CHAPTER 2

CHAPTER 2

NEUTROSOPHIC SEMI CONTINUOUS AND NEUTROSOPHIC ALMOST CONTINUOUS MAPPING

To study topological groups and almost topological groups, continuous mapping, semi-continuous mapping, and almost continuous mapping are important. For that, in this chapter, the properties of the NSOS, NSCoS, NROS, NRCoS, NSCM, and NACM are studied.

Definition 2.0.1

Let \mathcal{A} be a NS of NTS (X, \neg_{X_N}) , then \mathcal{A} is called a NSOS of X if $\exists a \mathcal{B} \in \neg_{X_N}$ such that $\mathcal{A} \subseteq \mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{B}))$.

Definition 2.0.2

Let \mathcal{A} be a NS of NTS (X, \exists_{X_N}) , then \mathcal{A} is called a NSCoS of X if $\exists a \mathcal{B}^c \in \exists_{X_N}$ such that $\mathcal{N} \sim Int \Big(\mathcal{N} \sim Cl(\mathcal{B}) \Big) \subseteq \mathcal{A}$.

The results discussed in this chapter has published in the journal, Basumatary, B., & Wary, N., *et al.* (2022). On some properties of neutrosophic semi continuous and almost continuous mapping. *Computer Modeling in Engineering & Sciences*, 130(2), 1017-1031.

Lemma 2.0.1

Let $\phi : X \to Y$ be a mapping and \mathcal{A}_{α} be a family of NSs of Y, then

(i)
$$\phi^{-1}(\cup \mathcal{A}_{\alpha}) = \cup \phi^{-1}(\mathcal{A}_{\alpha})$$
 and

(*ii*)
$$\phi^{-1}(\cap \mathcal{A}_{\alpha}) = \cap \phi^{-1}(\mathcal{A}_{\alpha}).$$

The proof is straightforward.

Lemma 2.0.2

Let \mathcal{A} and \mathcal{B} be NSs of X and Y respectively, then

$$1_{X_{\mathcal{N}}} - \mathcal{A} \times \mathcal{B} = (\mathcal{A}^c \times 1_{X_{\mathcal{N}}}) \cup (1_{X_{\mathcal{N}}} \times \mathcal{B}^c).$$

Proof

Let (p,q) be any element of $X \times Y$, then

$$(1_{X_{\mathcal{N}}} - \mathcal{A} \times \mathcal{B})(p, q) = max \Big(1_{X_{\mathcal{N}}} - \mathcal{A}(p), 1_{X_{\mathcal{N}}} - \mathcal{B}(q) \Big)$$
$$= max \Big\{ \big(\mathcal{A}^{c} \times 1_{X_{\mathcal{N}}} \big)(p, q), \big(\mathcal{B}^{c} \times 1_{X_{\mathcal{N}}} \big)(p, q) \Big\}$$
$$= \Big\{ \big(\mathcal{A}^{c} \times 1_{X_{\mathcal{N}}} \big) \cup \big(1_{X_{\mathcal{N}}} \times \mathcal{B}^{c} \big) \Big\}(p, q),$$

for each $(p,q) \in X \times Y$.

Lemma 2.0.3

Let
$$\phi_i : X_i \to Y_i$$
 and \mathcal{A}_i be NSs of Y_i , $i = 1, 2$; then
 $(\phi_1 \times \phi_2)^{-1} (\mathcal{A}_1 \times \mathcal{A}_2) = \phi_1^{-1}(\mathcal{A}_1) \times \phi_2^{-1}(\mathcal{A}_2).$

Proof

For each $(p_1, p_2) \in X_1 \times X_2$, we have

$$(\phi_1 \times \phi_2)^{-1} (\mathcal{A}_1 \times \mathcal{A}_2)(p_1, p_2) = (\mathcal{A}_1 \times \mathcal{A}_2) \Big(\phi_1(p_1), \phi_2(p_1) \Big) \\ = \min \{ \mathcal{A}_1 \phi_1(p_1), \mathcal{A}_2 \phi_2(p_2) \} \\ = \min \{ \phi_1^{-1}(\mathcal{A}_1)(p_1), \phi_2^{-1}(\mathcal{A}_2)(p_2) \} \\ = \Big(\phi_1^{-1}(\mathcal{A}_1) \times \phi_2^{-1}(\mathcal{A}_2) \Big) (p_1, p_2).$$

Lemma 2.0.4

Let $\psi : X \to X \times Y$ be the graph of a mapping $\phi : X \to Y$. Then, if \mathcal{A}, \mathcal{B} be NSs of X and Y, $\psi^{-1}(\mathcal{A} \times \mathcal{B}) = \mathcal{A} \cap \phi^{-1}(\mathcal{B})$.

