
Chapter 6

Viscous Robertson-Walker model with

Barotropic equation of state in

Brans-Dicke Theory of Gravitation

interacting with Electromagnetic field

6.1 Introduction

The present belief about our universe is that the current universe is in accelerating phase

which is supported by recent cosmological observations ( Riess et al.1998, Perlmutter et

al.1998, Perlmutter et al. 1999, Garnavich et al.1998, Seljak et al. 2005, Astier et al. 2006,

Bennett et al. 2003, Spergel et al. 2003, Komatsu et al. 2009, Ade et al. 2014, Tegmark et

al. 2004, Abazajian et al., 2004, Adelman-McCarthy et al., 2008, Allen et al. 2004). Many

relativist ( Banerjee and Beesham 1997, Azar and Riazi 1995, Etoh et al. 1997, Singh and

Beesham 1999, Banerjee and Pavon 2001, Chakraborty et al., 2003) has used the Brans-Dicke

theory to investigate cosmological models. Also, various cosmological models filled with

electromagnetic field were discussed in number of papers (Bohra and Mehra 1978, Reddy

and Rao 1981, Singh and Usham 1989, Jimanez et al. 2009, Pandolfi 2014, Tripathy et al.,
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2015). Scale factor and the scalar field relationship has been used in different cosmological

models (El-Nabulsi 2010,2011,2013, 2015). Pasqua and Chattopadhyay (2013) have investi-

gated cosmological model by using logamediate form of scale factor. Different authors like

(Al-Rawaft and Taha 1996, Al-Rawaft 1998, Overduin and Cooperstock 1998, Arbab 2003,

Khadekar et al. 2006) like Al-Rawaft and Taha, Al-Rawaft, Overduin and Cooperstock,

Arbab, Khadekar et al. studied about cosmological models with the variable cosmological

constant of the form Λ ∝
R̈
R and some other form. In this paper, we studied Robertson-Walker

model with Barotropic equation of state in Brans-Dicke Theory of Gravitation interacting

with Electromagnetic field

6.2 Metric and Field equations

The spherically symmetric Robertson-Walker metric is

ds2 = dt2−R2(t)
[

dr2

1− kr2 + r2(dθ
2 + sin2

θdϕ
2)

]
, (6.1)

where k is the curvature index which can take values −1,0,1.

The B-D theory of gravity is described by the action (in units h = c = 8πG = 1)

S =
∫

d4x
√
|g|
[

1
16π

(
φR− ω

φ
gsl

φ,lφ,s

)
+Lm

]
, (6.2)

where R represents the curvature scalar associated with the 4D metric gi j; g is the determinant

of gi j; φ is a scalar field; ω is a dimensionless coupling constant; Lm is the Lagrangian of the

ordinary matter component.

The Einstein field equations in the most general form are given by

Ri j−
1
2

Rgi j +Λgi j =−
κ

φ
Ti j−

ω

φ 2 [φ,iφ, j−
1
2

gi jφ
,s

φ,s]−
1
φ
(φ,i j−gi jφ

,s
;s ), (6.3)

(3+2ω)φ ,s
;s = κT, (6.4)
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where κ = 8π , T is the trace of Ti j, Λ is the cosmological constant, Ri j is Ricci-tensor, gi j is

metric tensor, �φ = φ
,s
;s , � is the Laplace-Beltrami operator and φ,i is the partial differentia-

tion with respect to xi coordinate.

The energy-momentum tensor is

Ti j = Mi j +Ei j, (6.5)

where

Mi j = (p̄+ρ)uiu j− p̄gi j, (6.6)

p̄ = p−ηui
;i (6.7)

and

Ei j =−FilF l
j +

1
4

gi jFlmF lm, (6.8)

with u1 = u2 = u3 = 0, u4 = 1, ui is four velocity vector satisfying gi juiu j = 1, p is the proper

pressure, ρ is the energy density and η is the coefficient of bulk viscosity. Here a comma

(,)or semicolon (;)followed by a subscript denotes partial differentiation or a covariant dif-

ferentiation respectively. Also the velocity of light is assumed as unity.

