sets C= {x, µC(x); xϵX} and D= {x, µD(x); xϵX } in the usual definition would be 

expressed as C(μC, 0)= {x, µC(x), 0; xϵX } and D(µD, 0)= {x, µD(x), 0; xϵX } in our way. 

C(μC, 0) D(μD, 0) ={x, max(µC(x), µD(x)), min(0, 0); xϵX }. 

          ={x, µC(x) µD(x); xϵX }. 

Which in our in the usual definition is nothing but C D. 
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Similarly,  C(μC, 0)∩D(μD, 0) ={x, µC(x) µD(x); xϵX }, Which in usual definition is nothing but 

C∩D. 

 

Note: It is clearly seen that for usual fuzzy sets μ2(x)= μ4(x)=0. 

 

 

Now for two fuzzy sets A (μ, 0) = {x, μ(x), 0; x ∈ X} and B (1, μ) = {x, 1, μ(x); x ∈X} defined 

over the same universe X, we would have 

A (μ, 0) ∩ B (1, μ) = {x, min (μ(x), 1), max (0, μ(x)); x ∈ X} 

  = {x, μ(x), μ(x); x ∈ X} 

which is nothing but the null set φ. 

 

Now taking union of these two fuzzy sets, we see that 

A (μA, 0)   B (1, μA) = {x, max (μA(x), 1), min (0, μA(x)); x ∈ X} 

     = {x, 1, 0; x ∈ X} 

which is nothing but the universal set X. 

 

In other words, B (1, μ) defined above is nothing but (A (μ,0))
C
 in the classical sense of set 

theory. This means, if we define the fuzzy set(A (μ, 0))
C
= {x, 1,μ(x); x ∈ X},it can be seen that it 

should be nothing but the complement of the fuzzy set A (μ, 0) = {x, μ(x), 0; x ∈ X}. 

 

Now from above discussion it is cleared that, a fuzzy set defined by A={x, μ(x); x ∈ X}, would 

be defined as A = {x, μ(x), 0; x ∈ X}, so that complement would become  

A
C
= {x, 1,μ(x); x ∈ X}. 
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We therefore conclude that if we express the complement of a fuzzy set A = {x, μA(x), 0; x∈ X} 

as A
C
 = {x, 1, μA(x); x ∈ X}, we get A ∩ A

C
 = the null set φ, and A   A

C
 = the universal set X. 

This would enable us to establish that the fuzzy sets do form a field if we define 

complementation in our way. 

 

Accordingly, if a normal fuzzy number   N = [α, β, γ] is defined with membership function μN(x), 

where 

 

μN(x) = Ψ1(x), if α ≤ x ≤ β, 

               = Ψ2(x), if β ≤ x ≤ γ, and 

= 0, otherwise, 

 

 

 such that,   Ψ1 (α) = Ψ2 (γ) = 0,  

Ψ1 (β) = Ψ2 (β) = 1,  

where Ψ1(x) is the distribution function of a random variable defined in the interval [α, β], and 

Ψ2(x) is the complementary distribution function of another random variable defined in the 

interval [β, γ], with randomness defined in the measure theoretic sense.   

 

 

 The complement N
C
 will have the membership function μN

C
 (x), where  

μN
C
 (x) = 1, - ∞ < x < ∞, 
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where the values of μN
C
 (x) are to be counted from Ψ1(x), if α ≤ x ≤ β, from Ψ2(x), if β ≤ x ≤ γ, 

and from 0, otherwise, so that there happens to be a difference between a fuzzy membership 

function and the corresponding fuzzy membership values. 

 

Our definition of complementation of a fuzzy set thus based on the following axiom: 

 

Axiom-1: The fuzzy membership function of the complement of a normal fuzzy number is equal 

to 1 for the entire real line, with the membership values counted not from zero but from the 

membership function of the fuzzy number concerned. 

 

2.3 PROPERTIES OF FUZZY SETS WHEN FUZZY SET IS EXPRESSED ON THE 

BASIS OF REFERENCE FUNCTION 

 

Let A, B and C are fuzzy sets, then some properties of are shown below 

(i) Idempotent:  A∩A=A and  A A=A 

(ii) Commutative:  A∩B= B∩A and A B= B A 

(iii) Associative: (A∩B)∩A= A∩(B∩C) and (A B) C = A (B C) 

(iv) Distributive: A∩(B C)= (A∩B)   (A∩C) and A  (B∩C)= (A B)  ∩ (A C) 

(v) Double complement: (A
C
)
C
=A 

(vi) DeMorgan’s laws: (A∩B)
C
=A

C B
C
 

(vii) Exclusion: A A
C
=X 

(viii) Contradiction: A∩A
C
=ϕ 
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(ix) Identity: A ϕ=A and A∩X=A, where ϕ and X are empty and universal set 

respectively. 

 In this entire research work, this definition of complementation of fuzzy sets based on 

reference function is considered for defining fuzzy sets, fuzzy function, fuzzy topology, 

fuzzy open set, fuzzy closed set, and fuzzy point and most importantly for defining in fuzzy 

boundary. 

