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We discuss the Robertson–Walker model universe with a hybrid scale factor for two cases: 

Flat and Open model interacting with Brans–Dicke field and electromagnetic field. Some 

exact solutions are obtained and the different characteristics and phenomena of the dark 

energy contained in it are discussed. 
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1. Introduction 

Accelerated expansion of the present day universe is described and supported by recent cosmological observations 

[1–12] . The Brans–Dicke (B-D) theory [13] is one of the simplest scalar-tensor theory used by different authors to study 

about accelerated expansion of the universe. Using the B-D theory Banerjee and Beesham [14] discussed exponential and 

power-law solutions for the flat Robertson–Walker cosmological model. Ahmadi-Azar and Riazi [15] , Etoh et al. [16] , Singh 

and Beesham [17] , Banerjee and Pavon [18] , Chakraborty et al. [19] discussed different cosmological models in the context 

of B-D theory in different scenario. Singh et al. [20–22] studied different problems of interaction of gravitational field and 

Brans–Dicke field in R/W universe. Singh and Usham, Reddy and Rao, Bohra and Mehra [23–25] are some authors who dis- 

cussed a field of charged distribution in Brans–Dicke field. Also, the presence of electromagnetic field was discussed in many 

papers by various authors [26–33] . El-Nabulsi discussed about relation concerning the dependence of the Hubble parameter 

with the scalar field in his number of papers [34–43] . These works have played a crucial role in this paper for taking power 

law relation between scale factor and scalar field. There have been lots of work done by authors [44–50] on hybrid scale 

factor in cosmological models. The work of Bohra and Mehra [25] in charged B-D field are the motivation behind this paper. 

In this paper, we studied isotropic cosmological model with hybrid scale factor interacting with the electromagnetic field 

and Brans–Dicke field considering Robertson–Walker metric. 
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2. Metric and field equations 

The spherically symmetric Robertson–Walker metric is 

d s 2 = d t 2 − R 

2 (t) 

[
d r 2 

1 − kr 2 
+ r 2 (d θ2 + sin 

2 θd ϕ 

2 ) 

]
, (1) 

where k is the curvature index which can take values −1 , 0 , 1 . 

The Brans–Dicke (B-D) theory of gravity is described by the action (in units h = c = 8 πG = 1 ) 

S = 

∫ 
d 4 x 

√ 

| g| 
[ 

1 

16 π

(
φR − ω 

φ
g sl φ,l φ,s 

)
+ L m 

] 
, (2) 

where R represents the curvature scalar associated with the 4D metric g ij ; g is the determinant of g ij ; φ is a scalar field; ω is 

a dimensionless coupling constant; L m 

is the Lagrangian of the ordinary matter component. In the absence of the potential 

V (or the case of a nearly massless field with the potential V ) the BD parameter is constrained to be greater than 4.0 × 10 4 

from solar system experiments [54] . 

The Einstein field equations in the most general form are given by 

R i j −
1 

2 

Rg i j + �g i j = −κ

φ
T i j −

ω 

φ2 

[ 
φ,i φ, j −

1 

2 

g i j φ
,s φ,s 

] 
− 1 

φ
(φ,i j − g i j φ

,s 
;s ) , (3) 

where 

(3 + 2 ω) φ,s 
;s = κT , (4) 

where κ = 8 π, T is the trace of T ij , � is the cosmological constant, R ij is Ricci-tensor, g ij is metric tensor, �φ = φ,s 
;s , � is 

the Laplace-Beltrami operator and φ , i is the partial differentiation with respect to x i coordinate. 

The energy-momentum tensor is 

T i j = M i j + E i j , (5) 

where 

M i j = (p + ρ) u i u j − pg i j , (6) 

and 

E i j = −F il F 
l 
j + 

1 

4 

g i j F lm 

F lm , (7) 

with u 1 = u 2 = u 3 = 0 , u 4 = 1 , u i is four velocity vector satisfying g i j u i u j = 1 , p is the pressure and ρ is the energy density. A 

comma (, ) or semicolon (; ) followed by a subscript denotes partial differentiation or a covariant differentiation respectively. 

T ij is the energy-momentum tensor for matter and E ij is the electromagnetic energy-momentum tensor. The velocity of light 

is taken to be unity. 

Then, the non-vanishing components of the electromagnetic energy-momentum tensor E i 
j 

are 

E 1 1 = −E 2 2 = −E 3 3 = E 4 4 = −1 

2 

g 11 g 44 F 2 14 = 

1 

2 

1 − kr 2 

R 

2 
F 2 14 . (8) 

Shear scalar is defined as 

σ 2 = 

1 

2 

( 3 ∑ 

i =1 

H 

2 
i − 3 H 

2 
)
. (9) 

The average anisotropy parameter � is defined as 

� = 

1 

3 

3 ∑ 

i =1 

(
H i − H 

H 

)2 

, (10) 

where H i , i = 1 , 2 , 3 represent the directional Hubble parameters in x,y,z directions respectively and � = 0 corresponds to 

isotropic expansion. 

Gravitational variable [51] is defined as 

G = 

1 

φ

(
4 + 2 ω 

3 + 2 ω 

)
. (11) 

The deceleration parameter q is defined as 

q = −R ̈R 

˙ R 

2 
, (12) 

where q is the measure of the cosmic acceleration of the universe in cosmology. 
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3. Solutions of field equations 

Now, considering Brans–Dicke scalar field φ is a function of t only i.e. φ
′ = 0 , for the metric (1), (3) –(5) gives 

k 

R 

2 
+ 

˙ R 

2 

R 

2 
+ 

2 ̈R 

R 

− � = −8 π p 

φ
− 4 π

φ

1 − kr 2 

R 

2 
F 2 14 −

ω 

2 

˙ φ2 

φ2 
− 2 

˙ R 

R 

˙ φ

φ
− φ̈

φ
, (13) 

3 

(
k 

R 

2 
+ 

˙ R 

2 

R 

2 

)
− � = 

8 πρ

φ
+ 

4 π

φ

1 − kr 2 

R 

2 
F 2 14 + 

ω 

2 

˙ φ2 

φ2 
− 3 

˙ R 

R 

˙ φ

φ
, (14) 

(3 + 2 ω) 

[
3 ̇

 R 

˙ φ

R 

+ φ̈

]
= 8 π(ρ − 3 p) . (15) 

From Eqs. (13) , (14) and (15) we get 

6 

(
k 

R 

2 
+ 

˙ R 

2 

R 

2 
+ 

R̈ 

R 

)
− 4� = −8 π

φ

1 − kr 2 

R 

2 
F 2 14 + ω 

[ 

6 

˙ R 

R 

˙ φ

φ
+ 2 

φ̈

φ
−

(
˙ φ

φ

)2 
] 

. (16) 

The power law relation between scale factor R and scalar field φ in the context of Robertson–Walker Brans–Dicke model 

[52] is given by 

φ = MR 

n , (17) 

where −6 < n < −2 and M is a constant. 

Using (17), (16) becomes 

F 2 14 = 

φ

8 π

R 

2 

1 − kr 2 

[ {
(n 

2 + 4 n ) ω − 6 

}( ˙ R 

R 

)2 

+ 2(nω − 3) 
R̈ 

R 

− 6 k 

R 

2 
+ 4�

] 

. (18) 

To find the solutions we consider the Hybrid Scale Factor [26] as 

R = t b e at , (19) 

where a and b are positive constants. 

3.1. Case I: Flat model k = 0 , � = 0 

From (18) and (19) we get 

F 2 14 = 

M[ t b e at ] n +2 

8 π

[ {
(n 

2 + 6 n ) ω − 12 

}(b 

t 
+ a 

)2 

− 2(nω − 3) 
b 

t 2 

] 

. (20) 

Using (19) , (20), (13) and (14) gives 

ρ = 

M(t b e at ) n 

8 π

[ { 

15 + 3 n − 6 nω − 3 

2 

n 

2 ω 

} 

(
b 

t 
+ a 

)2 

+ 2(nω − 3) 
b 

t 2 

] 

, (21) 

p = −M(t b e at ) n 

8 π

[ { 

n 

2 
(

2 + 3 ω 

2 

)
+ (2 + 6 ω) n − 9 

} 

(
b 

t 
+ a 

)2 

+ (8 + n − 2 nω) 
b 

t 2 

] 

, (22) 

where −6 < n < −2 

3.2. Case II: Open model k = −1 and � = 0 

From (18) and (19) we get 

F 2 14 = 

M[ t b e at ] n +2 

8 π(1 + r 2 ) 

[ {
(n 

2 + 6 n ) ω − 12 

}(b 

t 
+ a 

)2 

− 2(nω − 3) 
b 

t 2 
+ 6(t b e at ) −2 

] 

. (23) 

Using (19) , (20), (13) and (14) gives 

ρ = 

M(t b e at ) n 

8 π

[ { 

15 + 3 n − 6 nω − 3 

2 

n 

2 ω 

} 

(
b 

t 
+ a 

)2 

+ 2(nω − 3) 
b 

t 2 
− 3(t b e at ) −2 

] 

, (24) 

p = −M(t b e at ) n 

8 π

[ { 

n 

2 
(

2 + 3 ω 

2 

)
+ (2 + 6 ω) n − 9 

} 

(
b 

t 
+ a 

)2 

+ (8 + n − 2 nω) 
b 

t 2 
− (t b e at ) −2 

] 

, (25) 

where −6 < n < −2 
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3.3. For both the models i.e. Flat and Open 

Brans–Dicke scalar field is 

φ = M[ t b e at ] n . (26) 

Hubble’s parameter and Scalar expansion are given by 

H = 

b 

t 
+ a, (27) 

� = 3 

(
b 

t 
+ a 

)
. (28) 

The Gravitational variable is 

G = 

(
4 + 2 ω 

3 + 2 ω 

)
M 

−1 [ t b e at ] −n . (29) 

Deceleration parameter is given by 

q = −1 + 

b 

(at + b) 2 
. (30) 

Spatial volume is given by 

V = t 3 b e 3 at . (31) 

The directional Hubble’s parameter on the x , y , z axes are 

H x = H y = H z = 

b 

t 
+ a. (32) 

The anisotropy parameter of the expansion is 

� = 0 . (33) 

Shear scalar is 

σ 2 = 0 . (34) 

Red-shift is 

z = t −b e −at − 1 . (35) 

4. Discussion 

For the Case I model, the metric comes out to be 

d s 2 = d t 2 − t 2 b e 2 at 
[
d r 2 + r 2 (d θ2 + sin 

2 θd ϕ 

2 ) 
]
. (36) 

For the Flat model, the electric field component F 14 is a decreasing function of t alone and it tends to zero as t → ∞ . F 14 

is physically realistic as ω > 40 , 0 0 0 [53–55] and −6 < n < −2 . The pressure and fluid density are functions of time t alone. 

