
Chapter 5

Some spherically symmetric R/W

universe interacting with vacuum B-D

scalar field

5.1 Introduction

The study of Brans-Dicke (B-D) theory (Brans and Dicke 1961) is somewhat classical in

nature and for that reason it is expected to play a crucial role in the late-time evolution of

the universe. It is also realized that most of the inflationary models based on B-D theory

over many important elements about the evolution of the universe (Sahoo and Singh 2002,

El-Nabulsi 2008). Earlier Brans-Dicke (Brans and Dicke 1961) obtained the vacuum solu-

tions of B-D field equations followed by three more solutions for a spherically symmetric

metric. Tabensky and Taub (1973) obtained B-D vacuum static solutions with plane sym-

metric self-gravitating fluids. Rao et al. (1974) discussed about cylindrically symmetric B-D

fields. Vacuum solutions in the Brans-Dicke theory of gravitation were investigated by var-
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ious researchers (Tiwari and Nayak 1976, Rao and Tiwari 1979, Johri et al. 1983, Ram and

Singh 1983, Singh and Singh 1984, Riazi and Askari 1993) considering different metric.

Bhadra and Sarkar et al. (2005) obtained that only two classes are independent among the

four classes of static spherically symmetric solutions of the vacuum Brans-Dicke theory of

gravity. Adhav et al. (2009) obtained an exact solution of the vacuum Brans-Dicke field equa-

tions for the metric tensor which is spatially homogeneous and anisotropic model. Baykal et

al. (2010) invetigated static as well as cylindrically symmetric B-D vacuum solutions with

and without a cosmological constant. Rai et al. (2013) obtained an exact solution of the vac-

uum Brans-Dicke field equations for the metric tensor considering spatially homogeneous

and anisotropic model. In this chapter, we studied the problem of B-D scalar field interacting

with spherically symmetric Robertson-Walker metric.

5.2 Solutions of Field Equations

The vacuum Brans-Dicke field equations in the general form are given by
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(3+2ω)φ ,s
;s = 4Λ (5.2)

where φ is the scalar field and Λ is the cosmological constant.

The spherically symmetric Robertson-Walker metric is

ds2 = dt2−R2(t)
[

dr2

1− kr2 + r2(dθ
2 + sin2

θdϕ
2)

]
(5.3)

where R(t) is the scale factor and k is the curvature index which can take up the values

(−1,0,+1) for open, flat, closed model of the universe respectively.

For the metric (5.3), the Brans-Dicke field equation (5.1) becomes

k
R2 +

Ṙ2
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2Ṙφ̇

R
+ φ̈

]
(5.4)

65



k
R2 +

Ṙ2
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From equation (5.2), we get
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where a dot (.) and dash (′) denotes differentiation with respect to time t and r.

From equations (5.4) and (5.5), we obtain the relation

φ ′′

φ ′
+ω

φ ′

φ
=

1
r
+

kr
1− kr2 (5.9)

under the conditions φ ′ 6= 0,1− kr2 6= 0.

Integrating equation (5.9),we get

φ
ω+1 = B

√
1− kr2 +D (5.10)

provided k 6= 0.

where B and D are arbitrary functions of time t.

66



Using (5.10) in (5.4) and (5.5), we obtain
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Using (5.10) in (5.6), we obtain
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Using (5.10) in (5.8), we obtain
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(Ḃ
√

1− kr2 + Ḋ)2

(φ 1+ω)2 +
B̈
√

1− kr2 + D̈
(1+ω)φ 1+ω

] = 4Λ

(5.13)

Using (5.10) in (5.7), we obtain
Ḃ
B
=

Ṙ
R

(5.14)

Now, we shall determine the values of the five unknowns B, ω , R, Λ and D by using the

four equations (5.11), (5.12), (5.13)and (5.14). Now we try to solve the field equations under

different physical situations.

Case I: Taking the arbitrary constant D = 0 and using equation (5.14) in (5.11), (5.12) and
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(5.13), we obtain the relations
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To obtain the exact solutions from equations (5.15), (5.16) and (5.17), we consider a case

where the coupling constant, ω = 0. Then the equations (5.15), (5.16) and (5.17) reduce to

the following forms respectively.
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3
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3
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Ṙ
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)2

+
R̈
R
+

3k
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Corresponding to k = −1, we find from equations (5.18), (5.19) and (5.20) that Λ = 0 and

R = t.

In this case, the values of φ from equations (5.10) is given by

φ = t
√

1+ r2 (5.21)

From equations (5.14) and (5.21) we observe that the expansion parameter is purely a function

of time t while B-D scalar φ is a function of both r and t. Where r→ ∞,φ → ∞,while R

remains finite. However,when t → ∞ both φ and R tends to ∞.We can further conclude that
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corresponding to k =−1 and ω = 0, the B-D scalar φ is an increasing function of both r and

t.

Since, the B-D scalar φ and the gravitational variable G are related by the relation

G =
1
φ

(
4+2ω

3+2ω

)
(5.22)

So, the gravitational variable

G ∝
1
φ

(5.23)

i.e.G decreases as t (or r) increases. From equation (5.14), we further observe that at the

initial stage i.e. when t = 0, the radius of the universe is zero thereby showing that the

universe was concentrated to a mass point and expands gradually till it becomes infinitely

large which supports the present finding for accelerated expansion of the universe. This is

in conformity with the steady state theory of the cosmological universe.The corresponding

deceleration parameter is zero.

