
Chapter 1

General Introduction

1.1 Introduction

As the human being is considered mostly developed and changeable creature in-universe so

this is our moral responsibility to discover the unknown things of the whole universe like

the origin, evolution and ultimate fate etc. of the universe. Being a member of Mathematics

family it can be efficiently done by constructing mathematical models of our universe, by

using various theories of Relativity especially by using Einstein’s theory of gravitation and

other modified theories of gravitation. The results of the model, thus, formulated may be

compared with the various observational findings of present day about the origin, evolution,

shape, size, physics etc. of the universe. Motivated from this, we have considered the

investigations in this thesis entitled "STUDY OF SOME COSMOLOGICAL MODELS

IN LYRA GEOMETRY". This thesis comprises of 9 (Nine) chapters and deals with the

study of some Bianchi type I and III cosmological models with 4 and 5 dimensions in Lyra’s

Geometry, which is a modified theory of general relativity.

This Introduction chapter is organized as follows:

In section 1.2 we have tried to present a brief idea about the universe according to var-

ious astrophysicists of the different time and cosmological models of the universe. Section

1.3 deals with the brief review of Einstein’s general theory of relativity. In section 1.4 we

have discussed Weyl’s Geometry. Section 1.5 is devoted to Lyra’s Geometry. In section

1.6 deals with the derivation of the field equations in Lyra’s Geometry. In section 1.7 we

have presented about some aspects of the work related to Lyra’s Geometry. In section 1.8

contains a brief introduction to Bianchi type space-times. In Section 1.9 we deal with some

aspects of the work related to Bianchi Space-times. Section 1.10 deals with discussion of



1.2 History of Cosmology and Cosmological Models 2

strings and string cosmology in general relativity. Brief discussions about higher dimensional

cosmology, dark energy are discussed in sections 1.11 and 1.12 respectively. In section

1.13, we discussed about Perfect Fluid & Energy-momentum tensor. Section 1.14 and 1.15

contains the brief study about Hubble’s law & Hubble’s constant and deceleration parameter

respectively.

1.2 History of Cosmology and Cosmological Models

The term cosmology originated from the Greek word "Kosmos" and the meaning of which is

"Something revealed in the beauty". The branch of science in which the large-scale properties

of the universe as a whole are studied in order to understand the origin, evolution and ultimate

fate of it is known as Cosmology. Cosmology deals with the various theories of the formation

of the universe and makes a hypothesis for specific predictions of different phenomena for

observations regarding the universe. These theories may be accepted or rejected or may be

revised or extended to accommodate the observational data after detailed verification.

Presently the "Big Bang Theory" is the most accepted theory about the origin and ulti-

mate fate of the universe. The main theme of this theory is that the universe is expanding and

so it implies that in the distant past there was enormous dense and hot. Cosmology deals also

with the problems of the understandings the formation of galaxies and clusters of galaxies

together with the determination of the nature of their masses.

Before the big-bang theory, many cosmologists from their studies and investigations gave

an idea about the shape, size, nature, and formation of the universe. Out of these some of

the chief contributors were Aristotle, Ptolemy, Nicholas Copernicus, Johannes Kepler and

Galileo Galilei, Newton, Richard Bentley, Heinrich Olbers, St. Augustine, Einstein, Weyl,

Lyra, Friedmann, Edwin Hubble etc.

In the early days, human believe that the earth was not spherical rather it was flat in the

beginning. This may be expected because the curvature of the surface of our planet is not

perceptible at once. But this idea of assuming the earth to be flat creates a problem that the

earth must end somewhere unless we imagine it to extend infinitely. Also, the human being

of that era was unknown about actually what lies beyond these boundaries and became an

open challenge to all for speculation. People from various parts of the world tried to explain

their cosmogonies. From history, it is seen that the Greeks were first suggested that our

planet is not flat rather it is spherical. Around 340 B.C., Greek philosopher Aristotle, in his
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book "On the Heavens" first suggested that our planet was not like a flat plate rather than it

was spherical. He was the first person to realize that eclipses of the moon occur when the

earth comes in between the moon and the sun. He observed that the earth’s shadow on the

moon was always round that would be true only if the earth was spherical. Even, Aristotle

was able to measure the distance around the earth as 4, 00,000 stadia approximately. He

also thought that the earth was stationary and the sun, the moon, the planets and the stars

were moving around the earth in circular orbits. This idea of the spherical earth did not get

importance until Ptolemy (Claudius Ptolemaeus) elaborated it into a complete Mathematical

description of the universe in around 150 A.D. and it became the most important cosmology

up until the 16th century. This system was later adopted by the Christian church and became

the dominant cosmology until the 16th century. As the time progresses this mesmerizing

subject was developed by so many cosmologists. Out of them some of the chief contributors

are Pythagoras, Aristotle, Nicholas Copernicus, Johannes Kepler, Galileo Galilee, Newton,

Richard Bentley, Heinrich Olbers, St. Agustine, Einstein, Weyl, Friedmann, Edwin Hubble

etc.

Some important cosmological developments are mentioned briefly.

During the period 500BC to 300 BC, Pythagoras believed that the earth was in motion

whereas Aristotle thought that the earth was stationary and the sun, the moon, the planets and

the stars were moving around the stationary Earth in circular orbits. Greek Philosophers also

estimated the distance to the Moon and calculated the size of the finite universe. Aristotle

was also able to measure the distance around the earth as 4, 00,000 stadia approximately.

From 300BC to 210 BC, Greek Mathematician Aristarchus was first the person to propose

a scientific heliocentric model of the solar system and placing the Sun at the center of the

universe. He has also established the order of planets from the Sun. In 200AD, Ptolemy

proposed about an Earth-centered universe, with Sun & planets are revolving around the

Earth.

From 1401AD to 1464 AD, Nicholas de Cusa suggested that the Earth is a nearly spherical

shape that revolve around the Sun and that each star is itself a distant Sun.

Around 1500AD, Many Astronomers like European mathematician Copernicus and In-

dian Mathematicians, the Great Aryabhata & Bhaskara I, proposed model universes with the

sun at its center.
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In 1576AD, Thomas Digges modified the Copernican system and proposed a model universe

containing a multitude of stars extending to infinity.

In 1584AD, non-hierarchical cosmology was proposed by Giordano Bruno, with the as-

sumption that the universe had its center everywhere and its circumference nowhere.

In 1600AD, Tycho proposed a system in which the planets other than Earth orbited the

Sun while the Sun orbited the Earth.

In 1609AD, Johannes Kepler used the dark night sky to argue for a finite universe. He

told that planets moved in an ellipse and not in perfect circles, about the Sun, known as

the law of planetary motion. Newton later explained it by his inverse square law for the

gravitational force. Galileo observed Moon of Jupiter in support of the heliocentric model.

In 1687AD, Newton established Laws of motion.

In 1791AD, Erasmus Darwin gave the first description of cyclic expanding and contracting

universe.

In 1848AD, Edgar Allan Poe offers a solution to Olbers paradox in an essay that also

suggests the expansion and collapse of the universe.

In 1905AD, Albert Einstein published the Special Theory of Relativity pointing that space

and time are not separate continuums.

In 1916AD, Einstein published the General Theory of Relativity (GTR).

In 1922AD, The Russian Mathematician Friedmann realized that Einstein’s equations could

describe an expanding universe and published his paper entitled "Über die Krümmung des

Raumes" (English Translation is "On the curvature of Space"). Einstein was reluctant in

believing about static (non-expanding) universe.

In 1927 AD, Georges Lemaitre presented his idea of an expanding universe. He also

derived Hubble’s law and provided the first observational estimation of the Hubble’s constant.

Through the research contribution, Lemaitre has added a completely new feature to the

discussion of cosmology and he proposed that the universe began as a single lump of matter,
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a primeval atom that radioactively decays in an outrushing explosion. Due to this, he may be

called as ’father of the Big-Bang.

In 1929AD, The American Astronomer Hubble established that some nebulae were in-

deed distant galaxies comparable in size to our own Milky Way. Hubble was the first person

to give the concept of expanding universe & cosmological constant.

In 1950AD, The British astronomer Fred Hoyle change the phrase "Big-Bang", which

means that the universe was born at about ten thousand million years ago and the galaxies

are still receding away from us after that initial rupture.

1965AD, Penzias & Wilson discovered a cosmic microwave background radiation (CMB).

In 1970AD, Cosmologists have accepted the Hot Big Bang model.

Dr. Milo Woltt, in 1986, discovered the wave structure of matter.

