
Chapter 8

Viscous Robertson-Walker model with

Polytropic equation of state and charge in

Brans-Dicke Theory of Gravitation

8.1 Introduction

The Brans-Dicke (B-D) theory (Brans and Dicke 1961) has been used by relativist (Azar and

Riazi 1995, Banerjee and Beesham 1997, Etoh et al. 1997, Singh and Beesham 1999, Baner-

jee and Pavon 2001, Chakraborty et al. 2003) to study different scenarios in cosmological

models. Different authors ( Bohra and Mehra 1978, Reddy and Rao 1981, Jimanez et al.

2009, Bykov et al. 2012, Pandolfi 2014, Tripathy et al. 2015) has done lots of work with

electromagnetic field in cosmological models. Different Polytropic gas models are investi-

gated by some of the relativists ( Mukhopadhyay et al. 2008, Sarkar 2016, Kleidis and Spyrou

2015, Rahman and Ansari 2014, Rahman and Ansari 2014, Asadzadeh et al. 2014, Malekjani

2013,Malekjani and Khodam-Mohammadi 2012, Malekjani, Khodam-Mohammadi and Taji

2011). Al-Rawaft and Taha (1996), Al-Rawaft (1998), Overduin and Cooperstock (1998),

Arbab (2003), Khadekar et al. (2006) are some of the many authors who studied cosmolog-

ical models with variable cosmological constant Λ term. In this chapter, we have obtained
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cosmological model with electromagnetic field considering Polytropic equation of state. The

energy density (ρ), pressure (p) and coefficient of bulk viscosity (η) have been obtained for

flat as well as open models with Λ = a
(

Ṙ
R

)2
+b R̈

R .

8.2 Metric and Field equations

The spherically symmetric Robertson-Walker metric is

ds2 = dt2−R2(t)
[

dr2

1− kr2 + r2(dθ
2 + sin2

θdϕ
2)

]
, (8.1)

where k is the curvature index which can take values −1,0,1.

The B-D theory of gravity is described by the action (in units h = c = 8πG = 1)

S =
∫

d4x
√
|g|
[

1
16π

(
φR− ω

φ
gsl

φ,lφ,s

)
+Lm

]
, (8.2)

where R represents the curvature scalar; g is the determinant of gi j; φ is a scalar field; ω is a

dimensionless coupling constant; Lm is the Lagrangian of the ordinary matter component.

The Einstein field equations in the most general form are given by

Ri j−
1
2

Rgi j +Λgi j =−
κ

φ
Ti j−

ω

φ 2 [φ,iφ, j−
1
2

gi jφ
,s

φ,s]−
1
φ
(φ,i j−gi jφ

,s
;s ), (8.3)

(3+2ω)φ ,s
;s = κT, (8.4)

where κ = 8π , T is the trace of Ti j, Λ is the cosmological constant, Ri j is Ricci-tensor, gi j is

metric tensor, �φ = φ
,s
;s , � is the Laplace-Beltrami operator and φ,i is the partial differentia-

tion with respect to xi coordinate.

The energy-momentum tensor is

Ti j = Mi j +Ei j, (8.5)

where

Mi j = (p̄+ρ)uiu j− p̄gi j, (8.6)
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p̄ = p−ηui
;i (8.7)

and

Ei j =−FilF l
j +

1
4

gi jFlmF lm, (8.8)

with u1 = u2 = u3 = 0, u4 = 1, ui is four velocity vector satisfying gi juiu j = 1, p is the pres-

sure and ρ is the energy density. Here a comma (,)or semicolon (;)followed by a subscript

denotes partial differentiation or a covariant differentiation respectively. Also the velocity of

light is assumed as unity.

The non-vanishing components of the electromagnetic energy-momentum tensor E i
j are ob-

tained as

E1
1 =−E2

2 =−E3
3 = E4

4 =−1
2

g11g44F2
14 =

1
2

1− kr2

R2 F2
14, (8.9)

Shear scalar σ and the average anisotropy parameter ∆ are defined as follows

σ
2 =

1
2

( 3

∑
i=1

H2
i −3H2

)
, (8.10)

∆ =
1
3

3

∑
i=1

(
Hi−H

H

)2

, (8.11)

where Hi, i = 1,2,3 represent the directional Hubble parameters in x,y,z directions respec-

tively.