For −6 < n < −2 fluid density is positive and pressure is negative and tends to zero as time tends to infinity. 

For Open model, the electric field component F 14 is a decreasing function of r as well as t and it tends to zero as r → ∞ 

or t → ∞ . For −6 < n < −2 the solutions of F 14 is physically realistic as the coupling constant ω > 40 , 0 0 0 [53–55] . In this 

case, also pressure is negative and fluid density is positive and function of t and r . 

For both the cases, the scale factor and spatial volume increases exponentially as t → ∞ , so the model universes are 

accelerating. Hubble’s parameter H and scalar expansion � both tends to constants a and 3 a as t → ∞ . From Eq. (26) , we 

find that the scalar field φ is a decreasing function of t only. The solution for φ remains physically realistic even when 

t → ∞ . The gravitational variable G is increasing function of t and as t → ∞ , G becomes infinitely large. Again, the decel- 

eration parameter is in the range −1 ≤ q ≤ 0 as t → ∞ which is in agreement with the observations made by Riess et al. 

[1] and Perlmutter et al. [2] i.e. the expansion of the universe is accelerating. Incidentally, for both the universes the red- 

shift is seen to decrease with time. Also, anisotropy parameter, as well as the shear scalar, is zero which indicates isotropic 

and shear-free model. For both the models, the presence of dark energy confirms accelerated expansion of the universes. 
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Abstract On studying some new models of Robertson-Walker universes with a Brans-Dicke scalar field, it

is found that most of these universes contain a dark energy like fluid which confirms the present scenario of

the expansion of the universe. In one of the cases, the exact solution of the field equations gives a universe

with a false vacuum, while in another it reduces to that of dust distribution in the Brans-Dicke cosmology

when the cosmological constant is not in the picture. In one particular model it is found that the universe

may undergo a Big Rip in the future, and thus it will be very interesting to investigate such models further.

Key words: Brans-Dicke scalar field — cosmological constant — dark energy — quintessence — k-

essence — big rip

1 INTRODUCTION

Brans and Dicke (B-D) formulated a theory of gravita-

tion (Brans & Dicke 1961), in which besides a gravita-

tional part, a dynamical scalar field is introduced to incor-

porate a variable gravitational constant and Mach’s prin-

ciple in Einstein’s theory. It can be considered as a natu-

ral extension of Einstein’s general theory of relativity. The

simplest case of the scalar tensor theory (Brans 1997) is

defined by a constant coupling parameter ω and a scalar

field φ. In B-D theory, the gravitational constant becomes

time-dependent, varying as the inverse of a time-dependent

scalar field which couples to gravity with a coupling pa-

rameter ω. One important property of this theory is that it

gives expanding solutions (Mathiazhagan & Johri 1984; La

et al. 1989) for scalar field φ(t) and scale factor R(t) which

are compatible with solar system observations (Perlmutter

et al. 1999; Riess et al. 1998; Garnavich et al. 1998). The

solar system observations (Bertotti et al. 2003) also im-

pose lower bounds on ω. General relativity is recovered

when ω goes to infinity (Weinberg 1972) and from tim-

ing experiments using the Viking space probe (Reasenberg

et al. 1979), ω must exceed 500. This constraint ruled out

many of the extended inflation theories (Weinberg 1989a;

La & Steinhardt 1989) and provides a succession of im-

proved models on extended inflation (Holman et al. 1990,

1991; Barrow & Maeda 1990; Steinhardt & Accetta 1990).

Furthermore, all important features of the evolution of the

universe such as: inflation (Mathiazhagan & Johri 1984),

early and late time behavior of the universe (Shogin &

Hervik 2014), cosmic acceleration and structure formation

(Banerjee & Pavón 2001), quintessence and the coinci-

dence problem (Sen & Seshadri 2003), self-interacting po-

tential and cosmic acceleration (Errahmani & Ouali 2006),

and a high energy description of dark energy in an approx-

imate B-D context (Weinberg 1989b) could be explained

successfully in the B-D formalism. For a large value of the

ω− parameter, B-D theory gives the correct amount of in-

flation and early and late time behaviors, while small and

negative values explain cosmic acceleration, structure for-

mation and the coincidence problem. Dark energy, iden-

tified as being responsible for cosmic acceleration, deter-

mines the features related to future evolution of the uni-

verse. The nature of this kind of energy may lead to an

improvement in our picture of particle physics and grav-

itation. Investigations into the nature of dark energy have

lead to various candidates. Among them, the most popu-

lar ones are the cosmological constant Λ (Padmanabhan

2003; Mak et al. 2002; Caldwell et al. 2003a), a dynam-

ical scalar field like quintessence (Bertolami & Martins

2000; Caldwell & Linder 2005; Caldwell 2002; Tsujikawa

& Sami 2004; Caldwell et al. 2003b) or a similar phantom

field (Cline et al. 2004; Nesseris & Perivolaropoulos 2007;

Huang et al. 2007; Bento et al. 1991).

Astronomical observations indicate that the observable

universe is undergoing a phase of accelerated expansion.

The present day accelerated expansion of the universe is

naturally addressed within the B-D theory with evolution

described by the inverse of the Hubble scale and power law

temporal behavior of a scale factor. The B-D scalar-tensor
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theory of gravitation is quite important in view of the fact

that scalar fields play a vital role in inflationary cosmology.

Many cosmological problems (Kolitch & Eardley 1995;

Barrow et al. 1993; Bento et al. 1992; Sahoo & Singh 2002,

2003; Lukács 1976 ) can be successfully explained by us-

ing the B-D theory and its extended versions. The solutions

of B-D field equations with the Robertson-Walker line ele-

ment have been obtained by Luke & Szamosi (1972) us-

ing a self consistent numerical method. They derived a

lower bound on Ġ
G

by taking P = 0 in the field equations

of B-D (Dicke 1964) and concluded the presently avail-

able data cannot discriminate between different theories.

Morganstern (1971) obtained a similar conclusion on the

basis of the observed values of matter density, Hubble’s

constant, the deceleration parameter and the ages of differ-

ent objects in the universe.

Since many forms of dark energy are always accompa-

nied and interrelated with a scalar field, we are motivated to

see whether the B-D scalar field can manifest some form

of dark energy and what roles it can play in causing the

accelerated expansion of the universe. We are also moti-

vated to investigate different interesting forms of model

universes containing a B-D field interacting with a grav-

itational field, and especially their interrelation with dark

energy in the evolution of our universe. From our study, we

find evidence for the existence of dark energy, in one form

or another, in almost all model universes obtained by us

under different conditions, during the periods of their evo-

lution, which verifies the present accelerated expansion of

the universe. One peculiarity of some of the models we ob-

tain is the existence of two forms of dark energy simultane-

ously in such models, one from the cosmological constant

and the other due to the B-D scalar field. In one case there

is the possibility of our model universe collapsing and be-

coming a black hole. Interestingly enough, in yet another

case, one of our models is facing the fate of a Big Rip, and

one of the model universes we obtain seems to behave like

a cyclic model of the universe.

2 SOLUTIONS OF FIELD EQUATIONS

Here, we consider the spherically symmetric Robertson-Walker metric

ds2 = dt2 − R2(t)

[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdϕ2)

]

, (1)

where k is the curvature index which can take values −1, 0, 1.

The B-D theory of gravity is described by the action

S =

∫

d4x
√

|g|
[

1

16π

(

φR − ω

φ
gslφ,lφ,s

)

+ Lm

]

, (2)

where R represents the curvature scalar associated with the 4D metric gij ; g is the determinant of gij ; φ is a scalar field;

ω is a dimensionless coupling constant; Lm is the Lagrangian of the ordinary matter component.

The Einstein field equations in their most general form are given by

Gij ≡ Rij −
1

2
Rgij + Λgij = −κ

φ
Tij −

ω

φ2

[

φ,iφ,j −
1

2
gijφ

,sφ,s

]

− 1

φ
(φ,ij − gijφ

,s
;s), (3)

(3 + 2ω)φ,s
;s = κT, (4)

where κ = 8π, Λ is the cosmological constant, Rij is the Ricci-tensor, gij is a metric tensor, �φ = φ,s
;s, � is the

Laplace-Beltrami operator and φ,i is partial differentiation with respect to the xi coordinate.

The energy-momentum tensor for the perfect fluid distribution is

Tij = (P + ρ)UiUj − Pgij , (5)

with Ui being a four velocity vector, P the proper pressure and ρ the proper rest mass density. Considering a comoving

system, we get U1 = U2 = U3 = 0; U4 = 1 and gijUiUj = 1.

A comma (, ) or semicolon (; ) followed by a subscript denotes partial differentiation or a covariant differentiation

respectively. The velocity of light is taken to be unity.