1.3 Einstein’s Theory of Gravitation:

Newton, in the year 1687, established the Laws of motion. In the inverse square for the

gravitational forces, he formulated a mathematical description about the motion of the bodies

in space (and time), which is also known as the Newtonian theory of Gravitation. Later, in

the year 1905, Einstein formulated the special theory of relativity, in which he discussed

the relativity of uniform translatory motion in a region of free space where the gravitational

effects are to be neglected. The mathematician Herman Minkowski (1864-1909) showed

that space and time coordinates in the special theory of relativity are to be considered as a

single entity space-time which seems to satisfy the Lorentz Transformation. Special theory of

relativity is applicable only to study the relative motion in the inertial frame of references but

in an accelerated frame of references, the special theory of relativity fails to study the relative

motions. In the perspective of these limitations of the special theory of relativity, Einstein

made a huge effort to resolve them and ultimately in the year 1915, he suggested that gravity

is not only a force like other forces (as had been assumed previously) but is a consequence of

the fact that the space-time is not flat, rather it is curved by the distribution of energy and

mass in it. After having this concept, Einstein generalized the special theory of relativity and

formulated the Einstein’s Theory of Gravitation which is also known as General Theory of

Relativity. This theory of Gravitation represents a theory of space-time and so it describes
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a theory of Dynamics of the Universe. Einstein’s describes gravitation more accurately in

a comprehensive manner in his Theory of Gravitation than Newton’s theory of gravitation.

The basic difference between the Einstein’s Theory of Gravitation and Newton’s Theory of

Gravitation is that the geometry plays an active role in the General Theory of Relativity but it

has no role in the latter. Einstein’s Theory of Gravitation or General Theory of Relativity also

supports the observational data and is treated as the foundation of other geometric theories of

gravitation.

Einstein’s General Theory of Relativity is based on the Riemannian metric tensor gij that

describes both geometry and gravitational field. In the process of developing General Theory

of Relativity, Einstein’s vision was guided by three basic principles, which are:

i. Principle of Covariance

ii. Principle of Equivalence and

iii. Mach’s Principle

Principle of Covariance:

According to the Special theory of relativity, the law describing any physical phenom-

ena in free space must be independent of the velocity of a particular observer who makes

measurements and must have the same form and contents; when referred to a different set of

Cartesian axes which are in uniform relative translatory motion. The principle of covariance

states that the physical laws must be expressed in covariant form so that their form remains

unaltered in all coordinate system i.e. the physical laws must be expressible in a form which

is independent of the particular space-time coordinate system chosen or the laws of nature

remain invariant with respect to any space-time coordinate system. This implies that the laws

should be expressed in tensor form and hence the line element of special relativity

ds2 =−dx2 −dy2 −dz2 + c2dt2 , (1.1)

which is not invariant under a general coordinate transform, is replaced by

ds2 = gi jdxidx j ; i, j = 1, 2, 3, 4 (1.2)
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which is valid in any coordinate system. The fundamental tensor gi j is a symmetric tensor of

rank two satisfying transformation law

g′i j =
∂xa

∂x′i
∂xb

∂x′ j
gab (1.3)

where dashed (′) quantities belong to the new coordinate system x′i .

Principle of Equivalence:

The actual hypothesis by which the gravitational considerations are introduced into the

development of general relativity is known as the principle of equivalence. According to

Newtonian theory, the principle of equivalence states that the gravitational mass and inertial

mass are always equal, which is also known as weak equivalence principle. But, according to

Einstein, the principle of equivalence can be stated as ‘In the neighbourhood of any given

point, one can distinguish between the gravitational field produced by the attraction of masses

and the field produced by accelerating a frame of reference’ and it is known as the strong

equivalence principle.

Mach’s Principle:

Mach Principle states that inertial properties of a body are determined by the distribution

of matter in the universe. Since the gravitational field interacts with all matters, one could

hope to see the Mach principle relationship between inertial and distant matter described in

terms of the gravitational field. In order to state this in a way independent of units, the ratio

of the inertial mass of a body to its active gravitational mass is considered. Einstein included

extended remarks on the Mach principle and the issue of inertia in GRT in the series of the

lecture delivered by him in 1921, on GRT at Princeton (The Meaning of Relativity, 5th ed.,

Princeton University Press, Princeton, 1955, pp. 99-108) as (in his words):

i. If ponderable masses are piled up in the neighbourhood of the body then the inertia of

a body must increase.

ii. If the neighbouring masses of a body are accelerated then the body must experience

an accelerating force, and, actually, the direction of the force must be same with that of

acceleration.

iii. A “Coriolis field” ought to be generated inside of a rotating hollow body that deflects

moving bodies in the sense of the rotation, and a radial centrifugal field as well.
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The space-time in Einstein’s General Theory of Relativity is described by the pseudo-

Riemannian metric as

ds2 = gi jdxidx j ; i , j = 1,2,3 and 4 (1.4)

where the symmetric metric tensor gi j act as gravitational potential. The gravitational field

equation or, simply the field equations in Einstein’s General Theory of Relativity are given

by

Gi j = Ri j −
1

2
Rgi j =−8πG

c4
Ti j (1.5)

where Gi j is the Einstein tensor, Ri j is the Ricci tensor, R is the Ricci scalar (Scalar Curvature)

and Ti j is the energy-momentum tensor due to matter and Λ is the cosmological constant. In

order to study Static cosmological model, Einstein modified his field equation by introducing

another term as

Gi j = Ri j −
1

2
Rgi j +Λgi j =−8πTi j (1.6)

where Λ is the cosmological constant. Later, he later dropped this term by saying that

“greatest blunder” of his life. In both the equations (1.5) and (1.6), left hand sides represent

the geometry of space and the right hand sides represent the matter.

1.4 Weyl’s Geometry:

In order to describe the general theory of relativity, Einstein (in the year 1916) used the

Riemannian geometry, in which the affine connections Γi
jk are taken as symmetric functions

with respect to the two lower suffixes i.e. Γi
jk = Γi

k j and the metric tensors gi j are transformed

under coordinate transformation but the length of a vector vi is not changed/remains same

when it (i.e. the vector) undergoes parallel transform. Therefore the affine connections

of Riemannian geometry are uniquely determined by the metric tensors gi j through the

Christoffel symbols of the second kind as Γi
jk =

{
i

j k

}
. In Riemannian geometry, the

connections are both torsion-free and metric preserving. In the year 1918, Weyl geometrized

both gravitation and electromagnetism in his unified field theory that is treated as the first

so-called unified field theory. But in Weyl’s geometry, unlike Riemannian geometry, the
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length of a vector vi under parallel transfer (infinitesimal) is not conserved rather it is as-

sumed that the increment in length of the vector is proportional to its length and is taken

as the homogeneous function of the displacement vector dxi so that a gauge vector φi(x) is

introduced into the affine connection.

In the year 1918, Weyl assumed the existence of both “coordinate transformation” and

“gauge transformations”. Therefore when the metric tensor gik in the coordinate system xi is

transformed to g′ik in the coordinate system x′i then

g′ik = gab

∂xa

∂x′i
∂xb

∂x′k
(1.7)

and when gik is transformed to g′ik under a gauge transformation then

g′ik = λ (x)gik (1.8)

where λ is an arbitrary function of coordinates. Therefore the transformation of infinitesimal

metric ds → ds′ is given by

ds′ = λ
1
2 ds (1.9)

In the case of the vector vi, if we assume that under the gauge transformation the components

of vi remain unchanged, the length

v2 = gikvivk (1.10)

changes, v → v′ , with

v′ = λ
1
2 dv (1.11)

The parallel displacement of the vector vi from a point P(xi) to Q(xi +dxi) is given by

dvi =−v jΓi
jkdxk (1.12)
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where Γi
jk is an affine connection.

The length v of the vector vi changes according to the relation

dv = vφidxi (1.13)

where φi is a given vector which, together with gik, characterizes the geometry. If φi is the

gradient of a scalar function, then it follows from (1.13) that the change in the length dv of vi

is going from one point to another is independent of the path followed.

Therefore applying the gauge transformation, it can be obtained a relation

dv′ = v′φ ′
i dxi (1.14)

If one makes use of (1.11) and (1.14), one finds

φ ′
i = φ,i +

1

2
λ−1λ ,i (1.15)

As the gauge transformation for φi , where λ,i =
∂λ
∂xi .

In order for (1.13) to be a consequence of (1.10) and (1.12), for arbitrary vi and dxk ,

one finds that

gi jΓ
j
ka +gk jΓ

j
ia = gik,a −2gikφa . (1.16)

If we assume that

Γa
ik = Γa

ki (1.17)

we get

Γb
ik =

{
b

i k

}
+gikφ b −δ b

i φk −δ b
k φi . (1.18)
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Carrying out the gauge transformation (1.8) gives

{
b

i k

}′
=

1

2
λ−1

[
δ b

i λ,k +δ b
k λ,i −gikλ,agab

]
+

{
b

i k

}
. (1.19)

If one takes into account the gauge transformation (1.15) for φi , one can see that Γb
ik is

invariant under the gauge transformation (Rosen 1982).

