
Chapter 9

Robertson-Walker model universe

interacting with Electromagnetic field

and Brans-Dicke field in the presence of

Hybrid scale factor

9.1 Introduction

Ahmadi-Azar and Riazi (1995), Etoh et al. (1997), Singh and Beesham (1999), Banerjee

and Pavon (2001), Chakraborty et al. (2003) discussed different cosmological models in B-D

theory with various cases. Researchers (Bohra and Mehra 1978, Reddy and Rao 1981,Singh

and Usham 1989) also investigated cosmological models with electromatnetic and B-D field.

In many papers various researchers ( El-Nabulsi 2008, Pradhan and Yadav 2009, Jimanez et

al. 2009, El-Nabulsi 2012,Bykov et al. 2012, Pandolfi, 2014, Tripathy and Mahanta 2015)

stdudied electromagnetic field in cosmological models. El-Nabulsi discussed the dependence
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of the Hubble parameter with the scalar field in his number of papers (El-Nabulsi 2010,

2011, 2013,2015). These works have played a important role in this chapter for taking power

law relation between scale factor and scalar field. With the help of hybrid scale factor there

have been lots of work done in cosmological models by authors ( Saha et al.2012, El-Nabulsi,

2013, Akarsu et al. 2014, Mishra and Tripathy, 2015,, El-Nabulsi 2016, Aviles et al. 2016). In

this chapter, we have studied electromagnetic field and Brans-Dicke field considering hybrid

scale factor in Robertson-Walker model.

9.2 Metric and Field equations

The spherically symmetric Robertson-Walker metric is

ds2 = dt2−R2(t)
[

dr2

1− kr2 + r2(dθ
2 + sin2

θdϕ
2)

]
, (9.1)

where k is the curvature index which can take values −1,0,1.

The B-D theory of gravity is described by the action (in units h = c = 8πG = 1)

S =
∫

d4x
√
|g|
[

1
16π

(
φR− ω

φ
gsl

φ,lφ,s

)
+Lm

]
, (9.2)

where R represents the curvature scalar; g is the determinant of gi j; φ is a scalar field; ω is a

dimensionless coupling constant; Lm is the Lagrangian of the ordinary matter component.

The Einstein field equations in the most general form are given by

Ri j−
1
2

Rgi j +Λgi j =−
κ

φ
Ti j−

ω

φ 2 [φ,iφ, j−
1
2

gi jφ
,s

φ,s]−
1
φ
(φ,i j−gi jφ

,s
;s ), (9.3)

where

(3+2ω)φ ,s
;s = κT, (9.4)

where κ = 8π , T is the trace of Ti j, Λ is the cosmological constant, Ri j is Ricci-tensor, gi j is

metric tensor, �φ = φ
,s
;s , � is the Laplace-Beltrami operator and φ,i is the partial differentia-
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tion with respect to xi coordinate.

The energy-momentum tensor is

Ti j = Mi j +Ei j, (9.5)

where

Mi j = (p+ρ)uiu j− pgi j, (9.6)

and

Ei j =−FilF l
j +

1
4

gi jFlmF lm, (9.7)

with u1 = u2 = u3 = 0, u4 = 1, ui is four velocity vector satisfying gi juiu j = 1, p is the pressure

and ρ is the energy density. Here a comma (,)or semicolon (;)followed by a subscript denotes

partial differentiation or a covariant differentiation respectively. Also the velocity of light is

assumed as unity.

The non-vanishing electromagnetic energy-momentum tensor E i
j are

E1
1 =−E2

2 =−E3
3 = E4

4 =−1
2

g11g44F2
14 =

1
2

1− kr2

R2 F2
14, (9.8)

Shear scalar is defined as

σ
2 =

1
2

( 3

∑
i=1

H2
i −3H2

)
, (9.9)

The average anisotropy parameter (∆) is defined as

∆ =
1
3

3

∑
i=1

(
Hi−H

H

)2

, (9.10)

where Hi, i = 1,2,3 represent the directional Hubble parameters in x,y,z directions respec-

tively and ∆ = 0 corresponds to isotropic expansion.

Gravitational variable (Weinberg 1972) is defined as

G =
1
φ

(
4+2ω

3+2ω

)
, (9.11)
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The deceleration parameter q is defined as

q =−RR̈
Ṙ2 , (9.12)

where q is the measure of the cosmic acceleration of the universe in cosmology.

9.3 Solutions of field equations

Assuming φ
′
= 0, for the metric (9.1), (9.3)-(9.5) gives

k
R2 +

Ṙ2

R2 +
2R̈
R
−Λ =−8π p

φ
− 4π

φ

1− kr2

R2 F2
14−

ω

2
φ̇ 2

φ 2 −2
Ṙ
R

φ̇

φ
− φ̈

φ
, (9.13)

3
(

k
R2 +

Ṙ2

R2

)
−Λ =

8πρ

φ
+

4π

φ

1− kr2

R2 F2
14 +

ω

2
φ̇ 2

φ 2 −3
Ṙ
R

φ̇

φ
, (9.14)

(3+2ω)

[
3Ṙφ̇

R
+ φ̈

]
= 8π(ρ−3p), (9.15)

From equations (9.13), (9.14) and (9.15), we get

6
(

k
R2 +

Ṙ2

R2 +
R̈
R

)
−4Λ =−8π

φ

1− kr2

R2 F2
14 +ω

[
6

Ṙ
R

φ̇

φ
+2

φ̈

φ
−
(

φ̇

φ

)2
]
, (9.16)

Here, we assume (Johri and Desikan 1994)

φ = MRn, (9.17)

where −6 < n <−2 and M is a constant.