Proof

For each $p \in X$, we have

$$\psi^{-1}(\mathcal{A} \times \mathcal{B})(p) = (\mathcal{A} \times \mathcal{B})\psi(p)$$
$$= (\mathcal{A} \times \mathcal{B})(p, \phi(p))$$

Lemma 2.0.5

For a family $\{\mathcal{A}\}_{\alpha}$ of NSs of NTS $(X, \exists_{X_N}), \cup \mathcal{N} \sim Cl(\mathcal{A}_{\alpha}) \subseteq \mathcal{N} \sim Cl(\cup (\mathcal{A}_{\alpha}))$. In case \mathcal{B} is a finite set, $\cup \mathcal{N} \sim Cl(\mathcal{A}_{\alpha}) \subseteq \mathcal{N} \sim Cl(\cup (\mathcal{A}_{\alpha}))$. Also, $\cup \mathcal{N} \sim Int(\mathcal{A}_{\alpha}) \subseteq \mathcal{N} \sim Int(\cup (\mathcal{A}_{\alpha}))$, where a subfamily \mathcal{B} of (X, \exists_{X_N}) is said to be subbase for (X, \exists_{X_N}) if the collection of all intersections of members of \mathcal{B} forms a base for (X, \exists_{X_N}) .

Lemma 2.0.6

For a NS \mathcal{A} of NTS (X, \exists_{X_N}) , then

- (a) $1_{X_N} \mathcal{N} \sim Int(\mathcal{A}) = \mathcal{N} \sim Cl(1_{X_N} \mathcal{A})$, and
- (b) $1_{X_N} \mathcal{N} \sim Cl(\mathcal{A}) = \mathcal{N} \sim Int(1_{X_N} \mathcal{A}).$

The proof is straightforward.

Theorem 2.0.1

The following statements are equivalent:

- (i) \mathcal{A} is a NSCoS,
- (ii) \mathcal{A}^c is a NSOS,
- (iii) $\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) \subseteq \mathcal{A}$, and

(iv) $\mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A}^c)) \supseteq \mathcal{A}^c$.

Proof

(*i*) and (*ii*) are equivalent follows from Lemma 2.0.6, since for a NS \mathcal{A} of NTS (X, \neg_{X_N}) such that $1_{X_N} - \mathcal{N} \sim Int(\mathcal{A}) = \mathcal{N} \sim Cl(1_{X_N} - \mathcal{A})$, and $1_{X_N} - \mathcal{N} \sim Cl(\mathcal{A}) = \mathcal{N} \sim Int(1_{X_N} - \mathcal{A})$.

 $(i) \Rightarrow (iii)$. By definition \exists NCoS \mathcal{B} such that $\mathcal{N} \sim Int(\mathcal{B}) \subseteq \mathcal{A} \subseteq \mathcal{B}$ and hence $\mathcal{N} \sim Int(\mathcal{B}) \subseteq \mathcal{A} \subseteq \mathcal{N} \sim Cl(\mathcal{A}) \subseteq \mathcal{B}$. Since $\mathcal{N} \sim Int(\mathcal{B})$ is the greatest NOS contained in \mathcal{B} , we have $\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{B})) \subseteq \mathcal{N} \sim Int(\mathcal{B}) \subseteq \mathcal{A}$.

- $(iii) \Rightarrow (i)$ follows by taking $\mathcal{B} = \mathcal{N} \sim Cl(\mathcal{A})$.
- $(ii) \Leftrightarrow (iv)$ can similarly be proved.

Theorem 2.0.2

- (i) Arbitrary union of NSOSs is a NSOS, and
- (ii) Arbitrary intersection of NSCoSs is a NSCoS.