Thus the Weyl’s geometry is characterized by the two independent quantities gi j and φi

so that the affine connection Γi
jk is given by

Γi
jk =

{
i

j k

}
+Si

jk

where

Si
jk =

1

2

(
δ i

jφk +δ i
kφ j −g jkφ i

)
(1.20)

and

φ i = gi jφ j (1.21)

1.5 Lyra’s Geometry:

After geometrizing gravitation and electromagnetism by Weyl in his unified theory, Lyra

(1951) suggested another modification of Riemannian geometry. Lyra defined a displacement

vector
−→
PQ between two neighbouring points P(xi) and Q(xi +dxi) by its components f dxi ,

where f = f (xi) is a non-zero gauge function. Lyra used the reference system
(

f ,xi
)

that

include both gauge function f (xi) and the coordinate system xi [i.e. the gauge function f (xi)

and the coordinate system xi together form a reference system
(

f ,xi
)

]. The transformation

to a new reference system
(

f̄ , x̄i
)

is defined by the following functions

f̄ = f̄
(

f ,xi
)

, x̄i = x̄i(xi) (1.22)

with
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∂ f̄

∂ f
̸= 0 and Jacobian

∣∣∣∣
∂ x̄i

∂xi

∣∣∣∣ ̸= 0. (1.23)

Lyra (1951) and Sen (1957,1958) shown that in any general reference system the coefficients

of the affine connection are determined by the independent quantities Γi
jk and φi, where

the displacement vector field quantities φi arise as a natural consequence of the formal

introduction of the gauge function f (xi) into the structure-less manifold. The symmetric

affine connections Γi
jk in the Lyra’s manifold is given by

Γi
jk =

1

f

{
i

j k

}
+

1

2

(
δ i

jφk +δ i
kφ j −g jkφ i

)
(1.24)

The infinitesimal parallel transfer of a vector vi is given by

δvi =−Γ̃i
jkv j f dxk (1.25)

where

Γ̃i
jk = Γi

jk −
1

2
δ i

jφk (1.26)

is not symmetric with respect to j and k, but the Lyra connection Γi
jk is symmetric with

respect to the two lower suffixes i.e. Γi
jk = Γi

k j .

In Lyra’s geometry, the metric given by in Lyra’s geometry is invariant under both coordinate

and gauge transformations and is given by

ds2 = gi j

(
f dxi

)(
f dx j

)

i.e.

ds2 = f 2gi jdxidx j , (1.27)

is invariant under both coordinate and gauge transformations, where gi j is a second rank fun-

damental symmetric tensor. As in Riemannian geometry, the length of a vector is conserved
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under parallel transport, so the parallel transfer of a vector is integrable in Lyra’s geometry.

A geodesic is defined as a curve given by xi = xi(s) whose tangent vector vi = f
(

dxi

dS

)

is transferred parallel to itself. The equation for the geodesic becomes

f
d2xk

dS2
+

[
f−1

{
k

i j

}
+

1

2

(
δ k

i φ j +δ k
j φi −gi jφ

k
)]

f 2 dxi

dS

dx j

dS

=
1

2

(
φi − φ̃i

)
f 2 dxi

dS

dxk

dS

(1.28)

where

φ̃i = f−1 ∂
[
log f 2

]

∂xi
. (1.29)

is the displacement vector in Lyra geometry. Therefore, in general, a geodesic is not a curve

of extremal length given by
∫

ds = 0 , in contrast to the Riemannian geometry. However, a

sufficient condition for the coincidence of these two types of curves have shown by Sen and

Dunn (1971) as

φi = φ̃i . (1.30)

Since φ̃i transforms exactly as φi whenever f → f ′, the above condition is invariant under

gauge transformations. Therefore the Lyra’s geometry is characterized by the two fundamen-

tal quantities, the scalar f and the entities gi j .

In Lyra’s geometry, the curvature tensor R̃k
hi j is defined in the same manner as defined

in the Riemannian geometry and is given by

R̃k
hi j =

1

f 2

[
∂

∂xi

(
f Γ̃k

h j

)
− ∂

∂x j

(
f Γ̃k

hi

)
+ f Γk

ai f Γ̃a
h j − f Γk

a j f Γ̃a
hi

]
. (1.31)

Then the curvature scalar of Lyra’s geometry is

R̃ = f−2R+3 f−1φ i
;i +

3

2
φiφ

i +2φ̃iφ
i (1.32)
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where R is the Riemannian curvature scalar. If we now choose the normal gauge f = 1, then

equation (1.32) reduces to

R̃ = R+3φ i
;i +

3

2
φiφ

i (1.33)

This curvature scalar of Lyra geometry is identical with that of (the curvature scalar of)

Weyl’s geometry.

1.6 Field Equations in Lyra’s Geometry:

The invariant volume integral in Lyra’s geometry is given by

I =
∫

L(−g)
1
2 x0dx1x0dx2x0dx3x0dx4 (1.34)

where L is a scalar and is an absolute invariant in this geometry.

If we now use the normal gauge x0 = 1 (Sen 1957) and following Halford (1970) let L = ∗R

the volume integral (1.34) becomes

I =
∫

∗R(−g)
1
2 d4x (1.35)

where d4x is the element of volume in the four-dimensional space.

The field equations may be obtained from the variational principle

δ (I + J) = 0 (1.36)

where

J =
∫

L (−g)
1
2 d4x (1.37)

where L is the Lagrangian density of matter. The well-known method (Landau and Lifshitz

1962) gives the field equations

Ri j −
1

2
Rgi j +

3

2
φiφ j −

3

4
gi jφ

kφk =−χTi j (1.38)



1.7 Some Aspects of the Work Related to Lyra’s Geometry: 15

Jeavons et al. (1975), in their study of “A Correction to the Sen and Dunn Gravitational Field

Equations”, showed that the field equations formulated by Sen and Dunn (1971) cannot be

derived from the normal variational principle and they suggested the modified field equations

as

Ri j −
1

2
Rgi j +φ−1(φi; j −gi j φ)−ωφ−2(φ,iφ, j −

1

2
gi jφ,kφ ,k) =−φTi j (1.39)

where Ri j is the Ricci tensor, R is the Ricci scalar (Riemann curvature scalar), ω = constant =
3
2

, and Ti j is the material energy-momentum tensor (in our units c = 8πG = 1). But Singh

and Rai (1983) have indicated that, even though the original field equations formulated by

Sen and Dunn (1971) are not derivable from the usual variational principle, they are still

prove to be heuristically useful. In Lyra’s geometry, the energy momentum tensor T i j is

not conserved. In normal gauge, with a constant gauge function, this theory is equivalent to

Hoyle’s creation field theory (Soleng 1987).

1.7 Some Aspects of the Work Related to Lyra’s Geome-

try:

Our investigation pertains to cosmological models in Lyra’s Geometry, a modified theory

of gravitation as such we have described some relevant work. Mainly in this section, we

have presented some of the relevant work carried out by various authors related to Lyra’s

Geometry in different contexts.

Lyra (1951) suggested a modification of Riemannian geometry, which is also regarded

as a modification of Weyl’s geometry, by introducing a Gauge function (or scale function)

into the structure less manifold which removes the non-integrability condition of the length of

a vector under parallel transport (i.e. the metricity condition is restored) and a cosmological

constant is naturally introduced from the geometry. Lyra (1951) and Scheibe (1952) com-

pleted the study of this geometry, which is known as Lyra’s Geometry. In Lyra’s geometry, the

connection is metric preserving as Riemannian geometry, and length transfers as integrable

in contrast to Weyl’s geometry. This alternating theory of Lyra’s geometry is of interest since

it produces effects similar to Einstein’s theory.
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On the basis of Lyra’s geometry, Sen (1957) studied a static cosmological model universe

similar to the Einstein’s static model, which had a finite density and showing a red-shift. He

also showed that the red-shift of spectral lines from extragalactic nebulae was nothing but an

outcome of an intrinsic geometrical property of the model independent of expansion. Also,

he obtained the field equations in normal gauge as

Ri j −
1

2
gi jR+

3

2
gi jφiφ j −

3

4
gi jφkφ k =−κTi j (1.40)

where Ri j is the Ricci tensor; R is the Ricci scalar, gi j is a metric tensor, φi is a displacement

field and Ti j is the energy-momentum tensor.

Sen (1960) and Sen and Dunn (1971) showed that, unlike Riemannian geometry, the auto

parallels associated with the affine connection in Lyra geometry did not coincident with the

geodesics arises from the metric. In the Lyra’s geometry, they also constructed a new scalar-

tensor theory where both the scalar and tensor field had natural geometrical significance.