 

2.4 CONTAINMENT OF FUZZY SETS 

 

Let A and B be two fuzzy sets which is expressed on the basis of reference function, then the 

fuzzy set A is said to be subset of another fuzzy set B if the membership value of the set A is less 

than or equal to the membership value of the set B. 

 

Thus if , 

A={x, μ1(x), μ2(x); xϵX} and B={x, μ3(x), μ4(x); xϵX}. 

Be two fuzzy sets on the basis of reference function defined on the same universe then A is said 

to be subset of B if the following conditions holds 

 

{ μ1(x) - μ2(x)}≤{ μ3(x) - μ4(x)} 

That is       { μ1(x) - μ2(x)}/ { μ3(x) - μ4(x)} ≤ 1 

For A B and vice versa. 
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2.5 The operation of set superimposition 

 

We first proceed to define a set operation that we have named superimposition. When we 

overwrite, the overwritten portion looks darker. Indeed, in the overwritten portion there happens 

to double representation due to superimposition, which is why that portion looks darker. The 

operation of union of sets cannot explain this. When two translucent papers with unequal 

opacities are placed one covering the other partially, the opacity in the portion covered by both 

the papers would be more than the maximum opacity in comparison with the other parts. This 

happens due to superimposition. We now proceed to define this mathematically. 

 

The superimposition of sets is defined by Baruah([8, 9, 10, 11, 12, 13, 14])  and later used 

successfully in recognizing periodic patterns ([8, 9, 10, 11, 12, 13, 14])  the operation of set 

superimposition is expressed as follows: if the set A is superimposed over the set B, we get 

 

 

A (S) B = (A-B)   (A ∩ B) 
(2)

   (B-A) 

where S represents the operation of superimposition and (A ∩ B) 
(2)

 represents the elements of 

(A ∩ B) occurring twice, provided that (A ∩ B) is not void. We have defined this operation 

keeping view that fact that if two line segments A and B of unequal lengths are overdrawn one 

over the other, this is what we are going to see. 

It can be seen that for two intervals A = [a1, b1] and B = [a2, b2], we should have 

Equivalently 

[a1, b1] (S) [a2, b2]= [a1, a2]   [a2, b1] 
(2)

   [b1, b2],  if a1 < a2 < b1 < b2, 



34 
 

= [a1, a2]   [a2, b2] 
(2)

   [b2, b1], if a1 < a2 < b2 < b1, 

= [a2, a1]   [a1, b1] 
(2)

   [b1, b2], if a2 < a1 < b1 < b2, 

= [a2, a1]   [a1, b2] 
(2)

   [b2, b1], if a2 < a1 < b2 < b1, 

where a1 < a2 < b1 < b2, a1 < a2 < b2 < b1, a2 < a1 < b1 < b2, and a2 < a1 < b2 < b1 are the four 

different possibilities in this case. Here we have assumed without loss of any generality that 

 [a1, b1] ∩ [a2, b2] is not void, or in other words max (ai) ≤ min (bi), i = 1, 2. 

We can express this as follows. Indeed 

[a1, b1] (S) [a2, b2] = [a (1), a (2)]   [a (2), b (1)] 
(2)

   [b (1), b (2)] 

where 

a (1) = min (a1, a2), 

a (2) = max (a1, a2), 

b (1) = min (b1, b2), 

and 

b (2) = max (b1, b2). 

This conversion in terms of ordered values is to be noted properly. We would soon see the 

applicability of this conversion in defining the randomness-fuzziness principle. 

In this way, for n intervals [a1, b1], [a2, b2], ………, [an, bn], subject to the condition that 

[a1, b1]∩ [a2, b2]∩ ………∩ [an, bn] 

is not void, we would have (n!)
2
 different cases that can be in short written as 

 [a1, b1](S) [a2, b2](S) ………(S) [an, bn] 

= [a (1), a (2)]   [a (2), a (3)] 
(2)

  ………  [a (n-1), a (n)] 
(n-1)

   [a (n), b (1) ]
(n) [b (1), b (2)] 

(n-1)
   

…………  [b (n-2), b (n-1)] 
(2)

   [b (n-1), b (n)],
 

where a(1), a(2), ………, a(n) are values of a1, a2, ………, an arranged in increasing order of 
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magnitude, and b(1), b(2) ,………, b(n) also are values of b1, b2, ………, bn arranged in 

increasing order of magnitude, and for example [a(n-1) ,a(n) ]
(n-1)

 are elements of [a(n-1), a(n)] 

represented (n-1) times. Observe that order statistical matters can now enter into our 

discussions on superimposition. 

 

Now a random vector X = (X1, X2,…, Xn) has been defined as a family of Xk, k = 1, 

2,…,n, with every Xk inducing a sub-σ field so that X is measurable. Let (x1, x2… xn) be a 

particular realization of X, and let X(k) realize the value x(k) where x(1), x(2),…, x(n) are 

ordered values of x1, x2,…, xn in increasing order of magnitude. Further let the sub-σ fields 

induced by Xk be independent and identical. Now defining, 

  

ϕn(x)  = 0, if x˂x(1), 

                                           = 
   

 
, if x(r-1) ≤ x ≤ x(r), r=2, 3,…… 

    = 1, x x(n) 

 

Фn(x) here is an empirical distribution function of a theoretical distribution function Ф(x). 