Proof

- (i) Let $\{\mathcal{A}_{\alpha}\}$ be a collection of NSOSs of NTS $(X, \neg_{X_{\mathcal{N}}})$. Then \exists a $\mathcal{B}_{\alpha} \in \neg_{X_{\mathcal{N}}}$ such that $\mathcal{B}_{\alpha} \subseteq \mathcal{A}_{\alpha} \subseteq \mathcal{N} \sim Cl(\mathcal{B}_{\alpha})$, for each α . Thus, $\cap \mathcal{B}_{\alpha} \subseteq \cup \mathcal{A}_{\alpha} \subseteq \cup \mathcal{N} \sim Cl(\mathcal{B}_{\alpha}) \subseteq \mathcal{N} \sim Cl(\cup (\mathcal{B}_{\alpha}))$ [Lemma 2.0.5], and $\cup \mathcal{B}_{\alpha} \in \neg_{X_{\mathcal{N}}}$, this shows that $\cup \mathcal{B}_{\alpha}$ is a NSOS.
- (ii) Let $\{\mathcal{A}_{\alpha}\}$ be a collection of NSCoSs of NTS $(X, \exists_{X_{\mathcal{N}}})$. Then \exists a $\mathcal{B}_{\alpha} \in \exists_{X_{\mathcal{N}}}$ such that $\mathcal{N} \sim Int(\mathcal{B}_{\alpha}) \subseteq \mathcal{A}_{\alpha} \subseteq \mathcal{B}_{\alpha}$, for each α . Thus, $\mathcal{N} \sim Int(\cap (\mathcal{B}_{\alpha})) \subseteq \cap \mathcal{N} \sim Int(\mathcal{B}_{\alpha}) \subseteq \cap \mathcal{A}_{\alpha} \subseteq \cap \mathcal{B}_{\alpha}$ [Lemma 2.0.5], and $\cup \mathcal{B}_{\alpha} \in \exists_{X_{\mathcal{N}}}$, this shows that $\cap \mathcal{B}_{\alpha}$ is a NSCoS.

Remark 2.0.1

It is clear that every NOS (NCoS) is a NSOS (NSCoS). The converse

is false, it is seen in Example 2.0.1. It also shows that the intersection (union) of any two NSOSs (NSCoSs) need not be a NSOS (NSCoS). Even the intersection (union) of a NSOS (NSCoS) with a NOS (NCoS) may fail to be a NSOS (NSCoS). It should be noted that the ordinary topological setting the intersection of a NSOS with an NOS is a NSOS.

Further, the closure of NOS is a NSOS and the interior of NCoS is a NSCoS.

Example 2.0.1

Let $X = \{a, b\}$ and \mathcal{A}, \mathcal{B} be neutrosophic subsets of X such that

$$\mathcal{A} = \left\{ \left\langle \frac{a}{(0.6, 0.3, 0.2)} \right\rangle, \left\langle \frac{b}{(0.5, 0.2, 0.3)} \right\rangle \right\}, \\ \mathcal{B} = \left\{ \left\langle \frac{a}{(0.5, 0.4, 0.3)} \right\rangle, \left\langle \frac{b}{(0.4, 0.2, 0.3)} \right\rangle \right\}.$$

Then $\exists_{X_{\mathcal{N}}} = \left\{ 1_{X_{\mathcal{N}}}, 0_{X_{\mathcal{N}}}, \mathcal{A}, \mathcal{B}, \mathcal{A} \cup \mathcal{B}, \mathcal{A} \cap \mathcal{B} \right\}$ is a NTS on X. Let $\mathcal{P} = \left\{ \langle \frac{a}{(0.8, 0.2, 0.1)} \rangle, \langle \frac{b}{(0.7, 0.2, 0.3)} \rangle \right\}$ be any neutrosophic set $\exists_{X_{\mathcal{N}}}$, then $\mathcal{N} \sim Int(\mathcal{P}) = \cup \left\{ G : G \text{ is open set}, \ G \subseteq \mathcal{P} \right\} = \mathcal{A} \cup \mathcal{B} = \mathcal{A}$ and $\mathcal{N} \sim Cl(\mathcal{P}) = \cap \left\{ K \supseteq \mathcal{P} : K \text{ is closed set in } \exists_{X_{\mathcal{N}}} \right\} = 1_{X_{\mathcal{N}}}$. Therefore, \mathcal{P} is a NSOS, which is not a NOS and also by Theorem 2.0.1, \mathcal{P}^c is a NSCoS, which is not an NCS.