Sen and Vanstone (1972), in their paper “On Weyl and Lyra Manifolds”, showed that

the Lyra’s geometry and Weyl’s geometry are special cases of manifolds with more general

connections. Also, they showed the relationship between Lyra’s geometry and Weyl’s ge-

ometry and obtained the relationship of them with Riemannian geometry by giving a global

formulation of Lyra’s geometry.

Halford (1970) designed a cosmological theory within the framework of Lyra’s geome-

try and showed that the constant displacement vector field in Lyra’s geometry plays the role

of the cosmological constant in the normal general relativistic study. Also, Halford (1972)

obtained a closed-form exact solution of the field equations corresponding to a scalar-tensor

theory similar to the B-D theory and showed that the scalar-tensor treatment based on Lyra’s

geometry predicts the same effect, within observational limits, as far as the classical solar

system test are concerned (as in the Einstein’s theory of relativity).

Bhamra (1974) obtained a spherically symmetric cosmological model of class-one in the

framework of Lyra’s geometry and showed that the static universe is physically unrealistic

whereas the non-static universe is similar to Lemaitre’s model in Riemannian geometry in

which the mass-energy conservation law did not hold.

Jeavons et al. (1975), in their study of “A Correction to the Sen and Dunn Gravitational Field
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Equations”, showed that the field equations formulated by Sen and Dunn (1971) cannot be

derived from the normal variational principle and they suggested the modified field equations

as

Ri j −
1

2
Rgi j +φ−1(φi; j −gi j φ)−ωφ−2(φiφ j −

1

2
gi jφkφ k) =−φTi j (1.41)

where Ri j is the Ricci tensor, R is the Ricci scalar (Riemann curvature scalar), ω = constant =
3
2

, and Ti j is the material energy-momentum tensor (in our units c = 8πG = 1).

Reddy (1973, 1977) investigated the Birkhoff’s Theorem of general relativity both in the

Brans-Dicke theory and in the scalar-tensor theory suggested by Sen and Dunn (1971).

Reddy (1973) showed that the Birkhoff’s Theorem of general relativity is hold good in

the scalar-tensor theory suggested by Sen and Dunn (1971) for all scalar field irrespective

of nature of the scalar field. But in the Brans-Dicke theory, Birkhoff’s Theorem is valid

only for the scalar field which is independent of time. Considering time-independent scalar

field in the scalar-tensor theory suggested by Sen and Dunn, Reddy (1977) showed that the

Birkhoff’s Theorem of general relativity is also valid in presence of electromagnetic field.

So, he suggested that the scalar-tensor theory of Sen and Dunn (1971) may be considered as

a superior version of the Brans-Dicke theory.

Karade and Borikar (1978) studied the effects of the thermodynamic equilibrium of a

gravitating fluid sphere in Lyra’s Geometry and obtained a static model universe with a zero

red-shift in it.

Singh and Rai (1979) investigated the Birkhoff’s Theorem of general relativity in the scalar-

tensor theory suggested by Jeavons et al. (1975) and showed that when the scalar field is

independent time then in presence of electromagnetic fields in the scalar-tensor theory sug-

gested by Jeavons et al. (1975), the spherically symmetric gravitational and electromagnetic

fields turn out to be static.

Kalyanshetti and Waghmode (1982) obtained a static cosmological model in Einstein- Cartan

theory in the framework of Lyra’s geometry. Assuming the spin of each fluid particle along

the radial direction, he observed that only constant spin has existed in his Einstein’s static

model universe that can be expressed in terms of central density.
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Considering a metric described by a scale constant associated with the size of the uni-

verse, Rosen (1983) modified the Weyl-Dirac theory of gravitation and electromagnetism.

Reddy and Innaiah (1985) formulated an anisotropic and spatially homogeneous Bianchi

type-I cosmological model in Lyra’s manifold with perfect fluid as a source of gravitational

field by considering energy density equal to pressure.

Reddy and Innaiah (1986) constructed a plane-symmetric cosmological model in Lyra

manifold with perfect fluid as a source of gravitational field by taking energy density equal

to pressure.

Beesham (1986) obtained Vacuum FRW Cosmological models in the framework of Lyra’s

geometry and a number of new solutions are discussed in the de Sitter universe.

In the study of “Cosmologies Based on Lyra’s Geometry”, Soleng (1987) discussed that

the Lyra Geometry together with gauge vector φi will play either the role of cosmological

constant or the creation field (equal to the Hoyle’s creation field [Hoyle (1948), Hoyle and

Narlikar (1963, 1964)]). He also showed that the solutions in the first case are equal to the

solutions in general relativistic cosmologies with a cosmological term.

Considering Friedmann-Lemaitre-Robertson-Walker (FLRW), Beesham (1988) formulated

cosmological models in Lyra’s manifold with time-dependent displacement field. In this

model, not only he solved the existing problems like singularity, horizon and entropy in the

standard cosmological models based on Riemannian geometry but also studied the asymptotic

behavior of the models.

Singh and his co-authors (1991a,b,c,d; 1992a,b; 1993b; 1997) studied Bianchi types I,

II, III, V , V I0, V III, IX , Kantowski-Sachs, and a new class of cosmological model universes

with and without time-dependent displacement field in the framework of Lyra geometry.

Comparative study of the Cosmological theory based on Lyra’s geometry and the Friedmann-

Robertson-Walker (FRW) model universes with a constant deceleration parameter in the

Einstein’s theory of relativity were also made by them.

Khadekar and Nagpure (2001) studied a Higher Dimensional Static conformally flat spher-

ically symmetric Cosmological Model in Lyra Geometry in presence of perfect fluid and

observed that in Lyra’s manifold, the displacement vector plays the role of the spin density.
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Rahaman et al. (2002) investigated an Inhomogeneous Cosmological Model in Lyra Geome-

try and obtained the exact solutions of the field equations. He has got an anisotropic model

universe where the displacement vector is always non-zero, so the concept of Lyra geometry

exists even after infinite time.

Rahaman (2003) discussed a five-dimensional spherically symmetric metric in presence

of a homogeneous perfect fluid in the framework of Lyra geometry and obtained a cosmo-

logical model for vacuum energy type universe together with matter filled-universe for dust

case, Zeldovich fluid and stiff fluid.

Considering a time-dependent displacement field, Pradhan and Vishwakarma (2004) in-

vestigated a locally rotationally symmetric Bianchi type-I metric and a new class of exact

solutions of the field equations in the framework of Lyra geometry is obtained for constant

deceleration parameter. Also, they studied the characteristics of the energy density and

displacement field in the power law expansion and exponential expansion of both flat and

non-flat universe.

Rahaman et al. (2005) obtained two model universes namely axially symmetric Bianchi type-

I and Kantowski-Sach cosmological models with negative constant deceleration parameter

based on Lyra geometry.

Casana et al. (2005) studied the coupling of the curved and torsioned Lyra manifold with

the electromagnetic field and showed that the coupling between torsion and the massless

electromagnetic field was related to scale transformations in Lyra setting. Also, they showed

that the suitable choice of the connection of gauge transformations with scale invariance in

Lyra manifold would remove the problem of breaking the local gauge invariance connected

with this coupling.

Casana et al. (2006) discussed the Dirac field in Lyra geometry and obtained the equa-

tion of motions and conservation laws for spin and energy-momentum. They, also, obtained

the scale relation, which is a fundamental property of matter fields in Lyra geometry, con-

necting the spin tensor and energy-momentum tensor.

Studying five-dimensional LRS Bianchi type-I space-time in presence of bulk viscous fluid,

Mohanty et al. (2007) constructed a higher dimensional string cosmological model in Lyra
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Manifold for time-dependent displacement field and constant coefficient of bulk viscosity.

This model had no initial singularity.

In a scalar-tensor theory of Sen (1957) based on Lyra manifold, Rao and Vijaya Santhi

(2008a) formulated a Bianchi type-V cosmological model in presence of perfect fluid for a

constant displacement vector. Also, when displacement vector is a function of cosmic time

then by using negative constant deceleration parameter they had shown that this model exists

only for radiation universe. Kumar and Singh (2008) investigated a spatially homogeneous

and anisotropic Bianchi type-I in presence of perfect fluid and obtained a cosmological model

universe based on Lyra geometry. Using the special law of Hubble’s parameter that gives a

constant deceleration parameter, they had obtained the exact solutions of the field equations

which are consistent with the recent observational data from supernovae type Ia.

Considering five-dimensional plane symmetric metric, Mohanty et al. (2009b) attempted

to obtain a string cosmological model universe both in Riemannian geometry and in Lyra

geometry. But they had observed that, in both the theories, the string cosmological models

were not survived. Accordingly, they had formulated the vacuum cosmological models and

discussed their properties.