Now using the metric (1), the surviving field equations are

G11 ≡ k

R2
+

Ṙ2

R2
+

2R̈

R
− Λ

= −κP

φ
− ω

2φ2

[

(1 − kr2)

R2
φ′2 + φ̇2

]

− 1

φ

[

−2(1 − kr2)

R2r
φ′ +

2Ṙφ̇

R
+ φ̈

]

,

(6)
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G22 ≡ k

R2
+

Ṙ2

R2
+

2R̈

R
− Λ

= −κP

φ
− ω

2φ2

[

− (1 − kr2)

R2
φ′2 + φ̇2

]

− 1

φ

[

− (1 − kr2)

R2
φ′′ +

(2kr2 − 1)

R2r
φ′ +

2Ṙφ̇

R
+ φ̈

]

,

(7)

G33 = G22, (8)

G44 ≡ 3(
k

R2
+

Ṙ2

R2
) − Λ

=
κρ

φ
+

ω

2φ2

[

φ̇2 +
(1 − kr2)

R2
φ′2

]

+
1

φ

[

(1 − kr2)

R2
φ′′ − (3kr2 − 2)

R2r
φ′ − 3Ṙφ̇

R

]

,

(9)

G14 ≡ ω

φ2
φ′φ̇ +

φ̇
′

φ
−

˙Rφ′

Rφ
= 0. (10)

From Equation (4), we get

(3 + 2ω)

[

− (1 − kr2)

R2
φ′′ +

(3kr2 − 2)

R2r
φ′ +

3Ṙφ̇

R
+ φ̈

]

= κ(ρ − 3P ), (11)

where a dot and dash denote differentiation with respect to time t and r respectively.

Subtracting Equation (6) from Equation (7), we get

0 =
φ′

φ

[

1

r
+

kr

1 − kr2
− φ′′

φ′
− ω

φ′

φ

]

. (12)

From Equation (12), we get
φ′′

φ′ + ω
φ′

φ
=

1

r
+

kr

1 − kr2
. (13)

Integrating Equation (13), we get

1

ω + 1
φω+1 = −A

√
1 − kr2

k
+ B, (14)

where A and B are functions of time.

Integrating Equation (10), we get
1

ω + 1
φω+1 = R(t)g(r) + Q(t). (15)

From Equation (12), we get
φ′

φ

d

dr

[

Inφ′φωr−1(1 − kr2)
1
2

]

= 0. (16)

Using Equation (15) in Equation (16), we get

φ′

φ

d

dr

[

Inr−1(1 − kr2)
1
2 + Ing′(r)

]

= 0, (17)

from which it is obvious that φ is a function of r only, i.e. Q(t) = 0 in Equation (15) gives

1

ω + 1
φω+1 = R(t)g(r). (18)

Comparing Equations (14) and (15), we get Q(t) = B = 0. From Equation (14), we get

1

ω + 1
φω+1 = −A

√
1 − kr2

k
. (19)

From Equations (17) and (18), we get

Ṙ

R
=

Ȧ

A
. (20)

Integrating, we get

R = NA, (21)
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where N is a constant of integration.

Using Equations (19) and (20) in Equations (6), (7), (9) and (11), we get

κP

φ
= − k

R2
− 2k

R2(ω + 1)
− ω + 3

ω + 1

Ṙ2

R2
− 2ω + 3

ω + 1

R̈

R
+ Λ − ω

2

[

k2r2

R2(ω + 1)2(1 − kr2)
− Ṙ2

(ω + 1)2R2

]

, (22)

κρ

φ
=

3k

R2
+

3k

R2(ω + 1)
+

3ω + 6

ω + 1

Ṙ2

R2
− Λ − ω

2

[

Ṙ2

(ω + 1)2R2
− k2r2

R2(ω + 1)2(1 − kr2)2

]

, (23)

and

κ

φ
(ρ − 3P ) = (3 + 2ω)

[

3k

R2(ω + 1)
+

ωk2r2

R2(ω + 1)2(1 − kr2)
+

3Ṙ2

(ω + 1)R2
+

R̈

(ω + 1)R
− ω

(ω + 1)2
Ṙ2

R2

]

. (24)

From Equations (22) and (23), we get

κ

φ
(ρ − 3P ) =

6k

R2
+

ρk

R2(ω + 1)
+

6ω + 15

ω + 1

Ṙ2

R2
+

6ω + 9

ω + 1

R̈

R

−4Λ − ω

2

[

4Ṙ2

(ω + 1)2R2
− 4k2r2

R2(ω + 1)2(1 − kr2)

]

. (25)

From Equations (24) and (25), we get

ρk

R2(ω + 1)
+

6Ṙ2

R2(ω + 1)
+

4ω + 6

ω + 1

R̈

R
+

(2ω + 1)ω

(ω + 1)2
Ṙ2

R2
− (2ω + 1)k2r2ω

R2(ω + 1)2(1 − kr2)
− 4Λ = 0. (26)

2.1 Case I: When ω = 0

In this case, Equations (22), (23) and (26) reduce to

κP

φ
= − 3k

R2
− 3Ṙ2

R2
− 3R̈

R
+ Λ, (27)

κρ

φ
=

6k

R2
+

6Ṙ2

R2
− Λ, (28)

6k

R2
+

6Ṙ2

R2
+

6R̈

R
− 4Λ = 0. (29)

Integrating Equation (29), we get

R =

√

3

Λ
cosh

{

√

Λ

3
(t + D)

}

, when k = 1, (30)

R =

√

3

Λ
sinh

{

√

Λ

3
(t + D)

}

, when k = −1, (31)

R = e
√

Λ
3 (t+D), when k = 0, (32)

where D is an arbitrary constant of integration.

Case I(a): When k = 1, we get

R =

√

3

Λ
cosh

{

√

Λ

3
(t + D)

}

. (33)

From Equation (21), we get

A =
1

N

√

3

Λ
cosh

{

√

Λ

3
(t + D)

}

. (34)
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From Equation (19), we get

φ = −
√

1 − r2

N

√

3

Λ
cosh

{

√

Λ

3
(t + D)

}

. (35)

The gravitational variable is given by

G = −
√

Λ

3

4N

3
√

1 − r2

1

cosh
{
√

Λ
3 (t + D)

} . (36)

From Equations (27) and (28), we get

P = −

√

3Λ(1 − r2) cosh
{
√

Λ
3 (t + D)

}

κN
, (37)

and

ρ = −

√

3Λ(1 − r2) cosh
{
√

Λ
3 (t + D)

}

κN
. (38)

Hubble’s parameter is given by

H =

√

Λ

3
tanh

{

√

Λ

3
(t + D)

}

. (39)

Scalar expansion is given by

Θ =
√

3Λ tanh

{

√

Λ

3
(t + D)

}

. (40)

In this model universe, it is seen that the gravitational variable G has a tendency to increase the pressure and decrease the

density of the fluid whereas the B-D scalar field has a tendency to decrease the pressure and increase the density of this

universe. This model has a singularity at r = 1.

Case I(b): When k = −1, we get

R =

√

3

Λ
sinh

{

√

Λ

3
(t + D)

}

. (41)

From Equation (21), we get

A =
1

N

√

3

Λ
sinh

{

√

Λ

3
(t + D)

}

. (42)

From Equation (19), we get

φ =

√
1 + r2

N

√

3

Λ
sinh

{

√

Λ

3
(t + D)

}

, (43)

which is a function of both r and t. When t → ∞, both R and A tend to ∞, and when r → ∞ and t → ∞, the B-D scalar

φ tends to ∞. Therefore, we conclude that for k = −1 the B-D scalar φ is an increasing function of both r and t.

The gravitational variable is given by

G =

√

Λ

3

4N

3
√

1 + r2

1

sinh
{
√

Λ
3 (t + D)

} , (44)

which shows that gravitational variable G decreases as r and t increase and tends to zero when either r → ∞ or t → ∞.

From Equations (27) and (28), we get

P = −
√

3A(1 + r2)

κN
sinh

{

√

Λ

3
(t + D)

}

, (45)

and

ρ =

√

3Λ(1 + r2)

κN
sinh

{

√

Λ

3
(t + D)

}

. (46)
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Hubble’s parameter is given by

H =

√

Λ

3
coth

{

√

Λ

3
(t + D)

}

. (47)

Scalar expansion is given by

Θ =
√

3Λcoth

{

√

Λ

3
(t + D)

}

. (48)

For this model universe, the scalar field helps in the ex-

pansion of the universe. Also, the expansion factor R in-

creases with time thus accurately describing the expansion

of the universe. Here in this type of model universe it is

seen that pressure is negative and the equation of state

ω1 = P
ρ

= −1. Thus this universe seems to be a uni-

verse containing dark energy due to cosmological constant

Λ. Again, here the scalar field φ also contributes to the ex-

pansion of this universe. Thus some part of the dark energy

contained may be interpreted as quintessence in the form

of dark energy which is in agreement with present obser-

vations, using equation of state ω1 ≃ −1.

Case I(c): When k = 0, we get

R = e
√

Λ
3 (t+D), (49)

and

A =
1

N
e
√

Λ
3 (t+D). (50)

From Equation (13), we get

φ =
1

2N
r2e

√
Λ
3 (t+D), (51)

which is a function of both r and t. When t → ∞, R → ∞,

and either r → ∞ or t → ∞, the B-D scalar φ tends to

infinity.

The gravitational variable is given by

G =
8N

3r2e
√

Λ
3 (t+D)

, (52)

which shows that gravitational variable G decreases as r

and t increase and tends to zero as r → ∞ or t → ∞.

From Equations (27) and (28), we get

P = − Λr2

2κN
e
√

Λ
3 (t+D), (53)

and

ρ =
Λr2

2κN
e
√

Λ
3 (t+D). (54)

Hubble’s parameter is given by

H =

√

Λ

3
. (55)

Scalar expansion is given by

Θ =
√

3Λ. (56)

Again for the solution in this case, it is found that the B-

D scalar field φ is singular at the origin. However, on the

other hand, at the origin, the gravitational force is very

strong. As time t increases, the pressure decreases whereas

the density increases. Thus there is the possibility that the

model universe in this case contracts gradually and at some

stage the density will be very high, thereby making it pos-

sible for the universe to become a black hole in the course

of time. Or, in a different situation, the equation of state

is ω1 = P
ρ

= −1 whereas the pressure is negative. This

implies that our model universe is expanding and con-

tains dark energy due to the cosmological constant which

is in agreement with present observational data, namely,
p
ρ
≃ −1.