Case II:Using the well known Hubble’s parameter

Ṙ
R
= H (5.24)

where H is the Hubble’s constant.

Considering the arbitrary function D = 0, from equations (5.11), (5.12) and (5.13), we obtain

the relations
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To find a relation between the constants, we consider a case where k = 0.

The equations (5.25) and (5.26) reduce to a single relation

Λ =
(3+2ω)(4+3ω)

2(1+ω)2 H2 (5.28)

Also, the equation (5.27) reduce to

Λ =
(3+2ω)(4+3ω)

4(1+ω)2 H2 (5.29)

The equations (5.28) and (5.29) are possible only when Λ = 0.

Since, H2 6= 0. The equation (5.28) and (5.29) reduces to the relation

(3+2ω)(4+3ω) = 0 (5.30)

From equation (5.30), we have seen that

(3+2ω) = 0 or (4+3ω) = 0 (5.31)

When Λ = 0, using ω =−3
2 in equation (5.10), we obtain

φ =
1

N2 e−2Ht (5.32)

Since from (5.14), B = NeHt where N is an arbitrary constant.

Using the value of ω =−4
3 in (5.10), we get

φ =
1

N3 e−3Ht (5.33)

From equations (5.32) and (5.33), we have seen that corresponding to ω = −3
2 the B-D

scalar φ is always positive while corresponding ω = −4
3 the B-D scalar φ may be positive

or negative according to N is positive or negative. Since the values of H corresponds to an

expanding model, we find that in either case φ → 0 as t→ ∞ while the universe continues to
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expand exponentially.

Also, from (5.22) we have

G =
1
φ

(
4+2ω

3+2ω

)
(5.34)

Therefore, corresponding to the value of ω = −3
2 , we find that the gravitational variable G

remains infinite while the B-D scalar φ continues to decrease as t increases. Corresponding

to the value of ω =−4
3 , we find that

G ∝
1
φ

(5.35)

which implies that φ and G will remain finite for all finite values of time and G will be an

exponentially increasing function of time.

The line element in either case becomes

ds2 = dt2−A2e2Ht [dr2 + r2dθ
2 + r2sin2

θdφ
2] (5.36)

where A is an arbitrary constant.

It represents an expanding model which has no singularity at any epoch. Further, we observe

that R/W universe corresponding to the curvature index k = 0, the B-D scalar φ continues to

decreases as the universe expands gradually with the lapse of time and the cosmological term

has no contribution towards the B-D scalar interactions in the model (5.36).

The deceleration parameter is found to be

q =− R̈R
Ṙ2 =−1 (5.37)

Case III: Taking φ ′ = 0 and 3+2ω 6= 0 in the field equations, we obtain
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and
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Under the conditions Λ = 0 and k = 0, (5.38)-(5.40) becomes
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Adding (5.42) and (5.43), we get
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Ṙ
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Integrating (5.41) and (5.44), we get

R3
φ̇ = a = constant (5.45)

φ
d
dt
(R3) = b = constant (5.46)

The sum of equations (5.45) and (5.46) becomes

d
dt
(φR3) = a+b = c = constant (5.47)

Integrating, we get

φ =
ct + l

R3 (5.48)

Also, from (5.45) and (5.46),we get
φ̇

φ
= 3ν

Ṙ
R

(5.49)
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where ν = a
b = constant.

Using (5.49) in (5.43), we get

(
1+3ν− 3

2
ων

2
)(

Ṙ
R

)2

= 0 (5.50)

Since Ṙ
R 6= 0, then equation (5.50) becomes

ω =
2
3

(
1+3ν

ν2

)
(5.51)

For ν =−1
3 ,ω = 0 and for ν =−1,ν =−1

2 ,ω =−4
3 .

Corresponding to the values of ω = 0,ω =−4
3 from equation (5.22), we find that

G ∝
1
φ

(5.52)

which implies that φ and G will remain finite for all finite values of time and G will be an

increasing function of time. Also, variation of ω for different values of ν according to (5.51)

Figure 5.1: Variation of ω for different values
of ν according to (5.51)

has been shown in Fig.1.
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5.3 Conclusion

Since, we assume the validity of Hubble’s principle for all the solutions of the universe cor-

responding to k =±1.The B-D scalar φ does not exist in the flat model of the universe.

Here, we have seen that the role played by the scalar φ relating to the expansion and contrac-

tion of the universe is that the B-D scalar φ which is a negative, decreasing function of time

may be treated as something reflecting the expansion of the universe while the B-D scalar

φ which is a positive increasing function of time can be treated as something reflecting the

contraction of the universe.

For ω < −4
3 but not equal to zero, φ is found to be a negative decreasing function of time

thereby causing the expansion of the universe till it becomes infinitely large. Corresponding

to a case where ω > −4
3 , φ is found to be a positive increasing function of time thereby

causing the universe to contract and the universe becomes concentrated to a point when φ

becomes positively infinite.
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