Investigating plane-symmetric metric under the influence of perfect fluid, Yadav (2010)

obtained an inhomogeneous cosmological model universe with electromagnetic field based

on Lyra geometry and the exact solutions of the field equations for this model are consistent

with the recent observational data from supernovae type Ia.

In the framework of Lyra geometry, Gad (2011) obtained a new class of axially symmetric

cosmological model universes in presence of the mesonic stiff fluid with time-dependent

displacement field which are expanding, shearing and non-rotating.

Adhav (2011) obtained an anisotropic dark energy model based on Lyra geometry by ex-

amining a LRS Bianchi type-I metric under the influence of anisotropic fluid. Considering

exponential volumetric expansion, exact solutions of the field equations were determined

for constant and time-dependent displacement field and isotropic properties of the space and

fluid were examined.

In the framework of Lyra geometry, Mahanta and Biswal (2012) obtained cosmological

model universes for both string cloud and domain walls with quark matter by solving the
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Einstein’s field equations using anisotropy property of the universe, time-dependent dis-

placement field and special law for Hubble’s parameter that gives the constant value of

deceleration parameter.

Shchigolev (2013) obtained a Cosmological model within the framework of Lyra’s ge-

ometry with an effective Λ-Term in the field equations that appeared due to the interaction of

the displacement vector field with an auxiliary Λ-Term.

In a cosmological model in the framework of Lyra’s geometry, Hova (2013) established a

relationship between the displacement vector field, the energy density of matter and Hubble’s

parameter through an arbitrary function α(t) and obtained an effective equation of state

parameter ωe f f in terms of α(t) and constant equation of state ωm . The effective equation

of state parameter ωe f f was completely determined for pressure-less matter by α(t) . Con-

sequently, he had obtained exact solutions for the models in Lyra’s geometry that yield the

ΛCDM and Power-Law Expansion.

Studying an inhomogeneous Bianchi type-I metric in presence of an electromagnetic field,

Megied et al. (2014) obtained a cosmological model in the framework of Lyra geometry.

Assuming the metric potentials and displacement field as functions of coordinates x ant t,

they had obtained a class of exact solutions of the Einstein’s field equations.

In the framework of Lyra’s geometry, Darabi et al. (2015) studied about the existence

of the Einstein’s static universe for homogeneous scalar perturbations together with the

stability condition and obtained the stability condition in terms of the equation of state

parameter ω as ω = p
ρ . Also, they had studied the stability conditions for tensor and vector

perturbations. They showed that, in the framework of Lyra’s geometry, Einstein’s static

universe can be obtained for appropriate values of physical parameters.

In order to describe the evolution of the universe, Saadat (2016) formulated a new cos-

mological model based on extended Chaplygin gas with varying Λ-term in the context of

Lyra geometry where extended Chaplygin gas is taken as dark matter and quintessence scalar

field is considered as dark energy.
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1.8 Bianchi Space-Times:

The cosmological principle is supposed to be deduced from the Copernican principle. Further

the analogy of the assumption may be stated as: the world line of our galaxy is not special be-

cause if our universe is isotropic about our world line then it is also isotropic about the world

line of other galaxies. In the year 2016 (Bull, P.et al., 2016), showed that Einstein’s general

theory of relativity is a perfect theory to describe our expanding universe by using Friedmann

- Robertson-Walker (FRW) space-time which describes isotropic, homogeneous on large

scale. But the isotropic Cosmic Microwave Background (CMB) radiation is not certainly able

to explain about isotropic space-time. Considering these limitations, it does not suit us to curb

ourselves, only in the study of isotropic homogeneous cosmological models; rather it leads

to study more conveniently anisotropic and inhomogeneous cosmological models. Since the

solution of the Einstein’s field equation for study of inhomogeneous cosmological model

universes appears to be more complicated and sometimes becomes very hard nut to crack for

the researchers to solve, hence, many cosmologists opt to undergo the spatially homogeneous

and anisotropic Bianchi type models instead of inhomogeneous models. Generally, Bianchi

type models represent a mid way between the FRW model and inhomogeneous & anisotropic

universes, hence its important role is found in modern cosmology. In order to understand

the properties and structure of the space of all cosmological solutions of the Einstein’s field

equations, a spatially homogeneous cosmological model plays a vital role (McCallum, 1979).

From the study of different texts of various authors, it has been found that Bianchi type cos-

mological models are homogeneous and anisotropic, but the isotropization process of these

model universes are studied with the passage of time. Also, in the theoretical perspective, the

anisotropic universes have possessed a greater generality than the isotropic model universes.

In addition, due to the simplicity of the field equations in the Bianchi space-times, the Bianchi

Type cosmological models have an added importance in the construction of the anisotropic

and spatially homogeneous cosmological model universe. Thus it can be said that Bianchi

type cosmological models play a crucial role in the description of the model universes. Di

Pietro and Demaret (1999) classified the 9 (nine) different types of Bianchi models into

2 (two) groups 1 and 2. They placed Bianchi types I, II, V I0, V II0, V III and IX models

are in group 1 whereas the Bianchi type models III, IV , V , V Ih̸=−1 and V IIh ̸=0 are in groups 2.

Generally, the metric for the Bianchi type space-time is characterized as

ds2 = dl2 −dt2 where dl2 = gabdxadxb (1.42)
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where dl2 is the three/four dimensional line element. In order to understand the structure

and properties of space of all cosmological solutions of Einstein’s field equations, spatially

homogeneous cosmological model have taken a vital role [McCallum (1979)].

1.9 Some Aspects of the Work Related to Bianchi Space-

Times:

In this thesis our investigation is pertained to Bianchi Type metric as the line element of the

problem as such we have described some relevant work. Mainly in this section we have pre-

sented some of the relevant work carried out by various authors related to Bianchi type metric.

After obtaining the structure constants of the nine different types of Bianchi type I-IX

space-time by Bianchi (1918), Taub (1951) and Petrov (1961), many authors investigated

Bianchi type cosmological models. Some of the Bianchi cosmological models are mentioned

below.

Rosen (1964) obtained two spatially homogeneous solutions of the Einstein-Maxwell equa-

tions for pure-magnetic case. By investigating Bianchi type metric, Zel’dovich (1964)

obtained the general solution of the Einstein’s field equation for the dust case and the singu-

larity bahaviour of the solution was also explained by him. By investigating homogeneous

axially-symmetric model, Kompaneets and Chernov (1964) developed the solutions of the

Einstein’s field equations for dust and ultra relativistic gas and the singularity of the solutions

were also discussed for radiation case.

Zel’dovich (1965) showed that a primordial homogeneous magnetic field is existed in the

universe and examined the characteristics of the corresponding solution.

Hawking and Taylor (1966) demonstrated that initially the helium production increases

with the increase of the anisotropy parameter but when the anisotropy parameter is large

enough then production of helium decreases again.

Misner (1967, 1968), investigated anisotropic Bianchi type I cosmological models and

obtained the solutions for large anisotropy in general and small anisotropy in both dust

dominated and radiation dominated cosmology. He also used his results, in order to calculate
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an upper limit to the temperature anisotropy as 2.70 k of the cosmic microwave radiation.

Jacob, K. C., (1968), investigated Bianchi type I spatially homogeneous anisotropic cosmo-

logical models with uniform magnetic field and obtained general solution with no magnetic

field for perfect fluid (with barotropic equation of state). Also, a number of partially realistic

cosmological models were obtained by using the solution and studied the anisotropic effects.

By considering Bianchi type I metric, Jacob, K. C., (1969), studied the effects of a pri-

mordial uniform magnetic field on spatially homogeneous anisotropic model universe and

solutions were achieved in different sub cases like Dust-Magnetic, hard Magnetic, Pure-

Magnetic and Zel’dovich-Magnetic.

In the paper entitled with “A Class of Homogeneous Cosmological Models”, Ellis and

McCallum (1969) studied the solutions of the Einstein’s field equations in two different

classes’, one by assuming the source of the gravitational field as a perfect fluid with barotropic

equation of state and the other by assuming that there exist only a transitive group of motions

on three surfaces orthogonal to the flow vector of fluid. By considering positive, zero and

negative cosmological constants, they also discussed the general dust solutions for these cases.

Investigating Bianchi type IX line element, Khalatnikov and Lifshitz (1970) obtained cosmo-

logical models by solving Einstein’s equations.

Collins and Hawking (1972) showed that the Bianchi type VII models are the most general

uniform cosmological models which are infinite in all three spatial directions. These models

have wide class initial conditions providing maximum possible number of arbitrary constants.

He also showed that all the initial anisotropic universes do not approaches to isotropy but the

subclass of universe having escape velocity would approach to isotropy.

Singh (1975) obtained cylindrically symmetric solutions in a scalar-tensor theory of gravita-

tion of which one solution is nonsingular and others special solutions are reduced to Misra &

Radhakrishna’s time dependent solutions and Levi-Civita solution .

