LIST OF FIGURE

Figure No.	Name of Figure	Page No.
1.1	Major producing contribution of tea	4
2.1	Electrical resistance blocks Sensors	20
2.2	YL-69 Sensor	22
2.3	LM393 PCB	22
2.4	LM393 comparator IC	23
2.5	LM 393 Pin configuration	24
2.6	Sensor Node structure	24
2.7	Flat Architecture of WSN	26
2.8	Hierarchical Architecture of WSN	26
2.9	Possible deployment Sensors detect temperature, light levels	27
	and soil moisture at hundreds of points across a field and	
	communicate their data over a multi-hop network for analysis	
2.10	Arduino UNO Board	34
2.11	Pinout Diagram for Atmega328 Microcontroller	36
2.12	Open and Close Solenoid valve	38
2.13	2/2 Solenoid valve	39
3.1	Block Diagram for acquisition of moisture data from the soil,	46
	analysis and execution.	
3.2	Simplified Block Diagram of Soil Moisture Sensor	48
3.3	Flowchart of the System	49
3.4	PCB Diagram for Moisture Sensor	50
3.5	Image of Soil Moisture Sensor	50
3.6	PCB Diagram for Moisture Sensor with wireless Transmission	51
	Facility	
3.7	XBee Module	52
3.8	Circuit Diagram for whole System Module	52
3.9	Wireless sensor Unit A	54
3.10	Wireless sensor Unit B	54
4.1	Performance metrics of AODV Protocol	58

4.2	Performance metrics of DSDV Protocol	58
4.3	Throughout for AODV Routing Protocol	59
4.4	Throughout for DSDV Routing Protocol	59
4.5	Packet loss for AODV Routing Protocol	60
4.6	Packet loss for DSDV Routing Protocol	60
4.7	Delay for AODV Routing Protocol	61
4.8	Delay for DSDV Routing Protocol	61
4.9	Graph for comparison of AODV and DSDV in different	62
	parameters	
5.1	Login window of the sensor application	65
5.2	Sensor Data Monitoring Window	66
5.3	Website for online monitoring the system.	67
5.4	Graph to comparing accurate sensor collected data to the	69
	traditionally collected data.	
5.5	Graph for Temperature, Soil Moisture & Productivity of	71
	Garden "A" without using Data Acquisition System, 2015.	
5.6	Graph for Temperature, Soil Moisture & Productivity of	71
	Garden "A" with using Data Acquisition System, 2015.	
5.7	Graph for Productivity Difference graph between with &	72
	without using data acquisition system in Garden "A", 2015.	
5.8	Graph for Temperature, Soil Moisture & Productivity of	73
	Garden "B" without using Data Acquisition System, 2016	
5.9	Graph for Temperature, Soil Moisture & Productivity of	73
	Garden "B" using Data Acquisition System, 2016.	
5.10	Graph for Productivity difference graph between with &	74
	without using data acquisition system in Garden "B", 2016.	
5.11	Graph for Temperature, Soil Moisture & Productivity of	75
	Garden 'C' without using Data acquisition System, 2017.	
5.12	Graph for Temperature, Soil Moisture & Productivity of	75
	Garden 'C' using Data Acquisition System, 2017.	
5.13	Productivity difference graph between with & without using	76
	data acquisition system in Garden 'C', 2017.	