As there is a one to one correspondence between a Lebesgue-Stieltjes measure and 

the distribution function, we would have 

                                                     Π (a, b) = Ф (b) – Ф (a) …………………… (2.2.5) 

where Π is a measure in (Ω, A, Π), A being the σ- field common to every xk 

Now the Glivenko-Cantelli theorem (see e.g. Loeve, 1977, pp-20) states that Фn(x) 

converges to Ф(x) uniformly in x. This means, 

                                                               sup │Фn(x) - Ф(x) │ → 0. 
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It has been observed that (r-1)/n in (2.2.5), for x (r-1) ≤ x ≤ x (r), are membership values of            

[a (r -1), a (r)] 
((r -1) /n)

 and [b(n – r + 1) ,b (n - r)] 
((r -1) /n)

 , for r = 2, 3, …, n. Indeed this fact found from 

superimposition of uniformly fuzzy sets has led us to look that there is a link between 

distribution functions and fuzzy membership which leads to the Randomness-Fuzziness 

Consistency Principle. 

2.6 Randomness – Fuzziness Consistency Principle 

Defining superimposition of sets operations and using the Glivenko-Cantelli Theorem (Loeve, 

1977) on Order Statistic, Baruah ([8, 9, 10, 11, 12, 13, 14])  has established the following result 

which states as a theorem that uncovers the missing link between fuzziness and randomness. 

 

For a normal fuzzy number N = [α, β, γ] with membership function 

 

μN(x) = Ψ1(x), if α ≤ x ≤ β, 

               = Ψ2(x), if β ≤ x ≤ γ, and 

= 0, otherwise, 

 

 

 such that,   Ψ1 (α) = Ψ2 (γ) = 0,  

Ψ1 (β) = Ψ2 (β) = 1,  

where Ψ1(x) is the distribution function of a random variable defined in the interval [α, β], and 

Ψ2(x) is the complementary distribution function of another random variable defined in the 

interval [β, γ], with randomness defined in the measure theoretic sense, the partial presence of a 
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value x of the variable X in the interval [α, γ] is expressible as 

μN(x) = θ Prob [α ≤ X ≤ x] + (1 – θ) {1 – Prob [β ≤ X ≤ x]}, 

where  

Prob [α ≤ X ≤ x] = Ψ1(x), if α ≤ x ≤ β, with θ =1 

Prob [β ≤ X ≤ x] = 1 - Ψ2(x), if β ≤ x ≤ γ, with θ =0 

 

In other words, the membership function explaining a fuzzy variable taking a particular value is 

either the distribution function of a random event or the complementary distribution function of 

another random event. Hence, partial presence of an element in a fuzzy set can actually be 

expressed either as a distribution function or as a complementary distribution function. 

 

It needs to be mentioned at this point that the Glivenko–Cantelli theorem on convergence of 

empirical probability distributions can actually be seen as the backbone of mathematical 

statistics. This theorem is about probability distribution functions, and therefore it will be 

applicable for distribution functions of random variables with randomness defined in the measure 

theoretic sense as well ([8, 9, 10, 11, 12, 13, 14])  ). In the measure theoretic sense, if a variable 

is probabilistic, it has to be necessarily random, although when a variable is random, it does not 

have to be probabilistic (Rohatgi and Saleh, 2001). 

 

It is known that a distribution function of a random variable is non-decreasing, and that a 

complementary distribution function of a random variable is non-increasing. The functions are 

continuous and differentiable. Differentiation of Ψ1(x) and (1 – Ψ2(x)) would give two density 
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functions. This means, one needs two laws of randomness, one in the interval [α, β] and the other 

in [β, γ], to construct a normal fuzzy number [α, β, γ]. 

 

For a triangular fuzzy number, differentiation of Ψ1(x) and (1 – Ψ2(x)) would give two uniform 

density functions. It is well known that the uniform law of randomness is the simplest of all 

probability laws. Thus two uniform laws of randomness lead to the simplest fuzzy number. 

When a normal fuzzy number is of the triangular type, it actually means that the left reference 

function is a uniform distribution function and the right reference function is a uniform 

complementary distribution function. 

 

Thus according to this principle, the Dubois-Prade ([30, 31]) left reference function is actually a 

distribution function by definition and similarly the right reference function is nothing but a 

complementary distribution function. In other words, two laws of randomness, probabilistic or 

otherwise, are not only necessary but also sufficient to define a law of fuzziness. 

 

 

2.7 CONCLUSIONS 

 

Here after having an overview of the evolution of the concepts of complementation of fuzzy sets 

on the basis of reference function and the Randomness-Fuzziness Consistency Principle. 

It is observed that in the Zadehian definition of complementation, membership value and 

membership function had been taken to be of the same meaning. Indeed, fuzzy membership 

function and fuzzy membership value are two different things with reference to the complement 
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of normal fuzzy set. The fuzzy membership function of the complement of a normal fuzzy 

number is one over the entire real line, with the condition that it has to be counted from the 

membership function of the original fuzzy number. 

 

 