Kibble (1976), in his paper “ Topology of Cosmic Domains and Strings ”, recognized

the stable topological defects that occurred throughout the phase transition as strings. Also,

he showed that the topological structure of the domain structure depend on the homogenity

group of the manifold of degenerate vacua.
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A new class of exact solutions of Einstein’s equations without big-bang singularity was

obtained by Tomimura (1978) and Szafron and Collins (1979) where the solutions represent

inhomogeneous, cylindrically symmetric cosmological model with perfect fluid. Consider-

ing Bianchi type-VIII metric, Collins and Glass (1980) investigated perfect fluid spatially

homogeneous cosmological models and obtained a new class of exact solutions. Also, he

classified and discussed the new solutions in many ways.

Banerjee and Santos (1981) investigated a Bianchi type-I universe in order to obtain spatially

homogeneous cosmological models in general scalar-tensor theory. From the solutions

obtained in his model, he observed that the universe expands from zero volume with initial

singularity and then retrace back. Therefore the singularity in his model had significant

difference with that in the analogous Kasner (1921) model universe in Einstein’s theory.

In the paper entitled with “Inhomogeneous cosmology; Gravitational Radiation in Bianchi

Background”, Adams et al. (1982) used Bianchi types I-IX metric, in order to explain

cosmological models and developed an exact formalism where gravitational radiation of

arbitrary polarization can be studied. They had also shown how this formalism is used to an

empty Bianchi type-I for the transformation of the z-dependent chaotic singularity structure

to the propagation of gravitational radiation along the z-axis.

Accioly et al. (1983) studied Bianchi type-I metric and obtained exact solutions for two

different cosmological models involving non-minimal coupling between gravitation and

other fields and discussed their physical properties in details.

Reddy and Innaiah (1985) obtained a spatially homogeneous, anisotropic Bianchi type-I

cosmological model in Lyra’s manifold by taking perfect fluid as a source of the gravitational

field, assuming pressure equal to energy density.

By considering the linear relationship among fluid density, expansion scalar and shear

scalar, exact solutions of a spatially homogeneous LRS Bianchi type-II model universe in

presence of shear and bulk-viscosity with barotropic equation of state were obtained by

Banerjee et al. (1986).

Nayak and Bhuyan (1987) obtained a Bianchi type-V perfect fluid model with source-free

electromagnetic fields by solving exactly the Einstein’s-Maxwell equation for the non-locally
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rotationally symmetric case.

Berman and Gomide (1988) have discussed very simple Bianchi type-I anisotropic cos-

mological models with constant deceleration parameter. The simplicity of the model and

easy way of defining deceleration parameter and Hubble’s constant were the key features of

this model.

Considering cylindrically symmetric Bianchi type-I metric in presence of perfect fluid

with an electromagnetic field, Bali and Tyagi (1989) studied an inhomogeneous cosmological

model and discussed some properties together with the behavior of the electromagnetic field

tensors. In order to solve the field equations, they used the relation between the metric

potential as A = (BC)n where n is a constant and A,B,C are functions of x and t.

In Barber’s self-creation cosmology, Venketeswarlu and Reddy (1990) obtained a cosmologi-

cal model by considering Bianchi type-I metric in presence of perfect fluid and discussed

also some properties in the physical and geometrical sense.

Investing a Bianchi V I0 Space-Time Chakraborty (1991b) obtained a class of cosmological

models of strings both in presence of a magnetic field and without magnetic field.

In the zero-mass scalar field, Rao and Sanyasiraju (1992) obtained the exact Bianchi type-

VIII and IX cosmological models in presence of perfect fluid with p = ρ and showed that

both the Bianchi type models are expanding, irrotational and shearing.

Romano (1993) investigated a plane-symmetric inflationary Bianchi type-I model universe

with the help of causal thermodynamics where the initial anisotropy extinguished quickly.

Latifi et al. (1994) showed that not only the Bianchi type-IX cosmological models are

non-integrable in the Painleve sense but also they have no vacuum solutions.

In four dimensional space-times, Demaret and Querella (1995) examined the classical

behaviors of Bianchi type cosmological models by using the Hamiltonian formalism of

quadratic gravity of Boulware. For the two Bianchi type models I and IX, they also suggested

the super-Hamiltonian constraints in the explicit forms.

Investigating Bianchi type I metric in presence of the string cloud, Yavuz and Tarhan
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(1996) obtained exact solutions of the Einstein’s field equations. They have also studied the

significance of the effects of strings on the anisotropic properties.

Considering Anisotropic Bianchi type metric in presence of perfect fluid, Barrow (1997)

examined the development of the source of matter with small anisotropic pressure in the

various field. Also, he had calculated the evolution of them all over the dust and radiation

eras of an almost isotropic universe.

In Barber’s Second self-creation theory of gravitation, Ram and Singh (1998) obtained

completely anisotropic Bianchi-II type cosmological solutions both in presence of stiff-

matter and in the vacuum.

Kawai and Soda (1999) showed that the anisotropic non-singular Bianchi Type-I Cosmologi-

cal Solutions that obtained from the effective action with a superstring were subsequently

super-inflate and then smoothly continue to either Friedmann-type or Kasner-type solutions.

Considering 4-dimensional Bianchi type-I metric, Chakraborty and Ghosh (2000) have

obtained a cosmological model in the generalized scalar-tensor theory of gravitation and in

presence of bulk viscous fluid; both power law and exponential solutions were discussed.

Assuming string tension density equal to the rest energy density for a cloud of string,

Bali and Dave (2001) obtained a deterministic solution for a Bianchi-IX string universe in

general relativity.

Pradhan and Vishwakarma (2002) derived a new class of LRS Bianchi-I model universes

in presence of perfect fluid with constant deceleration parameter. Exact solutions for Dust

universe, radiating universe and false vacuum universe wes also obtained.

Sahu and Panigrahi (2003) investigated a spatially homogeneous anisotropic Bianchi Type-I

model universe with perfect fluid in Barber’s second theory of gravitation. They have also

shown that the vacuum model degenerated to Kasner model and the general fluid distribution

would reduce to isotropic vacuum model.

Saha and Boyadjiev (2004) obtained a Bianchi Type-I Cosmology in presence of perfect fluid

with interacting spinor field and scalar field. He has shown that the positive and negative

values of Λ term correspond to an oscillatory model and non-exponential mode of evolution
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respectively.

Saha (2005) derived anisotropic cosmological models with perfect fluid and dark energy

by considering a Bianchi-I type space-time with a binary mixture of perfect fluid and

quintessence type dark energy. He has obtained the exact solutions of the Einstein’s field

equations and formulated a closed universe with a space-time singularity and a regular,

oscillatory type open universe which became infinite in time.

Studying Bianchitype-III space-time, Xiang (2006) obtained a string model universe in

presence of both bulk viscosity and magnetic field which was found to be inflationary, shear-

ing and non-rotating.

Considering an anisotropic and homogeneous space-time in five dimensions, Mohanty

and Mohanta (2007) derived two Zeldovich fluid models in Barber’s self-creation theory of

gravitation. He has shown that the extra dimension in one of the models remain constant

during the evolution whereas in other model it was contracted.

Kumar and Singh (2008) constructed an exact Bianchi type-I cosmological model in Lyra’s

manifold. In order to solve the field equations, he used constant deceleration parameter that

obtained from special law for variation of Hubble’s parameter and the solutions are consistent

with the observational data from supernovae type Ia.

In the paper entitled with “Geometrical Behaviors of LRS Bianchi Type-I Cosmological

Model”, Amirhashchi, Zainuddin and Dezfouli (2009) investigated a LRS Bianchi-I type

Space-time in empty space and showed that initially when t → 0 then the vacuum model do

not posses singularity whenever the scale factors A and B are equal and equal to exp(t).

Akarsu and Kilinc (2010a,b) constructed two Bianchi models entitled with “LRS Bianchi

Type-I Models with Anisotropic Dark Energy and Constant Deceleration Parameter” and

“Bianchi Type-III Models with Anisotropic Dark Energy”. In the first paper, they have

assumed a special law of variation of average Hubble’s parameter that produced a constant

value of the deceleration parameter for obtaining the solution of the field equations, whereas

in the second paper, they have obtained a general anisotropy parameter of the expansion for

Bianchi-III type space time with imperfect fluid (single diagonal).

Pradhan, Amirhashchi and Saha (2011a) formulated a Bianchi type-I anisotropic dark energy
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model with constant deceleration parameter where the equation of state parameter was depen-

dent on cosmic time. Using a variation law for Hubble’s parameter, they have obtained two

types of solutions (exponential form and power-law form) for the Einstein’s field equations

that satisfy the recent observational data.