Theorem 2.0.3

If (X, \exists_{X_N}) and (Y, \exists_{Y_N}) are NTSs. Then the product $\mathcal{A} \times \mathcal{B}$ of a NSOS \mathcal{A} of X and a NSOS \mathcal{B} of Y is NSOS of the neutrosophic product space $X \times Y$.

Proof

Let $\mathcal{P} \subseteq \mathcal{A} \subseteq \mathcal{N} \sim Cl(\mathcal{P})$ and $\mathcal{Q} \subseteq \mathcal{B} \subseteq \mathcal{N} \sim Cl(\mathcal{Q})$ where $\mathcal{P} \in \exists_{X_{\mathcal{N}}}$ and $\mathcal{Q} \in \exists_{Y_{\mathcal{N}}}$. Then $\mathcal{P} \times \mathcal{Q} \subseteq \mathcal{A} \times \mathcal{B} \subseteq \mathcal{N} \sim Cl(\mathcal{P}) \times \mathcal{N} \sim Cl(\mathcal{Q})$. For NSs \mathcal{P} 's of X and \mathcal{Q} 's of Y, we have

- (a) $\inf \{\mathcal{P}, \mathcal{Q}\} = \min \{\inf \mathcal{P}, \inf \mathcal{Q}\},\$
- (b) inf $\{\mathcal{P} \times 1_{X_{\mathcal{N}}}\} = (\inf \mathcal{P}) \times 1_{X_{\mathcal{N}}}$, and
- (c) inf $\{1_{X_N} \times \mathcal{Q}\} = 1_{X_N} \times (\inf \mathcal{Q}).$

It is sufficient to prove that $\mathcal{N} \sim Cl(\mathcal{A} \times \mathcal{B}) \supseteq \mathcal{N} \sim Cl(\mathcal{A}) \times \mathcal{N} \sim Cl(\mathcal{B})$. Let $\mathcal{P} \in \exists_{X_{\mathcal{N}}}$ and $\mathcal{Q} \in \exists_{Y_{\mathcal{N}}}$. Then

$$\mathcal{N} \sim Cl(\mathcal{A} \times \mathcal{B}) = \inf \left\{ (\mathcal{P} \times \mathcal{Q})^c | (\mathcal{P} \times \mathcal{Q})^c \supseteq \mathcal{A} \times \mathcal{B} \right\}$$

= $\inf \left\{ (\mathcal{P}^c \times 1_{X_N}) \cup (1_{X_N} \times \mathcal{Q}^c) | (\mathcal{P}^c \times 1_{X_N}) \cup (1_{X_N} \times \mathcal{Q}^c) \supseteq \mathcal{A} \times \mathcal{B} \right\}$
= $\inf \left\{ (\mathcal{P}^c \times 1_{X_N}) \cup (1_{X_N} \times \mathcal{Q}^c) | \mathcal{P}^c \supseteq \mathcal{A} \text{ or } \mathcal{Q}^c \supseteq \mathcal{B} \right\}$
= $\min \left[\inf \left\{ (\mathcal{P}^c \times 1_{X_N}) \cup (1_{X_N} \times \mathcal{Q}^c) | \mathcal{P}^c \supseteq \mathcal{A} \right\}, \inf \left\{ (\mathcal{P}^c \times 1_{X_N}) \cup (1_{X_N} \times \mathcal{Q}^c) | \mathcal{Q}^c \supseteq \mathcal{B} \right\} \right]$

Since, $\inf \left\{ (\mathcal{P}^c \times 1_{X_N}) \cup (1_{X_N} \times \mathcal{Q}^c) | P^c \supseteq \mathcal{A} \right\}$

$$\supseteq \inf \left\{ (\mathcal{P}^c \times 1_{X_{\mathcal{N}}}) | \mathcal{P}^c \supseteq \mathcal{A} \right\} \\ = \inf \left\{ \mathcal{P}^c | \mathcal{P}^c \supseteq \mathcal{A} \right\} \times 1_{X_{\mathcal{N}}} \\ = \mathcal{N} \sim Cl(\mathcal{A}) \times 1_{X_{\mathcal{N}}}$$

and $\inf \{ (\mathcal{P}^c \times 1_{X_N}) \cup (1_{X_N} \times \mathcal{Q}^c) | \mathcal{Q}^c \supseteq \mathcal{B} \}$

$$\supseteq \inf \{ (1_{X_{\mathcal{N}}} \times \mathcal{Q}^{c}) | \mathcal{Q}^{c} \supseteq \mathcal{B} \}$$