Gravitational variable (Weinberg, 1972) is defined as

G =
1
φ

(
4+2ω

3+2ω

)
, (8.12)

The deceleration parameter is defined as

q =−RR̈
Ṙ2 , (8.13)
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8.3 Solutions of field equations

Assuming Brans-Dicke scalar field φ to be a function of time t only, the metric (8.1) along

with field equations (8.3)-(8.5) gives

k
R2 +

Ṙ2

R2 +
2R̈
R
−Λ =−8π p̄

φ
− 4π

φ

1− kr2

R2 F2
14−

ω

2
φ̇ 2

φ 2 −2
Ṙ
R

φ̇

φ
− φ̈

φ
, (8.14)

3
(

k
R2 +

Ṙ2

R2

)
−Λ =

8πρ

φ
+

4π

φ

1− kr2

R2 F2
14 +

ω

2
φ̇ 2

φ 2 −3
Ṙ
R

φ̇

φ
, (8.15)

(3+2ω)

[
3Ṙφ̇

R
+ φ̈

]
= 8π(ρ−3p̄), (8.16)

From eqs. (8.14), (8.15) and (8.16), we get

6
(

k
R2 +

Ṙ2

R2 +
R̈
R

)
−4Λ =−8π

φ

1− kr2

R2 F2
14 +ω

[
6

Ṙ
R

φ̇

φ
+2

φ̈

φ
−
(

φ̇

φ

)2
]
, (8.17)

Here, we consider relation between scale factor R and scalar field φ as

φ = φ0R
1
ω , (8.18)

φ0 is a constant.

Using eq. (8.18), (8.17) becomes

F2
14 =

φ0R
1+2ω

ω

8π(1− kr2)

[(
1−2ω

ω

)(
Ṙ
R

)2

−4
R̈
R
− 6k

R2 +4Λ

]
, (8.19)

We consider the scale factor (Pasqua and Chattopadhyay 2013, Barrow and Liddle 1993) as

R = eBtβ

, (8.20)

where B,β are positive constant parameters satisfying the conditions Bβ > 0, B > 0 and

0 < β < 1.
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Figure 8.1: Graph of R vs. t according to
(8.20)

From eq. (8.20) and (8.13), we get

q =−1+
1−β

Bβ tβ
, (8.21)

Figure 8.2: Graph of q vs. t according to
(8.21)
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Brans-Dicke scalar field is

φ = φ0e
Btβ
ω , (8.22)

Figure 8.3: Graph of φ vs. t according to
(8.22)

The Gravitaional variable is

G =

(
4+2ω

3+2ω

)
φ
−1
0 e−

Btβ
ω (8.23)

Spatial volume, Hubble’s parameter and Scalar expansion are given by

V = e3Btβ

, (8.24)

H =
Bβ

t1−β
, (8.25)

Θ =
3Bβ

t1−β
, (8.26)

The directional Hubble’s parameter on the x,y,z axes are

Hx = Hy = Hz =
Bβ

t1−β
, (8.27)
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Figure 8.4: Graph of Θ vs. t according to
(8.26)

The anisotropy parameter, Shear scalar and Redshift of the expansion are obtained as

∆ = 0, (8.28)

σ
2 = 0, (8.29)

z = e−Btβ

−1, (8.30)

8.3.1 Case I: Flat model k = 0, Λ = a
(

Ṙ
R

)2
+b R̈

R

Using eq. (8.20) , eq. (8.19) becomes

F2
14 =

φ0e
(1+2ω)Btβ

ω

8π

[
B1

(
1

t1−β

)2

+B2
1

t2−β

]
, (8.31)

where B1 =
{4(a+b)−6}ω+1

ω
B2β 2,B2 = 4(1−b)(1−β )Bβ

p̄ =−φ0eBtβ

8π

[
L1

(
1

t1−β

)2

+L2
1

t2−β

]
, (8.32)
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ρ =
φ0eBtβ

8π

[
M1

(
1

t1−β

)2

+M2
1

t2−β

]
, (8.33)

Now, limiting the distribution by considering Polytropic equation of state (Setare 2013, 2015,