2.2 Case II: When ω = 0 and Λ = 0

From Equation (29), we get

6k

R2
+

6Ṙ2

R2
+

6R̈

R
= 0. (57)

Integrating, we get

R =
√

−kt2 + 2at + 2b, (58)

where a and b are constants of integration. From

Equation (21), we get

A =
1

N

√

−kt2 + 2at + 2b. (59)

Case II(a): When k = 1.

From Equations (58) and (59), we get

R =
√

−t2 + 2at + 2b, (60)

and

A =
1

N

√

−t2 + 2at + 2b. (61)

From Equation (19), we get

φ = − 1

N

√

−t2 + 2at + 2b
√

1 − r2, (62)

which is a function of both r and t. The gravitational vari-

able is given by

G = − 4N

3
√
−t2 + 2at + 2b

√
1 − r2

, (63)

when N < 0. From Equations (60), (61), (62) and (63),

we see that the reality condition for R, A, φ and k is (a2 +
2b) > (t − a)2 and r2 < 1.

From Equations (27) and (28), we get

P = 0, (64)

and

ρ = − 6(a2 + 2b)
√

(1 − r2)

κN(−t2 + 2at + 2b)
3
2

, (65)
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which is a function of both r and t. The reality condition is

the same as above. Hubble’s parameter is given by

H =
t − a

t2 − 2at − 2b
. (66)

Scalar expansion is given by

Θ =
3(t − a)

t2 − 2at − 2b
. (67)

For this model universe, it is seen that at time t given

by t2−2at−2b = 0 there may be a gravitational collapse.

Since, in this case, the energy density is negative, there is

the possibility that this universe contains a phantom form

of dark energy. But there is doubt in this case as here the

pressure is zero and this universe is closed, since dark en-

ergy is assumed to help in the accelerated expansion of the

universe. Thus, when k = 1, ω = 0 and Λ = 0, the prob-

lem reduces to the case of dust distribution.

Case II(b): When k = −1.

From Equations (58) and (59), we get

R =
√

t2 + 2at + 2b, (68)

and

A =
1

N

√

t2 + 2at + 2b. (69)

From Equation (19), we get

φ =
1

N

√

t2 + 2at + 2b
√

1 − r2, (70)

which is a function of both r and t. When t → ∞, the ra-

dius of the universe R tends to infinity, and the B-D scalar

φ tends to infinity either when r → ∞ or t → ∞. The

gravitational variable is given by

G =
4N

3
√

t2 + 2at + 2b
√

1 − r2
. (71)

From Equation (71), we see that the gravitational vari-

able G decreases when t and r increase and tends to zero

when r → ∞ or t → ∞. From Equations (27) and (28),

we get

P = 0, (72)

and

ρ =
6(a2 − 2b)

√

(1 + r2)

κN(t2 + 2at + 2b)
3
2

, (73)

which is real where a2 − 2b > 0. Hubble’s parameter is

given by

H =
t + a

t2 + 2at + 2b
. (74)

Scalar expansion is given by

Θ =
3(t + a)

t2 + 2at + 2b
. (75)

In the solution for this case, it is obtained that as time

t increases, the radius of our (model) universe increases,

that is our universe is expanding which is the sign of be-

ing a realistic model. But here it is seen that this universe

expands initially at a high rate and gradually the expan-

sion slows down until it stops at infinitely large time when

preparing for contraction. In this model universe, the B-D

field influences the area given by r = 1, and is inversely

proportional to the gravitational potential due to G. Thus,

when k = −1, ω = 0 and Λ = 0, the problem reduces to

the case of dust distribution.

Case II(c): When k = 0.

From Equations (58) and (59), we get

R =
√

2at + 2b, (76)

and

A =
1

N

√
2at + 2b. (77)

From Equation (76), we know that radius of the uni-

verse R tends to infinity when t tends to infinity. From

Equation (13), we get

φ =
r2
√

2at + 2b

2N
, (78)

which is a function of both r and t. When either r → ∞ or

t → ∞, the B-D scalar φ tends to infinity. The gravitational

variable is given by

G =
8N

3r2
√

2at + 2b
, (79)

which shows that the gravitational variable G decreases

when r and t increase and tends to zero when either r →
∞ or t → ∞.

From Equations (27) and (28), we get

P = 0, (80)

and

ρ =
3a2r2

κN(2at + 2b)
3
2

. (81)

Hubble’s parameter is given by

H =
t

2(at + b)
. (82)

Scalar expansion is given by

Θ =
3t

2(at + b)
. (83)

From Equation (81), we see that ρ decreases when r is

fixed and t increases and ρ increases when r increases and

t decreases.

Regarding our model universe in this case, we have

seen, from the expressions of R and φ, that the scalar

field has a tendency to increase the radius of the universe,
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thereby helping in the expansion of the universe. The den-

sity of this universe is also seen to decrease with time

which is a sign of a realistic universe. The expansion factor

here is found to increase with time, thereby implying that

our universe is expanding, which accurately describes the

present universe. Thus, when k = 0, ω = 0 and Λ = 0, the

problem reduces to the case of dust distribution.

2.3 Case III: When ω 6= 0 and Λ = 0

Since R is a function of t, we only consider the case k = 0.

Then, Equation (26) reduces to

6Ṙ2

R2(ω + 1)
+

4ω + 6

ω + 1

R̈

R
+

(2ω + 1)ω

(ω + 1)2
Ṙ2

R2
= 0. (84)

Integrating, we get

R =

[

(4 + 3ω)(at + b)

(2 + 2ω)

]
2+2ω

4+3ω

, (85)

where a and b are arbitrary constants of integration. From

Equation (21), we get

A =
1

N

[

(4 + 3ω)(at + b)

(2 + 2ω)

]
2+2ω

4+3ω

. (86)

If ω > 0, the radius of the universe increases as t in-

creases and tends to infinity as t tends to infinity. From

Equation (13), we get

φ =

{

(ω + 1)r2

2N

}
1

ω+1
{

(4 + 3ω)(at + b)

2 + 2ω

}
2

4+3ω

, (87)

which is a function of both r and t. If ω > 0, the B-D

scalar φ tends to infinity either when r → ∞ or t → ∞.

The gravitational variable is given by

G =
4 + 2ω

3 + 2ω

{

2N

(ω + 1)r2

}
1

ω+1
{

2 + 2ω

(4 + 3ω)(at + b)

}
2

4+2ω

.

(88)

If ω > 0, G decreases as r and t increase and tends to zero when either r → ∞ or t → ∞. From Equations (22) and

(23), we get

P = − 4a2(2ω + 3)2

κ(4 + 3ω)2(at + b)2

{

(ω + 1)r2

2N

}

1
ω+1

{

(4 + 3ω)(at + b)

2 + 2ω

}
2

4+3ω

, (89)

and

ρ =
2a2(2ω + 3)

κ(3ω + 4)(at + b)2

{

(ω + 1)r2

2N

}
1

ω+1
{

(4 + 3ω)(at + b)

2 + 2ω

}
2

4+3ω

. (90)

Hubble’s parameter is given by

H =
2a(ω + 1)

(4 + 3ω)(at + b)
. (91)

Scalar expansion is given by

Θ =
6a(ω + 1)

(4 + 3ω)(at + b)
. (92)

Considering the solution obtained in this case, the gravitational variable G is found to vary inversely with the scalar field

φ. Thus in this case, the B-D scalar field has a tendency to decrease the gravitational potential. For this universe it is seen

that the equation of state ω1 < −1, namely, ω1 = P
ρ

= − 2(2ω+3)
4+3ω

= −1 − ω+2
4+3ω

< −1. Thus the dark energy contained

in this universe may be taken as the k-essence form of energy. Here we see that for the k-essence energy, with ω1 < −1,

the scalar field grows in the future. Since the k-essence fields are similarly uniform on a small scale, the abundance of k-

essence energy within a bound object actually grows with time, thereby increasing its influence on the internal dynamics.

Ultimately, there is the possibility that the repulsive k-essence energy will overcome the forces holding this model together

and pulls this universe apart in a Big Rip. Thus, when k = 0, ω 6= 0 and Λ = 0, the problem reduces to the case of dust

distribution.

2.4 Case IV: When ω 6= 0 and Λ 6= 0

Since R is only a function of t, we just consider the case k = 0.

Then, Equation (26) reduces to

6Ṙ2

R2(ω + 1)
+

4ω + 6

ω + 1

R̈

R
+

(2ω + 1)ω

(ω + 1)2
Ṙ2

R2
− 4Λ = 0. (93)
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Integrating, we get

R = e
2(ω+1)

√
Λ√

(2ω+3)(3ω+4)
t
, (94)

and

A =
1

N
e

2(ω+1)
√

Λ√
(2ω+3)(3ω+4)

t
. (95)

If ω > 0, the radius of the universe R tends to infinity as t tends to infinity.