= $1_{X_{\mathcal{N}}} \times \inf \{ \mathcal{Q}^{c} | \mathcal{Q}^{c} \supseteq \mathcal{B} \}$
= $1_{X_{\mathcal{N}}} \times \mathcal{N} \sim Cl(\mathcal{B})$

we have,

$$\mathcal{N} \sim Cl(\mathcal{A} \times \mathcal{B}) \supseteq \min \{ \mathcal{N} \sim Cl(\mathcal{A}) \times 1_{X_{\mathcal{N}}}, 1_{X_{\mathcal{N}}} \times \mathcal{N} \sim Cl(\mathcal{B}) \}$$
$$= \mathcal{N} \sim Cl(\mathcal{A}) \times \mathcal{N} \sim Cl(\mathcal{B}) \}.$$
Hence the result.

Definition 2.0.3

A NS \mathcal{A} of NTS $(X, \exists_{X_{\mathcal{N}}})$ is called a NROS of X if $\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) = \mathcal{A}$.

Definition 2.0.4

A NS \mathcal{A} of NTS $(X, \exists_{X_{\mathcal{N}}})$ is called a NRCoS of X if $\mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A})) = \mathcal{A}$.

Theorem 2.0.4

A NS \mathcal{A} of NTS $(X, \neg_{X_{\mathcal{N}}})$ is a NROS iff \mathcal{A}^c is NRCoS.

The proof follows from Lemma 2.0.6.

Remark 2.0.2

It is obvious that every NROS (NRCoS) is NOS (NCoS). The converse need not be true. For this we cite an example-

Example 2.0.2

From Example 2.0.1, it is clear that \mathcal{A} is NOS. Now $\mathcal{N} \sim Cl(\mathcal{A}) = 1_{X_{\mathcal{N}}}$ and $\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) = 1_{X_{\mathcal{N}}}$. Therefore, $\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) \neq \mathcal{A}$, hence \mathcal{A} is not NROS.

Remark 2.0.3

The union (intersection) of any two NROSs (NRCoS) need not be a NROS (NRCoS).

Example 2.0.3

Let $X = \{a, b, c\}$ and $\exists_{X_N} = \{0_{X_N}, 1_{X_N}, A, B, C\}$ be NTS on X, where

$$\mathcal{A} = \left\{ \left\langle \frac{a}{(0.4, 0.5, 0.6)} \right\rangle, \left\langle \frac{b}{(0.7, 0.5, 0.3)} \right\rangle, \left\langle \frac{c}{(0.5, 0.5, 0.5)} \right\rangle \right\}, \\ \mathcal{B} = \left\{ \left\langle \frac{a}{(0.6, 0.5, 0.4)} \right\rangle, \left\langle \frac{b}{(0.3, 0.5, 0.7)} \right\rangle, \left\langle \frac{c}{(0.5, 0.5, 0.5)} \right\rangle \right\}, \\ \mathcal{C} = \left\{ \left\langle \frac{a}{(0.6, 0.5, 0.4)} \right\rangle, \left\langle \frac{b}{(0.7, 0.5, 0.3)} \right\rangle, \left\langle \frac{c}{(0.5, 0.5, 0.5)} \right\rangle \right\}.$$

Then $\mathcal{N} \sim Cl(\mathcal{A}) = \mathcal{B}^c, \mathcal{N} \sim Int(\mathcal{B}^c) = \mathcal{A}.$ Clearly, $\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) = \mathcal{A}.$ Similarly, $\mathcal{N} \sim Int(Cl(\mathcal{B})) = \mathcal{B}.$ Now, $\mathcal{A} \cup \mathcal{B} = \mathcal{C}.$ But $\mathcal{N} \sim Cl(\mathcal{A} \cup \mathcal{B}) = 1_{X_{\mathcal{N}}}$ and $\mathcal{N} \sim Int(Cl(\mathcal{A} \cup \mathcal{B})) = 1_{X_{\mathcal{N}}}.$ Hence, \mathcal{A} and \mathcal{B} are two NROSs but $\mathcal{A} \cup \mathcal{B}$ is not NROS.