Using (9.17), (9.16) becomes

F2
14 =

φ

8π

R2

1− kr2

[{
(n2 +4n)ω−6

}
(
Ṙ
R
)2 +2(nω−3)

R̈
R
− 6k

R2 +4Λ

]
, (9.18)
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We assume the Hybrid Scale Factor (Mishra and Tripathy 2015) as

R = tbeat , (9.19)

where a and b are positive constants.

Figure 9.1: Graph of R vs. t according to
(9.19)

9.3.1 Case I: Flat model k = 0, Λ = 0

From (9.18) and (9.19) we get

F2
14 =

M[tbeat ]n+2

8π

[{
(n2 +6n)ω−12

}(b
t
+a
)2

−2(nω−3)
b
t2

]
, (9.20)

Using (9.19)-(9.20), (9.13) and (9.14) gives

ρ =
M(tbeat)n

8π

[{
15+3n−6nω− 3

2
n2

ω

}(
b
t
+a
)2

+2(nω−3)
b
t2

]
, (9.21)
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p =−M(tbeat)n

8π

[{
n2
(

2+3ω

2

)
+(2+6ω)n−9

}(
b
t
+a
)2

+(8+n−2nω)
b
t2

]
,

(9.22)

where −6 < n <−2

9.3.2 Case II: Open model k =−1 and Λ = 0

From (9.18) and (9.19) we get

F2
14 =

M[tbeat ]n+2

8π(1+ r2)

[{
(n2 +6n)ω−12

}(b
t
+a
)2

−2(nω−3)
b
t2 +6(tbeat)−2

]
, (9.23)

Using (9.19)-(9.20), (9.13) and (9.14) gives

ρ =
M(tbeat)n

8π

[{
15+3n−6nω− 3

2
n2

ω

}(
b
t
+a
)2

+2(nω−3)
b
t2 −3(tbeat)−2

]
,

(9.24)

p =−M(tbeat)n

8π
[

{
n2
(

2+3ω

2

)
+(2+6ω)n−9

}(
b
t
+a
)2

+(8+n−2nω)
b
t2 − (tbeat)−2],

(9.25)

where −6 < n <−2

9.3.3 For both Flat and Open models

Brans-Dicke scalar field is

φ = M[tbeat ]n, (9.26)

Hubble’s parameter and Scalar expansion are given by

H =
b
t
+a, (9.27)

Θ = 3
(

b
t
+a
)
, (9.28)
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Figure 9.2: Graph of Θ vs. t according to
(9.28)

The Gravitaional variable is

G =

(
4+2ω

3+2ω

)
M−1[tbeat ]−n, (9.29)

Deceleration parameter is

q =−1+
b

(at +b)2 , (9.30)

Spatial volume is

V = t3be3at , (9.31)

The directional Hubble’s parameter on the x,y,z axes are

Hx = Hy = Hz =
b
t
+a, (9.32)

The anisotropy parameter is

∆ = 0, (9.33)

Shear scalar is

σ
2 = 0, (9.34)
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Figure 9.3: Graph of q vs. t according to
(9.30)

Redshift is

z = t−be−at−1, (9.35)

Figure 9.4: Graph of z vs. t according to
(9.35)
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9.4 Conclusion

For the Case-I model the metric comes out to be

ds2 = dt2− t2be2at [dr2 + r2(dθ
2 + sin2

θdϕ
2)
]
, (9.36)

For the k = 0, the electromagnetic field component F14 → 0 as t → ∞. F14 is physically

realistic as ω > 40000 ( Reasenberg et al. 1979, Faraoni 2004, Calcagni et al. 2012 ). and

−6 < n <−2. The pressure and fluid density are functions of time t alone. For−6 < n <−2

fluid density is positive and pressure is negative and tends to zero as time tends to infinity.

For the Case-II model the metric comes out to be

ds2 = dt2− t2be2at
[

dr2

1+ r2 + r2(dθ
2 + sin2

θdϕ
2)

]
, (9.37)

For k = −1, the electromagnetic field component F14 is found to be decreasing function of

r as well as t and it tends to zero as r→ ∞ or t → ∞ . For −6 < n < −2 the solutions of

F14 is physically realistic as the coupling constant ω > 40000. Here, pressure is found to be

negative while fluid density is positive.

For both the cases, the scale factor and spatial volume increases exponentially as t → ∞, so

the model universes are expanding with acceleration. Hubble’s parameter H → a and scalar

expansion Θ→ 3a as t → ∞. From equation (9.26), we find that the scalar field φ is a de-

creasing function of t only. The solution for φ remains physically realistic even when t→ ∞.

The gravitational variable G becomes infinitely large as time t→ ∞. Again, the deceleration

parameter chages from positive to negative value as t → ∞ which is supported by observa-

tional data for early deceleration and late time acceleration. The red-shift decreases as t→∞.

An isotropic as well as shear-free model is found. For both the models, dark energy confirms

accelerated expansion of the universes.
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