From Equation (13), we get

φ =

{

(ω + 1)r2

2N

}

1
ω+1

e
2
√

Λ√
(2ω+3)(3ω+4)

t
, (96)

which is a function of both r and t. When either r → ∞ or t → ∞, the B-D scalar φ tends to infinity. The gravitational

variable is given by

G =
4 + 2ω

3 + 2ω

{

2N

(ω + 1)r2

}
1

ω+1

e
− 2

√
Λ√

(2ω+3)(3ω+4)
t
, (97)

which is a function of both r and t. From Equation (97), we see that the gravitational variable G decreases when r and t

increase and tends to zero when either r → ∞ or t → ∞. From Equations (22) and (23), we get

P =
Λ

κ(4 + 3ω)
(98)

and

ρ =
Λ

κ

{

(ω + 1)r2

2N

}
1

ω+1

e
2
√

Λ√
(2ω+3)(3ω+4)

t
. (99)

Hubble’s parameter is given by

H =
2(ω + 1)

√
Λ

√

(2ω + 3)(3ω + 4)
. (100)

Scalar expansion is given by

Θ =
6(ω + 1)

√
Λ

√

(2ω + 3)(3ω + 4)
. (101)

In this model universe, the scalar field is seen to have a

tendency to increase the expansion of the universe, thereby

flattening the universe. Here, also the B-D field has a ten-

dency to decrease the gravitational potential, and the gravi-

tational variable G tends to decrease the pressure and den-

sity of the universe. Since here, as t → ∞, it is found

that R → ∞ as well as ρ → ∞, there is the possibil-

ity of a bounce at some point in time, thereby indicat-

ing that this universe shows cyclic behavior. If 8
√

Λ >
ω
√

(2ω+3)(3ω+4)

(ω+1)2 , then this model universe will have an

accelerated expansion instigated by the negative pressure.

Also, in this model the vacuum energy due to the cosmo-

logical constant may be taken as the dark energy part caus-

ing the accelerated expansion of the universe.

3 CONCLUSIONS

The universes we have investigated are found to behave in

different ways and to show different manifestations under

different conditions. Some of them show signs of contain-

ing a cosmological constant form and quintessence form

of dark energy, whereas others seem to contain fluids be-

having like phantom and k-essence forms of dark energy,

which can explain the present accelerated expansion of

the universe. Thus the model universes we obtain in these

cases may be taken as realistic models of our universe, and

many more unknown properties of the universe and of dark

energy may be realized and known from further studies

of these models, which we will perform and report else-

where afterwards. Furthermore, one model of ours seems

to undergo a gravitational collapse leading to a black hole;

whereas another model surprisingly seems to face the fate

of a Big Rip. Another new finding in some of our models

is that they simultaneously contain two forms of dark en-

ergy, one due to a cosmological constant and another due

to a B-D scalar field. Also, interestingly enough, one of our

models seems to behave like a universe obeying the newly

proposed cyclic theory of the universe.
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Lukács, B. 1976, General Relativity and Gravitation, 7, 653

Luke, S. K., & Szamosi, G. 1972, A&A, 20, 397

Mak, M. K., Harko, T., Belinchón, J. A., & Dolgov, A. 2002,

International Journal of Modern Physics D, 11, 1265

Mathiazhagan, C., & Johri, V. B. 1984, Classical and Quantum

Gravity, 1, L29

Morganstern, R. E. 1971, Phys. Rev. D, 4, 946

Nesseris, S., & Perivolaropoulos, L. 2007, J. Cosmol. Astropart.

Phys., 1, 18

Padmanabhan, T. 2003, Phys. Rep., 380, 235

Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517,

565

Reasenberg, R. D., Shapiro, I. I., MacNeil, P. E., et al. 1979, ApJ,

234, L219

Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116,

1009

Sahoo, B. K., & Singh, L. P. 2002, Modern Physics Letters A, 17,

2409

Sahoo, B. K., & Singh, L. P. 2003, Modern Physics Letters A, 18,

2725

Sen, S., & Seshadri, T. R. 2003, International Journal of Modern

Physics D, 12, 445

Shogin, D., & Hervik, S. 2014, Classical and Quantum Gravity,

31, 135006

Steinhardt, P. J., & Accetta, F. S. 1990, Physical Review Letters,

64, 2740

Tsujikawa, S., & Sami, M. 2004, Physics Letters B, 603, 113

Weinberg, S. 1972, Gravitation and Cosmology: Principles and

Applications of the General Theory of Relativity (Wiley-VCH)

Weinberg, E. J. 1989a, Phys. Rev. D, 40, 3950

Weinberg, S. 1989b, Reviews of Modern Physics, 61, 1



Communications in Physics, Vol. 25, No. 4 (2015), pp. 309-316
DOI:10.15625/0868-3166/25/4/7306

ISOTROPIC ROBERTSON-WALKER MODEL UNIVERSE WITH
DYNAMICAL COSMOLOGICAL PARAMETER Λ IN BRANS-DICKE
THEORY OF GRAVITATION

KANGUJAM PRIYOKUMAR SINGH AND MUKUNDA DEWRI
Department of Mathematical Sciences, Bodoland University,
Kokrajhar, PIN-783370, BTC, Assam, India

Received 19 October 2015
Accepted for publication 09 December 2015
E-mail: dewri11@gmail.com

Abstract. This paper discusses about Robertson-Walker space-time with quadratic equation of state and dynamical
cosmological parameter Λ. Some exact solutions of Einstein’s field equations for three cases have been obtained.
Physical behaviors of the models are discussed in detail.

Keywords: Brans-Dicke theory, dark energy, quadratic equation of state.

I. INTRODUCTION

The Brans-Dicke (B-D) theory [1] of gravitation is one of the simplest and best understood
scalar-tensor theories. As a result B-D theory has attained significant attention in recent years.
Cosmological models in Brans-Dicke theory is discussed by many authors [2–10]. The cosmo-
logical and astronomical data obtained from the Supernovae Ia(SNeIa), the cosmic microwave
background (CMB) radiation anisotropies, the Large Scale Structure (LSS) and X-ray experi-
ments support the discovery of accelerated expansion of the present day universe [11–19]. The
accelerated expansion of universe is due to the presence of dark energy which has positive energy
density and adequate negative pressure [20, 21]. Chen and Wu [22] considered Λ varying as R−2,
Carvalho and Lima [23] generalized it. Beesham [24], Tiwari [25], Harpreet and Tiwari [26],
Kotambkar et al. [27] are some of the authors who studied cosmological model with variable G
and Λ. Nojiri and Odintsov [28], Capozziello [29], Chavanis [30], Sharma and Rantnapal [31],
Takisa et al. [32], Feroze and Siddiqui [33] are some of the authors who have discussed about
cosmological models with equation of state in quadratic nature. Reddy et al. [34] have obtained
Bianchi type-I model with a quadratic equation of state. Ngudelanga [35] has studied about a star
with quadratic equation of state. Recently, Adhav et al. [36,37] have obtained some cosmological
models with the help of quadratic equation of state.
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In this paper, we discussed an isotropic cosmological model with perfect fluid in Brans-
Dicke theory of gravitation by considering equation of state in quadratic form. In Sec. II we give
the field equations and their solution. The discussion is given in Sec. III.

II. FIELD EQUATIONS AND SOLUTIONS

Here, we consider the spherically symmetric Robertson Walker metric

ds2 = dt2−R2 (t)
[

dr2

1− kr2 + r2(dθ
2 + sin2

θdϕ
2)

]
, (1)

where k is the curvature index which can take values −1,0,1.
The Brans-Dicke (B-D) theory of gravity is described by the action

S =
∫

d4x
√
|g|
[

1
16π

(
φR− ω

φ
gsl

φ,lφ,s

)
+Lm

]
, (2)

where R represents the curvature scalar associated with the 4D metric gij; g is the determinant
of gij; φ is a scalar field; ω is a dimensionless coupling constant; Lm is the Lagrangian of the
ordinary matter component.

The Einstein field equations in the most general form are given by

Rij−
1
2

Rgij +Λgij =
−κ

φ
Tij−

ω

φ 2

[
φ,iφ, j−

1
2

gijφ
,s

φ ,s

]
− 1

φ

[
φ,ij−gijφ

,s
;s
]
, (3)

(3+2ω)φ
,s

;s =κT, (4)

where κ = 8π , Λ is the cosmological constant, Rij is Ricci-tensor, gij is metric tensor, �φ = φ ,s
;s,

and φi is the partial differentiation with respect to xi coordinate.
The energy-momentum tensor for the perfect fluid distribution is

Tij = (p+ρ)uiu j− pgij (5)

with ui = four velocity vector, p = proper density and ρ = proper rest mass density.
Considering a co-moving system, we get

u1 = u2 = u3 = 0,u4 = 1 and gijuiu j = 1.

A comma (,) or semicolon (;) followed by a subscript denotes partial differentiation or a
covariant differentiation, respectively. The velocity of light is taken to be unity.

Now for the metric (1) surviving field equations are

k
R2 +

Ṙ2

R2 +2
R̈
R
−Λ =

−κp
φ
− ω

2
φ̇ 2

φ 2 −2
Ṙ
R

φ̇

φ
− φ̈

φ
, (6)

3(
k

R2 +
Ṙ2

R2 )−Λ =
κρ

φ
+

ω

2
φ̇ 2

φ 2 −3
Ṙ
R

φ̇

φ
. (7)

From Eq. (4), we get

(3+2ω)

[
3

Ṙφ̇

R
+ φ̈

]
= κ (ρ−3p) (8)

The energy momentum equation T ij
; j = 0 leads to the form

ρ̇ +3H (ρ + p) = 0. (9)
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We consider [38] ansatz
Λ = βH2 (10)

and equation of state in quadratic form as

p = αρ
2−ρ, (11)

where α 6= 0.
From equations (9) and (11), we get

ρ =R−3α , (12)

p =α
[
R−3α

]2−R−3α . (13)

From equations (6), (7),(8) and (10), we get

3
k

R2 +(3−2β )
Ṙ2

R2 +3
R̈
R
= ω[

φ̈

φ
− 1

2
φ̇ 2

φ 2 +3
Ṙ
R

φ̇

φ
] (14)

where a dot (.) denotes differentiation with respect to time t.
For any cosmological model scale factor R(t) should be known and equation (14) can be

integrated by taking the separation constant as zero. So, from (14) we can consider

3
k

R2 +(3−2β )
Ṙ2

R2 +3
R̈
R
= 0, (15)

φ̈

φ
− 1

2
φ̇ 2

φ 2 +3
Ṙ
R

φ̇

φ
= 0. (16)

The gravitational variable [39] is given by

G = (
4+2ω

3+2ω
)

1
φ

(17)

The anisotropy parameter is given by

∆ =
1
3

3

∑
n=1

(
Hi−H

H

)2

.