Theorem 2.0.5

- (i) The intersection of any two NROSs is a NROS, and
- (ii) The union of any two NRCoSs is a NRCoS.

Proof

- (i) Let \mathcal{A}_1 and \mathcal{A}_2 be any two NROSs of NTS (X, \neg_{X_N}) . Since $\mathcal{A}_1 \cap \mathcal{A}_2$ is NOS [from Remark 2.0.2], we have $\mathcal{A}_1 \cap \mathcal{A}_2 \subseteq \mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}_1 \cap \mathcal{A}_2))$. Now, $\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}_1 \cap \mathcal{A}_2)) \subseteq \mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}_1)) =$ \mathcal{A}_1 and $\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}_1 \cap \mathcal{A}_2)) \subseteq \mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}_2)) =$ $Cl(\mathcal{A}_2)) = \mathcal{A}_2$ implies that $\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}_1 \cap \mathcal{A}_2))$ $\subseteq \mathcal{A}_1 \cap \mathcal{A}_2$. Hence the theorem.
- (ii) Let \mathcal{A}_1 and \mathcal{A}_2 be any two NROSs of NTS (X, \neg_{X_N}) . Since $\mathcal{A}_1 \cup \mathcal{A}_2$ is NOS [from Remark 2.0.2], we have $\mathcal{A}_1 \cup \mathcal{A}_2 \supseteq \mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A}_1 \cup \mathcal{A}_2))$. Now, $\mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A}_1 \cup \mathcal{A}_2)) \supseteq \mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A}_1)) =$ \mathcal{A}_1 and $\mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A}_1 \cup \mathcal{A}_2)) \supseteq \mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A}_1)) =$ $Int(\mathcal{A}_2)) = \mathcal{A}_2$ implies that $\mathcal{A}_1 \cup \mathcal{A}_2 \subseteq \mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A}_1 \cup \mathcal{A}_2))$. Hence the theorem.

Theorem 2.0.6

(i) The closure of a NOS is NRCoS, and

(ii) The interior of a NCoS is NROS.

Proof

- (i) Let \mathcal{A} be a NOS of NTS $(X, \exists_{X_{\mathcal{N}}})$, clearly, $\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) \subseteq \mathcal{N} \sim Cl(\mathcal{A}) \Rightarrow \mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}))) \subseteq \mathcal{N} \sim Cl(\mathcal{A})$. Now, \mathcal{A} is NOS implies that $\mathcal{A} \subseteq \mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}))$ and hence $\mathcal{N} \sim Cl(\mathcal{A}) \subseteq \mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})))$. Thus, $\mathcal{N} \sim Cl(\mathcal{A})$ is NRCoS.
- (ii) Let \mathcal{A} be a NCoS of a NTS $(X, \exists_{X_{\mathcal{N}}})$, clearly, $\mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A})) \supseteq \mathcal{N} \sim Int(\mathcal{A}) \Rightarrow \mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A})))$ $\supseteq \mathcal{N} \sim Int(\mathcal{A}).$ Now, \mathcal{A} is NCoS implies that $\mathcal{A} \supseteq \mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A}))$ and hence $\mathcal{N} \sim Int(\mathcal{A}) \supseteq \mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{N} \sim Int(\mathcal{A}))).$ Thus, $\mathcal{N} \sim Int(\mathcal{A})$ is NROS.

Definition 2.0.5

Let $\phi : (X, \exists_{X_N}) \to (Y, \exists_{Y_N})$ be a mapping from NTS (X, \exists_{X_N}) to another NTS (Y, \exists_{X_N}) , then ϕ is called a NCM, if $\phi^{-1}(\mathcal{A}) \in \exists_{X_N}$ for each $\mathcal{A} \in \exists_{X_N}$; or equivalently $\phi^{-1}(\mathcal{B})$ is a NCoS of X for each NCoS \mathcal{B} of Y.