Saadat 2014,Sharif and Sadiq 2015, Moradpour and Sabet 2016) as

p = αρ
n, (8.34)

where α and n are polytropic constant and index respectively and using eq. (8.7), we obtain

the explicit form of physical quantities p and η as

p = α

[
φ0eBtβ

8π

{
M1

(
1

t1−β

)2

+M2
1

t2−β

}]n

, (8.35)

η =
αt1−β

3Bβ

[
φ0eBtβ

8π

{
M1

(
1

t1−β

)2

+M2
1

t2−β

}]n

+
φ0t1−β eBtβ

24Bβπ

[
L1

(
1

t1−β

)2

+L2
1

t2−β

]
,

(8.36)

8.3.2 Case II: Open model k =−1 and Λ = a
(

Ṙ
R

)2
+b R̈

R

Using eq. (8.20) , eq. (8.19) becomes

F2
14 =

φ0e
(1+2ω)Btβ

ω

8π(1+ r2)

[
B1

(
1

t1−β

)2

+B2
1

t2−β
+6e−2Btβ

]
, (8.37)

where B1 =
{4(a+b)−6}ω+1

ω
B2β 2,B2 = 4(1−b)(1−β )Bβ

p̄ =−φ0eBtβ

8π

[
L1

(
1

t1−β

)2

+L2
1

t2−β
+2e−2Btβ

]
, (8.38)

ρ =
φ0eBtβ

8π

[
M1

(
1

t1−β

)2

+M2
1

t2−β
−3e−2Btβ

]
, (8.39)
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Again, limiting the distribution by considering Polytropic equation of state as

p = αρ
n (8.40)

and using eq. (8.7), we obtain the explicit form of physical quantities p and η as

p = α

[
φ0eBtβ

8π

{
M1

(
1

t1−β

)2

+M2
1

t2−β
−3e−2Btβ

}]n

(8.41)

η =
αt1−β

3Bβ

[
φ0eBtβ

8π

{
M1

(
1

t1−β

)2

+M2
1

t2−β
−3e−2Btβ

}]n

+
φ0t1−β eBtβ

24Bβπ

[
L1

(
1

t1−β

)2

+L2
1

t2−β
+2e−2Btβ

] (8.42)

where L1 =
(a+b)ω2−3ω+1

ω2 ,L2 =
bω+1

ω
, M1 =

6ω−3(a+b)ω+2
ω

B2β 2 , M2 = (3b−2)(1−β )Bβ .

Cosmological constant takes the form

Λ = (a+b)
(

Bβ

t1−β

)2

+b
Bβ (β −1)

t2−β
, (8.43)

where .5≤ a≤ 1, .5≤ b≤ 1 and 1.5≤ a+b≤ 2

8.4 Conclusion

In this chapter, we have assumed scale factor as R = eBtβ

. So, spatial volume becomes expo-

nential function of time and tends to infinity as t→ ∞, so the model universes are expanding

with acceleration. Hubble’s parameter and scalar expansion tend to zero as time tends to

infinity. The deceleration parameter changes from positive to negative value as time tends to

infinity. In the end, we see that for all the cases accelerated expansion can be achieved for

a flat and open model of the universe for large values of ω(Reasenberg et al. 1979, Faraoni

2004, Calcagni et al. 2012 ). For both the models, the electromagnetic field component F14

increases as time increases. Here the fluid density is positive and increaes as time increases.
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Figure 8.5: Graph of Λ vs. t according to
(8.43)

From equation (8.22), we found that the scalar field φ → ∞ as t→ ∞. The gravitational vari-

able G decreases as time passes and for t → ∞, G→ 0. This helps in expanding the model

universe. For both the universes, the red-shift is seen to decrease as time increases. For

α = 0, we have p = 0, any value of n in the equation of state so we can say that for dust-filled

Universe, there is no distinction between barotropic and polytropic equations of state. For

non-dust cases we get dark enegy models as phantom energy (α < −1) or quintessence (

−1 < α < 0) or vacuum fluid (α =−1). So, using the polytropic equation of state it has been

possible to show that non-dust cases admit the presence of a driving force behind inflation in

the form of either quintessence or vacuum fluid or phantom energy and in the dust cases there

is no distinction between different equation of states. The Λ term decreases with time from

a large value at an initial stage to a small positive value at the late time of evolution. For all

model universe, we get viscous, isotropic and shear free models.
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