Shear scalar is given by

σ
2 =

1
2

[
3

∑
i=1

Hi−
1
3

Θ
2

]
·

II.1. Case I: k = 0 and 0 < β < 3

From (15), we get

R = M1{c1(3−β )(c1t + c2)}
3

2(3−β ) , (18)

where M1 = 2
−3

2(β−3) 3
3

2(β−3) and c1, c2 are constants.
From equation (16), we get

φ = A22
9

(β−3) 3
−3

(β−3) {c1 (3−β )}
9

(β−3)

(
β −3
2β +3

)2

(c1t + c2)
2β+3
(β−3) , (19)

where A is a constant.
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The gravitational variable is given by

G =

(
4+2ω

3+2ω

)[
A22

9
(β−3) 3

−3
(β−3) {c1 (3−β )}

9
(β−3)

(
β −3
2β +3

)2

(c1t + c2)
2β+3
(β−3)

]−1

. (20)

From equations (12) and (13), we get

ρ =
[
M1{c1(3−β )(c1t + c2)}

3
2(3−β )

]−3α

(21)

p =α

[
M1{c1 (3−β )(c1t + c2)}

3
2(3−β )

]−6α

−
[
M1{c1(3−β )(c1t + c2)}

3
2(3−β )

]−3α

. (22)

Spatial volume is given by

V =
[
M1{c1(3−β )(c1t + c2)}

3
2(3−β )

]3
. (23)

Hubble’s parameter is given by

H =
3

2c1(3−β )2(c1t + c2)
. (24)

Scalar expansion is given by

Θ =
9

2c1(3−β )2 (c1t + c2)
. (25)

Deceleration parameter is given by

q =−
(

2β −5
3

)
. (26)

The anisotropy parameter is given by

∆ = 0. (27)

Shear scalar is given by
σ = 0. (28)

Cosmological constant is given by

Λ = β

[
3

2c1(3−β )2(c1t + c2)

]2

. (29)

II.2. Case II: k =−1 and β = 3.

From (15), we

R = M2

(
e

c4
c3 e

t
c3 + e

−c4
c3 e

−t
c3

)
. (30)

where M2 =
c3
2 , c3, c4 are constants.

From equation (16), we get

φ = c5


 2e2 c4

c3 e2 t
c3 +1

4
(

e2 c4
c3 e2 t

c3 +1
)2




2

, (31)



ISOTROPIC ROBERTSON-WALKER MODEL UNIVERSE WITH DYNAMICAL COSMOLOGICAL PARAMETER Λ . . .313

where c5 = M2
−6 is a constant.

The gravitational variable is given by

G = c5
−1
(

4+2ω

3+2ω

)
 2e2 c4

c3 e2 t
c3 +1

4
(

e2 c4
c3 e2 t

c3 +1
)2



−2

. (32)

From equations (12) and (13), we get

ρ =

[
M2

(
e

c4
c3 e

t
c3 + e

−c4
c3 e

−t
c3

)]−3α

, (33)

p =α

[
M2

(
e

c4
c3 e

t
c3 + e

−c4
c3 e

−t
c3

)]−6α

−
[

M2

(
e

c4
c3 e

t
c3 + e

−c4
c3 e

−t
c3

)]−3α

. (34)

Spatial volume is given by

V =

[
M2

(
e

c4
c3 e

t
c3 + e

−c4
c3 e

−t
c3

)]3

. (35)

Hubble’s parameter is given by

H =
1
c3

[
1− e−2 c4

c3 e−2 t
c3

1+ e−2 c4
c3 e−2 t

c3

]
. (36)

Scalar expansion is given by

Θ =
3
c3

[
1− e−2 c4

c3 e−2 t
c3

1+ e−2 c4
c3 e−2 t

c3

]
. (37)

Deceleration parameter is given by

q =
−1
c34

[
1+ e−2 c4

c3 e−2 t
c3

1− e−2 c4
c3 e−2 t

c3

]
. (38)

The anisotropy parameter is given by

∆ = 0. (39)

Shear scalar is given by

σ = 0. (40)

Cosmological constant is given by

Λ =
3

c32

[
1− e−2 c4

c3 e−2 t
c3

1+ e−2 c4
c3 e−2 t

c3

]2

. (41)
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II.3. Case III: k = 1 and β = 3.

From (15), we get

R = M3

(
e

c7
c6 e

t
c6 − e

−c7
c6 e

−t
c6

)
(42)

where M3 =
c6
2 , c6,c7 are constants.

From equation (16), we get

φ = c8


 2e2 c7

c6 e2 t
c6 −1

4
(

e2 c7
c6 e2 t

c6 −1
)2




2

, (43)

where c8 = M3
−6 is a constant.

The gravitational variable is given by

G = c8
−1
(

4+2ω

3+2ω

)
 2e2 c7

c6 e2 t
c6 −1

4
(

e2 c7
c6 e2 t

c6 −1
)2



−2

. (44)

From equations (12) and (13), we get

ρ =

[
M3

(
e

c7
c6 e

t
c6 − e

−c7
c6 e

−t
c6

)]−3α

, (45)

p =α

[
M3

(
e

c7
c6 e

t
c6 − e

−c7
c6 e

−t
c6

)]−6α

−
[

M3

(
e

c7
c6 e

t
c6 − e

−c7
c6 e

−t
c6

)]−3α

. (46)

Spatial volume is given by

V =

[
M3

(
e

c7
c6 e

t
c6 − e

−c7
c6 e

−t
c6

)]3

. (47)

Hubble’s parameter is given by

H =
1
c6

[
1+ e−2 c7

c6 e−2 t
c6

1− e−2 c7
c6 e−2 t

c6

]
. (48)

Scalar expansion is given by

Θ =
3
c6

[
1+ e−2 c7

c6 e−2 t
c6

1− e−2 c7
c6 e−2 t

c6

]
(49)

Deceleration parameter is given by

q =
−1
c6

4

[
1− e−2 c7

c6 e−2 t
c6

1+ e−2 c7
c6 e−2 t

c6

]
. (50)

The anisotropy parameter is given by

∆ = 0. (51)
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Shear scalar is given by
σ = 0. (52)

Cosmological constant is given by

Λ =
3

c6
2

[
1+ e−2 c7

c6 e−2 t
c6

1− e−2 c7
c6 e−2 t

c6

]2

. (53)

III. DISCUSSION

Here, we have got the following results:
Case I: In this case R→ ∞, φ → 0, G→ ∞, H→ 0, Θ→ 0, V → ∞, Λ→ 0 as t→ ∞. For t = 0,
R, φ , G, H, Θ, V , Λ become finite. Also, for α < 0, ρ > 0 and p < 0 which gives positive energy
density and negative pressure contributing to the dark energy model with accelerating universe.
Here, for 2 < β < 3, q ≤ 0, the deceleration parameter is in the range −1≤q≤0 which is in
agreement with the observations made by Riess et al. [12] and Perlmutter et al. [13] i.e. the
expansion of the universe is accelerating. Also, ∆ = 0, σ = 0 this shows that our model is isotropic
and shear free. The value of the cosmological constant for the model is found to be small and
positive, which is supported by the observations Garnavich et al. [40, 41] and Schmidt et al. [42].
Case II: In this case R→∞, φ → 0, G→∞, V →∞ as t→∞ and H, Θ, Λ remains finite for t→∞.
Again R,φ ,G,H,Θ,V,Λ become finite for t = 0. Also, for α < 0, ρ > 0 and p < 0 which gives
positive energy density and negative pressure contributing to the dark energy model with accel-
erating universe. Here, as t = 0 and t → ∞, the deceleration parameter is in the range −1≤q≤0
which gives accelerated expansion of the universe. Here, ∆ = 0, σ = 0 this shows that our model
is isotropic and shear free. The time dependent cosmological constant for the model is small and
positive.
Case III: In this case R→ ∞, φ → 0, G→ ∞, V → ∞, as t → ∞ and H,Θ,Λ become finite for
t → ∞. For t = 0, R,φ ,G,H,Θ,V,Λ become finite. Also, for α < 0, ρ > 0 and p < 0 which
gives positive energy density and negative pressure contributing to the dark energy model with
accelerating universe. Here, as t varies from 0 to ∞, the deceleration parameter is in the range
−1≤q≤0 which supports the observations made by Riess et al. [12] and Perlmutter et al. [13] for
accelerating universe. Also, ∆ = 0, σ = 0 this shows that our model is isotropic and shear free.
The time dependent cosmological constant for this model also is small and positive.
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SOME SPHERICALLY SYMMETRIC R/W UNIVERSE
INTERACTING WITH VACUUM B–D SCALAR FIELDPACS 98.80.Jk

We study a spherically symmetric vacuum cosmological model of the Universe interacting
with the Brans–Dicke (B–D) scalar field in the Robertson–Walker (R/W) metric. Exact time-
dependent solutions of B–D vacuum field equations are obtained in two different cases. The
physical and dynamical properties of the model are discussed in detail.
K e yw o r d s: Brans–Dicke theory, vacuum cosmological model, spherically symmetric scalar
field.