Investigating a LRS Bianchi type-I space time in presence of perfect fluid with constant

deceleration parameter, Adhav (2012) derived a spatially homogeneous anisotropic model

universe in f (R,T ) theory of gravity. Also, he showed that the LRS Bianchi-I type cosmology

in f (R,T ) theory of gravity may be reconstructed with the suitable choice of the function

f (T ).

Sahu and Kumar (2013) obtained a Tilted Bianchi type-I cosmological model with stiff

fluid for time varying displacement vector field in Lyra Geometry, where they had shown the

importance of time varying displacement vector in the dynamics of our universe.

Ladke (2014) formulated five dimensional spatially homogeneous and anisotropic Bianchi

type-I cosmological models with variable gravitational and cosmological constant in Kasner

form. Using a time dependent deceleration parameter due to a law of variation of scale factor,

the exact solutions of the field equations were obtained.

Recently, authors like Mishra et al. (2015a), Sahoo & Mishra (2015), singh et al. (2016a)

sdudied Bianchi type cosmological models in general relativity and modified theories of

gravity in different contexts.

1.10 Strings and String Cosmology:

Despite the vicissitudes of literary tastes and temperament, the Big-Bang theory is the most

prevailing theory of the formation of our universe, however, till today we are not in a state to

provide an exactly clear statement about the origin and evolution of our universe that is why

the origin of our universe is treated as one of the greatest mysteries amongst the cosmologists.

Therefore the study of the exact physical situation of the universe at the early stage of its

evolution becomes a matter of concern. In order to describe the events at the early stages

of the evolution of our universe, cosmologists develop the concept of string theory, where

cosmic string is one of the most important objects of study. In order to study about the period

before the creation of the particle in the universe, string theory is used by cosmologists. At

the early stages of the evolution of our universe, it might have passage through a number of
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phase transitions just after the big-bang as it was cooled down from the hot initial state (i. e.

the universe passage through its critical temperatures). The symmetry of the universe might

have been broken spontaneously during the phase transition.

During the phase transitions at the early stage of our universe, the symmetry of the universe

might have been broken spontaneously and as a result, various topological defects like

cosmic string, domain walls, monopole and textures [Kibble (1976); Mermin (1979)] were

formed. (A defect is nothing but a discontinuity in the vacuum depending on the topology

of the vacuum it could be string, domain walls, monopole and textures). In the year 1998,

Pando and his co-authors (Pando et al., 1998) suggested that the topological defects were

responsible for the formation of the structure of the universe. Vilenkin (1985) and Vilenkin

& Shellard (1994) showed that amongst the all topological defects, only string can explain

to very interesting cosmological consequences like galaxy formation and double quasar

problem. Different works of literatures reveal that the string theory is also treated as one

of the important contenders for the unification of all forces. Present configurations of our

universe are also agreed by the presence of large-scale network of strings in the early stage

of it. Strings are also treated as one of the main causes of density perturbations which are

necessary for the configuration of the large-scale structure in our universe. Due to the stress-

energy possessed by the strings they could have produced a gravitational field. Therefore the

gravitational effects arising from the strings are also treated as an interesting topic of study.

Letelier (1979, 1983) and Stachel (1980) were the first who introduced the strings into the

general theory of relativity.

Considering that the massive strings were formed from the massless geometric strings

with particle attached along its extension, Letelier (1979) formulated the equation of energy-

momentum tensor for a cloud of massive strings as

Ti j = ρuiu j −λxix j

where ρ is the rest energy density for a cloud of string with particle attached to them and λ

is the string cloud density and

ρ = ρp +λ

in which ρp is the particle density of the configuration.
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Many authors like Zeldovich et al. (1974), Kibble (1976), Letelier (1979), Stachel (1980)

showed that existence of the string in the early universe may be explained by using GUT

(grand unified theories). Brief discussion of the number of the important chronological

achievements in string theory was presented by Schwarz (2001). Recently strings and string

cosmological models have got increasing importance in the cosmological society. Various

authors like, Vilenkin (1981), Litelier (1983), Gott (1985), Krori et al. (1990), Banerjee et al.

(1990), Chakraborty (1991a), Tikeker & Patel (1992), Tikeker et al. (1994), Tikeker & Patel

(1994), Roy & Banerjee (1995), Ram & Singh (1995), Yavus & Tarhan (1996), Brustein &

Hadad (1998), Singh & Singh (1999), Bali & Dave (2001), Bhattacharjee & Baruah (2001),

Baysal et al. (2001), Bali et al. (2006), Pradhan (2007), Rao et al. (2008b, c), Rao & Vijaya

Santhi (2012b) studied string cosmological models in general relativity and modified theories

of relativity in different contexts.

Recently, authors like Venkateswarlu et al. (2013); Das & Ali (2014); Ram & Priyanka

(2014); Venkateswarlu & Satish (2014); Singh & Beesham (2014); Korpinar & Unluturk

(2015); Bali & Singh (2015); Sahoo et al. (2016); Patil & Bhojne (2016); Kar et al. (2016);

Behal & Shukla (2017); Mete et al. (2017); Azevedo & Martins (2017); Kanakavalli et

al. (2017); Bena & Grana (2017); Sahoo et al. (2017) studied various string cosmological

models in different contexts.

1.11 Higher Dimensional Cosmology:

In the general relativistic physics, our present universe seems to be four-dimensional of which

three are used to denote usual spatial dimensions and the fourth dimension represents time.

But many researchers established their theories about the universe in higher-dimensional

space-time mainly due to the significant achievement in solving long-standing problems

relating to the stability of the results in general relativity and quantum mechanics. Before

Einstein, two mathematicians namely, Herman Weyl (1918) and Theodor Kaluza (1921)

attempted to unify gravity with the electromagnetic force. In the standard four-dimensional

space-times, the first unified theory was suggested by Herman Weyl on the basis of generaliz-

ing the Riemannian geometry. But in the five-dimensional space-times, a unified theory of

gravitation and electromagnetic force was established the first time by the mathematician

Kaluza. Also in the year 1926, Oskar Klein, Swedish physicist, suggested the unification law

of the gravitational force and the electromagnetic force by using the fifth dimension. This

theory is known as Kaluza-Klein theory. Later on, it was established that their approaches
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were to some extent erroneous, but this theory provides a basis to the researchers for further

investigation over the last few decades. Einstein (1927), later on, showed that in general rela-

tivity, the Kaluza’s idea gives a rational foundation for Maxwell’s electromagnetic equations

and combines them with gravitational equations to a formal whole.

1.12 Dark Energy:

It has been established and believed that our universe is accelerating at the present epoch

instead of showing down as predicted by the Big Bang theory Silk (1989). This concept of

accelerated expansion is one of the excellent achievements in cosmology. However, till today

we are not in a state to provide an exactly clear statement about the origin and evolution

of our universe. From the study of different literatures and philosophical point of views

in this regard, we found that different mines provide different opinions about our universe.

Actually, the universe is full of mysterious elements and numerous effects of interactions

which cannot be detected and difficult to explain even with advanced technology. So the

most challenging problem in Astrophysics and modem cosmology is to understand the late

time acceleration of the universe. In recent years many researchers and Scientists are putting

huge effort to explain the dynamics of the universe and to understand the future evolution of

the universe with the attention in the context of dark energy and modified theories of gravity.

Also there are lots of outstanding results of the cosmological observations such as Riess et al.

(1998) ; Perlmutter et al. (1999) ; Bennett et al. (2003) ; Seljak et al. (2005) ; Astier et al.

(2006) ; Daniel et al. (2008) ; Amanullah et al. (2010) ; Suzuki et al. (2012) ; Nishizawa

(2014) are perceived to us for the cosmic acceleration with direct and indirect evidence. The

cosmological results and data sets like Atacama Cosmology Telescope (ACT) (Sievers et al.

2013), Planck 2015 results- XIII (Ade et al. 2015), are also suggested about late time inflation

of the universe and allows the researchers to determine cosmological parameters such as the

Hubble constant H and the deceleration parameter q. Studying the constraints given by the

data from CMBR (Cosmic Microwave Background Radiation) investigations [Bernardis et al.

(2000) ; Spergel et al. (2003)], WMAP (Wilkinson Microwave Anisotropy Probe) (Hinshaw

et al. 2013), observations of clusters of galaxies at low red shift [Chaboyer et al. (1998)

; Salaris & Weiss (1998)] etc., it can be deduced that the universe is dominated by some

mysterious components. This mysterious component of the energy is called dark energy

which has negative pressure and positive energy density (giving negative EoS parameter). In

the energy budget of the universe, it has been estimated that about 73% of our universe is

Dark energy, about 23% is occupied by Dark matter and the usual baryonic matter occupies

about 4%. Therefore the study of the nature of dark energy has become one of the most
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important topics in the field of fundamental physics [Sahni et al. (2000) ; Padmanabhan

(2003) ; Li et al. (2011) ; Bamba et al. (2012) ; Bahrehbakhsh & Farhoudi, (2013) ; Wang

et al. (2016) ; El-Nabulsi (2015a,b)]. Einstein’s cosmological constant Λ is the simplest

candidate for dark energy and physically it is equivalent to the quantum vacuum energy. The

cosmological model with Λ and cold dark matter (CDM) is usually called the ΛCDM model.