The non-vanishing components of the electromagnetic energy-momentum tensor E i
j are ob-

tained as

E1
1 =−E2

2 =−E3
3 = E4

4 =−1
2

g11g44F2
14 =

1
2

1− kr2

R2 F2
14, (6.9)

The shear scalar (σ) and the average anisotropy parameter (∆) are defined as follows

σ
2 =

1
2

( 3

∑
i=1

H2
i −3H2

)
, (6.10)

∆ =
1
3

3

∑
i=1

(
Hi−H

H

)2

, (6.11)

where Hi, i = 1,2,3 represents the directional Hubble parameters in x,y,z directions respec-

tively.
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Gravitational variable is defined as

G =
1
φ

(
4+2ω

3+2ω

)
, (6.12)

The deceleration parameter is defined as

q =−RR̈
Ṙ2 , (6.13)

6.3 Solutions of field equations

Assuming φ
′
= 0, the metric (6.1) along with field equations (6.3)-(6.5) gives

k
R2 +

Ṙ2

R2 +
2R̈
R
−Λ =−8π p̄

φ
− 4π

φ

1− kr2

R2 F2
14−

ω

2
φ̇ 2

φ 2 −2
Ṙ
R

φ̇

φ
− φ̈

φ
, (6.14)

3
(

k
R2 +

Ṙ2

R2

)
−Λ =

8πρ

φ
+

4π

φ

1− kr2

R2 F2
14 +

ω

2
φ̇ 2

φ 2 −3
Ṙ
R

φ̇

φ
, (6.15)

(3+2ω)

[
3Ṙφ̇

R
+ φ̈

]
= 8π(ρ−3p̄), (6.16)

From eqs. (6.13), (6.14) and (6.15), we get

6
(

k
R2 +

Ṙ2

R2 +
R̈
R

)
−4Λ =−8π

φ

1− kr2

R2 F2
14 +ω

[
6

Ṙ
R

φ̇

φ
+2

φ̈

φ
−
(

φ̇

φ

)2
]
, (6.17)

Here, we consider relation between scale factor R and scalar field φ as

φ = φ0R
1
ω , (6.18)

φ0 is a constant.

Using eq. (6.18), (6.17) becomes

F2
14 =

φ0R
1+2ω

ω

8π(1− kr2)

[(
1−2ω

ω

)(
Ṙ
R

)2

−4
R̈
R
− 6k

R2 +4Λ

]
, (6.19)
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The logamediate form of Scale factor (Pasqua and Chattopadhyay 2013, Barrow and Nunes

2007) is given by

R = eA(logt)α

, (6.20)

where A and α are two constant parameters which satisfy the condition Aα > 0 and α > 1.

Barrow and Nunes (2007) found that the observational ranges of the parameters A and α are

1.5×10−92 ≤ A≤ 2.1×10−2 and 2≤ α ≤ 50 with their model.

Figure 6.1: Graph of R vs. t according to
(6.20)

From eq. (6.20), we get

q =−1+
1

Aα(logt)α−1 +
1−α

Aα(logt)α
, (6.21)

Brans-Dicke scalar field is obtained as

φ = φ0e
A(logt)α

ω , (6.22)
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The Gravitaional variable is

G =

(
4+2ω

3+2ω

)
φ
−1
0 e−

A(logt)α
ω (6.23)

Figure 6.2: Graph of G vs. t according to
(6.23)

Spatial volume, Hubble’s parameter and Scalar expansion are given by

V = e3A(logt)α

, (6.24)

H =
Aα

t
(logt)α−1, (6.25)

Θ =
3Aα

t
(logt)α−1, (6.26)