1. Introduction

The Brans–Dicke (B–D) theory [1] describes most of
the important features of the progress of the Universe
during the late-time dynamical epoch. As a result,
the B–D theory has attained a significant attention
in recent years. The scalar-tensor theories are consid-
ered the simplest and best understood modification of
gravity theory. The Brans–Dicke theory is, in fact, a
modification of Einstein’s General Relativity allowing
the variable gravity with certain coupling parameter
𝜔. It is somewhat classical in nature, for that reason it
is expected to play a crucial role in the late-time evo-
lution of the Universe. It is also realized that most of
the inflationary models based on the B–D scalar the-
ory overcharge many important elements about the
evolution of the Universe [2, 3]. Hence, the B–D the-
ory gives a connection between the accelerated expan-
sion of the Universe and fundamental physics. Earlier,
Brans and Dicke [1] obtained the vacuum solutions
of B–D field equations followed by three more solu-
tions for a spherically symmetric metric. Nariri [4]
proposed a Hamiltonian approach to the dynam-
ics of the expanding homogeneous Universe. Janis
et al. [5] established a theorem to generate the B–D

c○ K.P. SINGH, M. DEWRI, 2015

vacuum state solutions. Tabensky and Taub [6] ob-
tained B–D vacuum static solutions with plane sym-
metric self-gravitating fluids. Rao et al. [7] discussed
about cylindrically symmetric B–D fields. Various au-
thors [8–13] discussed about vacuum solutions in the
Brans–Dicke theory of gravitation for the metric ten-
sors viz. plane symmetry, static cylindrical symme-
try, zero-mass scalar field, conformal scalar field, for
spatially homogeneous and anisotropic configuration,
axisymmetric stationary and spherical symmetries,
static fields, etc. Bhadra and Sarkar et al. [14] ob-
tained that only two classes are independent among
the four classes of static spherically symmetric so-
lutions of the vacuum Brans–Dicke theory of grav-
ity. Adhav et al. [15] obtained an exact solution of
the vacuum Brans–Dicke field equations for the met-
ric tensor of a spatially homogeneous and anisotropic
model. Static, cylindrically symmetric vacuum solu-
tions with and without a cosmological constant in the
B–D theory were obtained by Baykal et al. [16]. Rai
et al. [17] obtained an exact solution of the vacuum
Brans–Dicke field equations for the metric tensor of a
spatially homogeneous and anisotropic model. Here,
we studied the problem of a B–D scalar field interact-
ing with the spherically symmetric Robertson–Walker
metric. The paper is organized as follows: in Sec-
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tion 2, we consider the metric and give solutions of
the field equations in different cases; in Section 3, we
give conclusion about the solutions.

2. Solutions of Field Equations

The vacuum Brans–Dicke field equations in the gen-
eral form are given by

𝑅𝑖𝑗 −
1

2
𝑅𝑔𝑖𝑗 + Λ𝑔𝑖𝑗 =

𝜔

𝜑2

[︁
𝜑,𝑖𝜑,𝑗 −

1

2
𝑔𝑖𝑗𝑔

𝑠𝑙𝜑,𝑙𝜑,𝑠

]︁
−

− 1

𝜑
[𝜑,𝑖𝑗 − 𝑔𝑖𝑗𝜑

;𝑠
;𝑠], (1)

(3 + 2𝜔)𝜑;𝑠
;𝑠 = 4Λ, (2)

where 𝜑 is the scalar field, Λ is the cosmological con-
stant, 𝜔 is the dimensionless Dicke coupling constant,
𝑅𝑖𝑗 is the Ricci tensor, 𝑅 is the Riemann curvature
scalar, 𝑔𝑖𝑗 is the metric tensor, �𝜑 = 𝜑;𝑠

;𝑠, � is the
Laplace—Beltrami operator, and 𝜑,𝑖 is the partial dif-
ferentiation with respect to the 𝑥𝑖 coordinate.

Let us consider the R/W space time metric

𝑑𝑠2=𝑑𝑡2−𝑅2(𝑡)

[︂
𝑑𝑟2

1− 𝑘𝑟2
+𝑟2

(︀
𝑑𝜃2+sin2 𝜃𝑑𝜙2

)︀]︂
, (3)

where 𝑅(𝑡) is the scale factor, and 𝑘 is the curvature
index, which can take up the values (−1, 0,+1) for
open, flat, and closed models of the Universe, respec-
tively. Corresponding to metric (3), the Brans–Dicke
field equation (1) becomes

𝑘

𝑅2
+

𝑅̇2

𝑅2
+

2𝑅̈

𝑅
− Λ =

𝜔

2𝜑2

[︂
(𝑘𝑟2 − 1)

𝑅2
𝜑′2 − 𝜑̇2

]︂
+

+
1

𝜑

[︃
2(1− 𝑘𝑟2)

𝑅2𝑟
𝜑′ − 2𝑅̇𝜑̇

𝑅
− 𝜑

]︃
, (4)

𝑘

𝑅2
+

𝑅̇2

𝑅2
+

2𝑅̈

𝑅
− Λ =

𝜔

2𝜑2

[︂
(1− 𝑘𝑟2)

𝑅2
𝜑′2 − 𝜑̇2

]︂
+

+
1

𝜑

[︃
(1− 𝑘𝑟2)

𝑅2
𝜑′′ − (2𝑘𝑟2 − 1)

𝑅2𝑟
𝜑′ − 2𝑅̇𝜑̇

𝑅
− 𝜑

]︃
, (5)

3

(︃
𝑘

𝑅2
+

𝑅̇2

𝑅2

)︃
− Λ =

𝜔

2𝜑2

[︂
𝜑̇2 +

(1− 𝑘𝑟2)

𝑅2
𝜑′2
]︂
+

+
1

𝜑

[︃
(1− 𝑘𝑟2)

𝑅2
𝜑′′ − (3𝑘𝑟2 − 2)

𝑅2𝑟
𝜑′ − 3𝑅̇𝜑̇

𝑅

]︃
, (6)

and

𝜔

𝜑2
𝜑′𝜑̇+

𝜑̇′

𝜑
− 𝑅̇𝜑′

𝑅𝜑
= 0. (7)

From Eq. (2), we get[︃
− (1− 𝑘𝑟2)

𝑅2
𝜑′′ +

(3𝑘𝑟2 − 2)

𝑅2𝑟
𝜑′ +

3𝑅̇𝜑̇

𝑅
+ 𝜑

]︃
=

=
4Λ

(3 + 2𝜔)
, (8)

where a dot (.) and dash (′) denote the differentiation
with respect to the time 𝑡 and 𝑟, respectively. From
Eqs. (4) and (5), we obtain the relation

𝜑′′

𝜑′ + 𝜔
𝜑′

𝜑
=

1

𝑟
+

𝑘𝑟

1− 𝑘𝑟2
(9)

under the conditions 𝜑′ ̸= 0, 1− 𝑘𝑟2 ̸= 0. Integrating
Eq. (9), we get

𝜑𝜔+1 = 𝐵
√︀
1− 𝑘𝑟2 +𝐷 (10)

provided 𝑘 ̸= 0, where 𝐵 and 𝐷 are arbitrary func-
tions of time 𝑡.

Using (10) in (4) and (5), we obtain

𝑘

𝑅2
+

𝑅̇2

𝑅2
+

2𝑅̈

𝑅
− Λ = − 𝐿̇

(1 + 𝜔)𝜑1+𝜔
−

− 𝜔𝐵2𝑘2𝑟2

2𝑅2(1 + 𝜔)2(𝜑1+𝜔)2
+

𝜔𝐿2

2(1 + 𝜔)2(𝜑1+𝜔)2
−

− 2𝐵𝑘
√
1− 𝑘𝑟2

𝑅2(1 + 𝜔)𝜑1+𝜔
− 2𝑅̇𝐿

𝑅(1 + 𝜔)𝜑1+𝜔
, (11)

where 𝐿 = 𝐵̇
√
1− 𝑘𝑟2 + 𝐷̇, 𝐿̇ = 𝐵̈

√
1− 𝑘𝑟2 + 𝐷̈.

Using (10) in (6), we obtain

3

(︃
𝑘

𝑅2
+

𝑅̇2

𝑅2

)︃
− Λ =

𝜔𝐿2

2(1 + 𝜔)(𝜑1+𝜔)2
−

− 𝜔𝐵2𝑘2𝑟2

2𝑅2(1 + 𝜔)2(𝜑1+𝜔)2
− 3𝐵𝑘

√
1− 𝑘𝑟2

𝑅2(1 + 𝜔)𝜑1+𝜔
−

− 3𝑅̇𝐿

𝑅(1 + 𝜔)𝜑1+𝜔
. (12)

Using (10) in (8), we obtain[︂
3𝐵𝑘

√
1− 𝑘𝑟2

𝑅2(1 + 𝜔)𝜑1+𝜔
+

𝜔𝐵2𝑘2𝑟2

𝑅2(1 + 𝜔)2(𝜑1+𝜔)2
+

+
3𝑅̇𝐿

𝑅(1 + 𝜔)𝜑1+𝜔
− 𝜔𝐿2

(1 + 𝜔)2(𝜑1+𝜔)2
+

+
𝐿̇

(1 + 𝜔)𝜑1+𝜔

]︂
=

4Λ

(3 + 2𝜔)
. (13)
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Using (10) in (7), we obtain

𝐵̇

𝐵
=

𝑅̇

𝑅
. (14)

Now, we shall determine the values of five unknowns
𝐵, 𝜔, 𝑅, Λ, and 𝐷, by using four equations (11), (12),
(13), and (14). Since the number of unknowns is more
than the number of equations, this is a case of under-
determinacy, so it is reasonable to assume a physical
relation to solve the field equations. Now, we try to
solve the field equations under different physical sit-
uations.