Recent literatures and findings suggested that dark energy dominates the universe with

positive energy density and negative pressure, responsible to produce sufficient acceleration

in the late time evolution of the Universe. So the study of dark energy becomes a major

outstanding issue in physics and cosmology today. There are a number of useful reviews of

dark energy that are focus on theory [Yoo & Watanabe (2012); Ziaeepour (2014); Copeland

et al. (2006) ; Linder et al. (2016) ; Tsujikawa (2010 , 2011b)], on probes of dark energy

[Frieman et al. (2008)] and on the cosmological constant [Carroll (2001) ; Martin (2012)].

Also, many prominent researchers like Yoo & Watanabe (2012), Bahrehbakhsh et al. (2013) ,

Joyce et al. (2016), Pasechnik (2016), Wang et al. (2016), El-Nabulsi (2011d, 2013a,b,c,d ,

2015a,b , 2016a,b) , Motloch et al. (2015), Silbergleit (2016), ; Linder (2015), Josset et al.

(2016), Nojiri et al. (2006a,b), Nojiri & Odintsov (2007, 2014a), Felice & Tsujikawa (2010) ,

Faraoni (2008), Boehmer et al. (2012) discussed different models about the dark energy in

the different context with the comparisons of observational findings. Some of the important

claimants of dark energy are tachyons [Padmanabhan et al. (2002)], chaplygin gas [Elmardi

et al. (2016)], phantom [Dabrowski (2008)], k-essence and quintessence [Armendariz-Pecon

et al. (2000a,b) ; de Putter et al. (2007)] along with other four elements i.e. dark matter,

baryons, radiation and neutrinos. But so far there is no direct detection of such exotic fluids.

Although the literature is now flooded with hundreds of model for dark energy what we

lack is precise cosmological data coming from a variety of observations involving both

background and the inhomogeneous universe that can discriminate among these models. In

this connection, if we accept that Einstein was correct with his general relativity theory to

explain accelerated expansion of the universe could also be explained by negative pressure

working against gravity. The belief of Einstein to the static universe made him to think

about negative pressure which will stop the attraction of the gravity. However, it is known

that our universe is not only non-static but also have cosmic acceleration. According to

the above observational data analysis, the amount of the negative pressure in our universe

can be estimated, which we call it as dark energy. The simple question about the nature of

the dark energy is still one of the intriguing questions and left free space for new speculations.

In recent time, Bianchi type dark energy models are studied by some of the authors like,
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Akarsu and Kilinc (2010b); Adhav (2012); Katore & Shaikh (2014); Sahoo & Mishra (2014);

Ali et al. (2016) in General relativity and f (R,T ) gravity, whereas Sahu & Kumar (2013);

Samanta (2013); Singh & Sharma (2014) studied Bianchi type dark energy models in Lyra

geometry.

1.13 Perfect Fluid and Energy-Momentum Tensor:

A perfect fluid is a frictionless homogeneous and incompressible fluid which is incapable

of sustaining any tangential stress or action in the form of a shear but the normal force acts

between the adjoining layers of fluid. The pressure at every point of a perfect fluid is equal

in all directions, whether the fluid be at rest or in motion. It can be completely characterized

by its rest frame energy stresses, viscosity and heat conduction.

The energy-momentum tensors describing matter is given by

T i j = ρuiu j +Si j (1.43)

where ρ is the mass density, ui is the four-velocity ui = dxi

ds
of the individual particles, and

Si j is the stress tensor where the speed of the light c = 1. If the matter consists of perfect

fluid, namely, one whose pressure is isotropic the stress tensor can be expressed as

Si j = p
(
uiu j −gi j

)
(1.44)

where p is the pressure.

Thus the energy-momentum tensors becomes

T i j = (ρ + p)uiu j − pgi j (1.45)

The only stress they can sustain is the isotropic pressure p ; ρ is the mass density. It is

generally agreed that except in the early universe, the pressure of the sources can be neglected.

A perfect fluid with zero pressure is technically referred to as dust such that it is still on the

substratum. Since any random motion would constitute a pressure. In the early universe,

however uniform radiation is thought to have predominated. This does have pressure, its

equation of state is
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p =
1

3
ρ (1.46)

1.14 Hubble’s Law and Hubble’s Constant:

Hubble discovered that the galaxies recede from the earth with a velocity proportional to

their distance i.e. the recession velocity is proportional to the distance.

Therefore, Recessional velocity = Hubble’s constant times distance.

i.e. V = HD

where V is the observed velocity of the galaxy away from us, usually in km/sec.

H is Hubble’s constant in km/sec/MPc.

D is the distance of the galaxies in MPc.

The basic entity in this law is, however, the Hubble’s constant H which has to be first

calibrated accurately before the law can be used. The calibration of H, however, contains

some inherent uncertainties in it. One has to derive by independent methods the distances

to galaxies for which the red-shifts are significant. The recessional speed must largely

supersede the random speed of the galaxy. For the purpose, the Virgo Cluster of galaxies

has so far been considered the most suitably situated. It contains a large number of bright

galaxies and it distances (m−M ∼= 31), the photometric method of distance measurement is

applicable on the one hand, and on the other hand, red-shifts are significant. But unfortu-

nately, the random velocities of the individual member galaxies of the Virgo Cluster about the

center of mean recessional motion are of the same order as the mean recessional motion itself.

From the above relation, we know that the Hubble parameter or Hubble constant H de-

fines the rate of cosmic expansion. The recession velocity of V of an object situated at a

distance D given by H =V/D. Also, it is the logarithmic derivative of the scale factor R(t)

i.e. H =
Ṙ(t)

R(t)
(1.47)
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Since the mean recessional speed of the cluster is computed from the motions of these

individual members, themselves having a large random motion, large uncertainty may be

introduced in the computation of the mean recessional speed. When this speed is used to

compute the value of H, that value should be accepted with a reservation have devotedly

worked for many decades for the correct evaluation of H.

In 1929 Hubble projected the value of the expansion factor, which is now termed as the

Hubble constant about 500 km/sec/MPc. For many decades the controversy rests between

two groups of astronomers. Alan Sandage and his co-authors claim on the basis of their ob-

servation that H = 50kmS−MPc−1, on the other hand, G. de Vaucauleurs and his co-authors

claim that the value should be around 10kmS−1MPc−1. But many outsiders thought the

geometric mean of their value H = 71kmS−MPc−1 was a good compromise. The controversy

persists while authors often work with some intermediate value of H. Much work has been

done in the sixties and seventies with H = 75kmS−MPc−1 considering various aspects of

the problem and inherent uncertainties in the determination. A Dressler has suggested that

H = 70kmS−MPc−1 should be a better acceptable value. Many authors are however currently

working with the value H = 50kmS−MPc−1. Bret from the latest source the Hubble space

telescope key project team came up with the answer.

H = 75+/-8 kmS-1MPc-1.

And finally, WMAP came up with

H = 71+/-3.5 kmS-1MPc-1.

where 1MPc = 3.26 million light years.

1.15 Deceleration Parameter:

In Relativity and Cosmology, the dimensionless parameter that is used to measure the cosmic

acceleration of the expansion of our universe is known as deceleration parameter, which is

generally denoted by q and is defined by

q =−RR̈

Ṙ2
(1.48)
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where R is the average scale factor of the universe and the overhead dots denote the deriva-

tives with respect to proper time. The value of q is negative or positive according as R̈ is

positive or negative, so the universe is expanding with acceleration whenever q is negative.

At the time of defining deceleration parameter q, it was supposed that the value of then q is to

be positive. But from the recent literatures and observational findings, it has been established

that our universe is accelerating at the present epoch instead of showing down as predicted

by the Big Bang theory Silk (1989). It is believed that dark energy dominates the universe

with positive energy density and negative pressure which is responsible to produce sufficient

acceleration in the late time evolution of the universe.

Also in terms of the Hubble’s parameter H, the deceleration parameter q is defined as

q =− d

dt

(
1

H

)
−1 (1.49)

The team, Riess et al. (1998) was the first to suggest about the accelerating universe. For all

suggested form of matter, the deceleration parameter q is found to be greater than −1 but the

phantom dark energy violets all the energy conditions. Hence for the expanding universe, the

Hubble’s parameter H should be decreasing so that the local expansion of space is always

slowing.
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