The directional Hubble’s parameter on the x,y,z axes are

Hx = Hy = Hz =
Aα

t
(logt)α−1, (6.27)
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Figure 6.3: Graph of V vs. t according to
(6.24)

The anisotropy parameter, Shear scalar and Redshift of the expansion are obtained as

∆ = 0, (6.28)

σ
2 = 0, (6.29)

z = e−A(logt)α

−1, (6.30)

6.3.1 Case A: Flat model k = 0, Λ = a
(

Ṙ
R

)2
+b R̈

R

Using eq. (6.20) , eq. (6.19) becomes

F2
14 =

φ0e
(1+2ω)A(logt)α

ω

8π
[B1

{
Aα

t
(logt)α−1

}2

+B2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}
],

(6.31)
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Figure 6.4: Graph of z vs. t according to
(6.30)

where B1 =
{4(a+b)−6}ω+1

ω
,B2 = 4(1−b)

Using eqs. (6.31) and (6.20), eqs. (6.14) and (6.15) gives

p̄ =−φ0e
A(logt)α

ω

8π

[
L1

{
Aα

t
(logt)α−1

}2

−L2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}]

,

(6.32)

ρ =
φ0e

A(logt)α
ω

8π

[
M1

{
Aα

t
(logt)α−1

}2

+M2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}]

.

(6.33)

Now, limiting the distribution by considering Barotropic equation of state as

p = (γ−1)ρ,0≤ γ ≤ 2, (6.34)
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and using eq. (6.7), we obtain the explicit form of physical quantities p and η as

p =
(γ−1)φ0e

A(logt)α
ω

8π
[M1

{
Aα

t
(logt)α−1

}2

+M2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}
],

(6.35)

η =
φ0e

A(logt)α
ω

24π

[
N1

{
Aα

t
(logt)α−1

}
+N2

{
1+

(1−α)

t(logt)

}]
, (6.36)

where N1 =
{6(γ−1)+(4−3γ)(a+b)}ω2+5ω+1

ω2 , N2 =
{(3γ−4)b+2(1−γ)}ω−1

ω

6.3.2 Case B: Open model k =−1 and Λ = a
(

Ṙ
R

)2
+b R̈

R

Using eq. (6.20) , eq. (6.19) becomes

F2
14 =

φ0e
(1+2ω)A(logt)α

ω

8π(1+ r2)
[B1

{
Aα

t
(logt)α−1

}2

+B2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}

+6e−2A(logt)α

],

(6.37)

where B1 =
{4(a+b)−6}ω+1

ω
,B2 = 4(1−b)

Using eqs. (6.37) and (6.20), eqs. (6.14) and (6.15) gives

p̄ =−φ0e
A(logt)α

ω

8π
[L1

{
Aα

t
(logt)α−1

}2

−L2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}

+2e−2A(logt)α

],

(6.38)

ρ =
φ0e

A(logt)α
ω

8π
[M1

{
Aα

t
(logt)α−1

}2

+M2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}

−3e−2A(logt)α

],

(6.39)
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Now, limiting the distribution by considering Barotropic equation of state as

p = (γ−1)ρ,0≤ γ ≤ 2, (6.40)

and using eq. (6.7), we obtain the explicit form of physical quantities p and η as

p =
(γ−1)φ0e

A(logt)α
ω

8π
[M1

{
Aα

t
(logt)α−1

}2

+M2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}

−3e−2A(logt)α

]

(6.41)

η =
φ0e

A(logt)α
ω

24π

[
N1

{
Aα

t
(logt)α−1

}
+N2

{
1+

(1−α)

t(logt)

}
+(5−3γ)e−2A(logt)α

]
(6.42)

where L1 =
(a+b)ω2−3ω+1

ω2 ,L2 =
bω+1

ω
, M1 =

6ω−3(a+b)ω+2
ω

, M2 = 3b−2,

N1 =
{6(γ−1)+(4−3γ)(a+b)}ω2+5ω+1

ω2 , N2 =
{(3γ−4)b+2(1−γ)ω−1}

ω

Lastly we obtain the Λ parameter as

Λ = (a+b)
{

Aα

t
(logt)α−1

}2

+b
{

Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}

(6.43)

6.4 Some physical models

For both the Flat and Open model the line element comes out to be

ds2 = dt2− e2A(logt)α

[
dr2

1− kr2 + r2(dθ
2 + sin2

θdϕ
2)

]
, (6.44)

where k is the curvature index which can take values −1,0,1.