Case I: Taking the arbitrary constant 𝐷 = 0 and
using Eq. (14) in (11), (12), and (13), we obtain the
relations(︃
𝑅̇

𝑅

)︃2 [︂
2(1 + 𝜔)2 + 3𝜔 + 4

2(1 + 𝜔)2

]︂
+

3 + 2𝜔

1 + 𝜔

𝑅̈

𝑅
=

= Λ− 𝑘

𝑅2

[︂
𝜔𝑘𝑟2

2(1 + 𝜔)2(1− 𝑘𝑟2)
+

3 + 𝜔

1 + 𝜔

]︂
, (15)(︃

𝑅̇

𝑅

)︃2 [︂
3− 𝜔

2(1 + 𝜔)2
+

3

1 + 𝜔

]︂
− Λ = −

= − 𝑘

𝑅

[︂
3 +

𝜔𝑘𝑟2

2(1 + 𝜔)2(1− 𝑘𝑟2)
+

3

1 + 𝜔

]︂
, (16)[︃

3𝑘

𝑅2(1 + 𝜔)
+

𝜔𝑘2𝑟2

𝑅2(1 + 𝜔)2(1− 𝑘𝑟2)
+

+
3 + 2𝜔

(1 + 𝜔)2

(︃
𝑅̇

𝑅

)︃2
+

𝑅̈

𝑅(1 + 𝜔)

]︃
=

4Λ

(3 + 2𝜔)
. (17)

To obtain the exact solutions from Eqs. (15), (16),
and (17), we consider a case where the coupling con-
stant 𝜔 = 0. Then Eqs. (15), (16), and (17) are re-
duced to the following forms:

3

(︃
𝑅̇

𝑅

)︃2
+ 3

𝑅̈

𝑅
− Λ = − 3𝑘

𝑅2
, (18)

3

(︃
𝑅̇

𝑅

)︃2
− Λ

2
= − 3𝑘

𝑅2
, (19)

3

(︃
𝑅̇

𝑅

)︃2
+

𝑅̈

𝑅
+

3𝑘

𝑅2
= 4Λ. (20)

Corresponding to 𝑘 = −1, Eqs. (18), (19), and (20)
imply that Λ = 0 and 𝑅 = 𝑡. In this case, the value
of 𝜑 from Eqs. (10) is given by

𝜑 = 𝑡
√︀

1 + 𝑟2. (21)

From Eqs. (14) and (21), we observe that the expan-
sion parameter is purely a function of the time 𝑡, while
the B–D scalar 𝜑 is a function of both 𝑟 and 𝑡. Here,
𝑟 → ∞, 𝜑 → ∞, while 𝑅 remains finite. However, as
𝑡 → ∞, both 𝜑 and 𝑅 tends to ∞. We can further
conclude that, corresponding to 𝑘 = −1 and 𝜔 = 0,
the B–D scalar 𝜑 is an increasing function of both 𝑟
and 𝑡, since the B–D scalar 𝜑 and the gravitational
variable 𝐺 [18] are related by the relation

𝐺 =
1

𝜑

(︂
4 + 2𝜔

3 + 2𝜔

)︂
. (22)

So, the gravitational variable

𝐺 ∝ 1

𝜑
, (23)

i.e., 𝐺 decreases, as 𝑡 (or 𝑟) increases. From Eq. (14),
we further observe that, at the initial stage (i.e., when
𝑡 = 0), the radius of the Universe is zero, thereby
showing that the Universe was concentrated to a mass
point and expands gradually till it becomes infinitely
large, which supports the present finding for the ac-
celerated expansion of the Universe. This is in confor-
mity with the steady state theory of the cosmological
Universe. The corresponding deceleration parameter
is zero.

Case II: Taking 𝜑′ = 0 and 3 + 2𝜔 ̸= 0 in the field
equations, we obtain

3
𝑅̇

𝑅
𝜑̇+ 𝜑 =

4Λ

3 + 2𝜔
, (24)

𝑘

𝑅2
+

(︃
𝑅̇

𝑅

)︃2
+ 2

𝑅̈

𝑅
− Λ = −𝜔

2

𝜑̇2

𝜑2
− 2

𝑅̇

𝑅

𝜑̇

𝜑
− 𝜑

𝜑
, (25)

and

3𝑘

𝑅2
+ 3

(︃
𝑅̇

𝑅

)︃2
− Λ =

𝜔

2

(︃
𝜑̇

𝜑

)︃2
− 3

𝑅̇

𝑅

𝜑̇

𝜑
. (26)

Under the conditions Λ = 0 and 𝑘 = 0, relations
(24)–(26) become

𝑅̇

𝑅
= −1

3

𝜑

𝜑̇
, (27)(︃

𝑅̇

𝑅

)︃2
+ 2

𝑅̈

𝑅
= −𝜔

2

𝜑̇2

𝜑2
− 2

𝑅̇

𝑅

𝜑̇

𝜑
− 𝜑

𝜑
, (28)
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Variation of 𝜔 for various values of 𝜈 according to (37)

3

(︃
𝑅̇

𝑅

)︃2
=

𝜔

2

(︃
𝜑̇

𝜑

)︃2
− 3

𝑅̇

𝑅

𝜑̇

𝜑
. (29)

Adding (28) and (29), we get

4

(︃
𝑅̇

𝑅

)︃2
+ 2

𝑅̈

𝑅
= −5

𝑅̇

𝑅

𝜑̇

𝜑
− 𝜑

𝜑
. (30)

Integrating (27) and (30), we get

𝑅3𝜑̇ = 𝑎 = const, (31)

𝜑
𝑑

𝑑𝑡
(𝑅3) = 𝑏 = const. (32)

The sum of Eqs. (31) and (32) becomes

𝑑

𝑑𝑡
(𝜑𝑅3) = 𝑎+ 𝑏 = 𝑐 = const. (33)

Integrating, we get

𝜑 =
𝑐𝑡+ 𝑙

𝑅3
, (34)

where 𝑐 and 𝑙 are constants. Moreover, from (31) and
(32), we get

𝜑̇

𝜑
= 3𝜈

𝑅̇

𝑅
, (35)

where 𝜈 = 𝑎
𝑏 = const.

Using (35) in (29), we have(︂
1 + 3𝜈 − 3

2
𝜔𝜈2
)︂(︃

𝑅̇

𝑅

)︃2
= 0. (36)

Since 𝑅̇
𝑅 ̸= 0, Eq. (36) becomes

𝜔 =
2

3

(︂
1 + 3𝜈

𝜈2

)︂
. (37)

The variation of 𝜔 according to (37) for variuos values
of 𝜈 has been shown in Figure.

For 𝜈 = − 1
3 and 𝜔 = 0, we get that there is neither

expansion nor contraction of the Universe, where the
B–D scalar 𝜑 decreases with time, till it vanishes as
𝑡 → ∞.

In addition, when 𝜈 = −1 and 𝜈 = − 1
2 , we get

𝜔 = − 4
3 , which implies that the B–D scalar 𝜑 and the

gravitational variable 𝐺 will remain finite for all finite
values of the time 𝑡. Here, corresponding to 𝜔 = 0
and 𝜔 = − 4

3 from Eq. (22), we find that 𝐺 ∝ 1
𝜑 , as

in Eq. (23), which implies that 𝜑 and 𝐺 will remain
finite for all finite values of time 𝑡, and the gravita-
tional variable 𝐺 will be an increasing function of the
time.

3. Conclusion

Here, we have seen that the role played by the scalar
𝜑 relating to the contraction and the expansion of the
Universe consists in that the B–D scalar 𝜑, which is
an increasing function of the time, can be treated as
something reflecting the contraction of the Universe,
while the B–D scalar 𝜑 which is a decreasing function
of the time may be treated as something reflecting
the expansion of the Universe.

1. C. Brans and R.H. Dicke, Phys. Rev. 124, 925 (1961).
2. B.K. Sahoo and L.P. Singh, Mod. Phys. Letter A 17, 2409

(2002).
3. A.R. El-Nabulsi, Mod. Phys. Letter A 23, 401 (2008).
4. H. Nariri, Prog. Theor. Phys. 47, 1824 (1972).
5. A.I. Janis, D.C. Robinson, and J. Winicour, Phys. Rev.

186, 1729 (1969).
6. R. Tabensky and A.H. Taub, Commun. Math. Phys. 29,

61 (1973).
7. J.R. Rao, R.N. Tiwari, and K.S. Bhamra, Annals of

Physics 87, 480 (1974).
8. R.N. Tiwari and B.K. Nayak, J. Phys. A: Math. Gen. 9,

369 (1976); doi:10.1088/0305-4470/9/3/007.
9. P.P. Rao, R.N. Tiwari, Acta Phys. Acad. Sci. Hung. 7, 281

(1979).

1180 ISSN 2071-0186. Ukr. J. Phys. 2015. Vol. 60, No. 11



Some Spherically Symmetric R/W Universe Interacting

10. V.B. Johri, G.K. Goswami, and R.C. Srivastava, Prog.
Theor. Phys. 69, 1 (1983).

11. S. Ram and D.K. Singh, Astrophys. Space Sci. 95, 219
(1983).

12. T. Singh and T. Singh, Astrophys. Space Sci. 100, 309
(1984).

13. N. Raizi and R. Askari, Mon. Not. R. Astron. Soc. 261,
229 (1993).

14. A. Bhadra and K. Sarkar, Gen. Relativ. Gravit. 37, 2189
(2005).

15. K.S. Adhav, M.R. Ugale, C.B. Kale, and M.P. Bhende, Int.
J. Theor. Phys. 48, 178 (2009).

16. A. Baykal, D.K. Ciftci, and O. Delice, arXiv:0910.1342v3
(2010).

17. P. Rai, L.N. Rai, and V.K. Singh, Proc. Natl. Acad. Sci.,
India, Sect. A Phys. Sci. 83, 55 (2013).

18. S. Weinberg, Gravitation and Cosmology (Wiley, New
York, 1972). Received 11.04.15

К.П.Сiнх, М.Девро

СФЕРИЧНО-СИМЕТРИЧНИЙ
Р/У ВСЕСВIТ, ВЗАЄМОДIЮЧИЙ
З ВАКУУМНИМ Б–Д СКАЛЯРНИМ ПОЛЕМ

Р е з ю м е

Розглянуто сферично-симетричну вакуумну космологiчну
модель Всесвiту, взаємодiючу зi скалярним Бранса–Дiке
(Б–Д) полем в метрицi Робертсона–Уолкера (Р/У). Отри-
мано точнi залежнi вiд часу рiшення Б–Д вакуумних по-
льових рiвнянь для двох рiзних випадкiв. Докладно обго-
ворюються фiзичнi i динамiчнi властивостi моделi.
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