Corresponding to the three extreme cases of equation of state p = (γ−1)ρ , we discuss three

physical models.
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6.4.1 Case I: False vacuum model γ = 0

We have the false vacuum model when γ = 0. The cosmological model in this case is given

by eq. (6.44) and the physical quantities in this case take the form

ρ =−p =−φ0e
A(logt)α

ω

8π
[M1

{
Aα

t
(logt)α−1

}2

+M2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}
+3ke−2A(logt)α

],

(6.45)

η =
φ0e

A(logt)α
ω

24π

[
N1

{
Aα

t
(logt)α−1

}
+N2

{
1+

(1−α)

t(logt)

}
−5ke−2A(logt)α

]
, (6.46)

6.4.2 Case II: Stiff fluid model γ = 2

For γ = 2, the distribution reduces to the equation of state ρ = p which is known as Zeldovich

fluid or bulk viscous stiff fluid model. The cosmological model in this case is given by eq.

(6.44) and the physical quantities in this case take the form

ρ = p =
φ0e

A(logt)α
ω

8π
[M1

{
Aα

t
(logt)α−1

}2

+M2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}

+3ke−2A(logt)α

],

(6.47)

η =
φ0e

A(logt)α
ω

24π

[
N1

{
Aα

t
(logt)α−1

}
+N2

{
1+

(1−α)

t(logt)

}
+ ke−2A(logt)α

]
, (6.48)

6.4.3 Case III: Radiation model γ = 4
3

For γ = 4
3 , the distribution reduces to the special case with equation of state ρ = 3p which is

known as Radiation dominated model. The cosmological model in this case is given by eq.
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(6.44) and the physical quantities in this case take the form

ρ =
φ0e

A(logt)α
ω

8π
[M1

{
Aα

t
(logt)α−1

}2

+M2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}

+3ke−2A(logt)α

],

(6.49)

p = 3ρ =
3φ0e

A(logt)α
ω

8π
[M1

{
Aα

t
(logt)α−1

}2

+M2

{
Aα

t2 (logt)α−1 +
Aα(1−α)

t2 (logt)α−2
}

+3ke−2A(logt)α

],

(6.50)

η =
φ0e

A(logt)α
ω

24π

[
N1

{
Aα

t
(logt)α−1

}
+N2

{
1+

(1−α)

t(logt)

}
− ke−2A(logt)α

]
, (6.51)

6.5 Conclusion

In this chapter, we have considered the logamediate form of scale factor R = eA(logt)α

. This

scale factor gives spatial volume as the exponential functions of time. This provides the

exponential expansion of the universe, so the model universes are accelerating. Hubble’s

parameter and scalar expansion tend to zero as time tends to infinity for the range of A and α

given by Barrow and Nunes (2007). The value of deceleration parameter also lies within the

range of observational data as time increases. For ω > 40000 (Calcagni et al. 2012) found

that accelerated expansion of the model universe can be achieved. For all the models, the

electromagnetic field component F14 is an increasing function of time. Here the fluid density

is positive which is again functions of time t alone. Here, we find that the scalar field φ is

also increasing function of t only. The gravitational variable G is decreasing function of t and

as t → ∞, G→ 0. Also, the coefficient of bulk viscosity exists and the red-shift decreases

with time. Also, an isotropic and shear-free model has been found. Here the cosmological

constant decreases with time from large value at an initial epoch to small positive value at

late time of evolution which in conformity with the experimental evidence.
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