Definition 2.0.6

Let $\phi : (X, \exists_{X_N}) \to (Y, \exists_{Y_N})$ be a mapping from NTS (X, \exists_{X_N}) to another NTS (Y, \exists_{X_N}) , then ϕ is said to be a NOM, if $\phi(\mathcal{A}) \in \exists_{Y_N}$ for each $\mathcal{A} \in \exists_{X_N}$.

Definition 2.0.7

Let $\phi : (X, \exists_{X_N}) \to (Y, \exists_{Y_N})$ be a mapping from NTS (X, \exists_{X_N}) to another NTS (Y, \exists_{X_N}) , then ϕ is said to be a NCoM, if $\phi(\mathcal{B})$ is a NCoS of Y for each NCoS B of X.

Definition 2.0.8

Let $\phi : (X, \exists_{X_N}) \to (Y, \exists_{Y_N})$ be a mapping from NTS (X, \exists_{X_N}) to another NTS (Y, \exists_{X_N}) , then ϕ is said to be a NSCM, if $\phi^{-1}(\mathcal{A})$ is a NSOS of X, for each $\mathcal{A} \in \exists_{Y_N}$.

Definition 2.0.9

Let $\phi : (X, \exists_{X_N}) \to (Y, \exists_{Y_N})$ be a mapping from NTS (X, \exists_{X_N}) to another NTS (Y, \exists_{X_N}) , then ϕ is said to be a NSOM, if $\phi(\mathcal{A})$ is a NSOS for each $\mathcal{A} \in \exists_{X_N}$.

Definition 2.0.10

Let $\phi : (X, \exists_{X_N}) \to (Y, \exists_{Y_N})$ be a mapping from NTS (X, \exists_{X_N}) to another NTS (Y, \exists_{Y_N}) , then ϕ is said to be a NSCoM, if $\phi(\mathcal{B})$ is a NSCoS for each NCoS \mathcal{B} of X.

Remark 2.0.4

From Remark 2.0.1, a NCM (NOM, NCoM) is also a NSCM (NSOM, NSCoM). But the converse is not true.

Example 2.0.4

Let $X = \{a, b\}, Y = \{x, y\}$ *, and*

$$\mathcal{A} = \left\{ \left\langle \frac{a}{(0.6, \ 0.3, \ 0.2)} \right\rangle, \left\langle \frac{b}{(0.5, \ 0.2, \ 0.3)} \right\rangle \right\}, \\ \mathcal{B} = \left\{ \left\langle \frac{x}{(0.5, \ 0.4, \ 0.3)} \right\rangle, \left\langle \frac{y}{(0.4, \ 0.2, \ 0.3)} \right\rangle \right\}, \\ \mathcal{C} = \left\{ \left\langle \frac{x}{(0.8, \ 0.2, \ 0.1)} \right\rangle, \left\langle \frac{y}{(0.7, \ 0.2, \ 0.3)} \right\rangle \right\}.$$

Then $\exists_{X_N} = \{0_{X_N}, 1_{X_N}, \mathcal{A}\}$ and $\exists_{Y_N} = \{0_{X_N}, 1_{X_N}, \mathcal{B}, \mathcal{C}\}$ are NTSs on X and Y.

Let $\phi : (X, \exists_{X_N}) \to (Y, \exists_{Y_N})$ be a mapping defined as $\phi(a) = y, \phi(b) = x$. Then $\phi : (X, \exists_{X_N}) \to (Y, \exists_{Y_N})$ is NSCM but not NCM.

Theorem 2.0.7

Let X_1, X_2, Y_1 and Y_2 be NTSs such that X_1 is product related to X_2 .

Then, the product $\phi_1 \times \phi_2 : X_1 \times X_2 \to Y_1 \times Y_2$ of NSCMs $\phi_1 : X_1 \to Y_1$ and $\phi_2 : X_2 \to Y_2$ is NSCM.

Proof

Let $\mathcal{A} \equiv \bigcup (\mathcal{A}_{\alpha} \times \mathcal{B}_{\beta})$, where \mathcal{A}_{α} 's and \mathcal{B}_{β} 's are NOSs of Y_1 and Y_2 respectively, be a NOS of $Y_1 \times Y_2$.

By using Lemma 2.0.1 (i) and Lemma 2.0.3, we have

$$(\phi_1 \times \phi_2)^{-1}(\mathcal{A}) = \cup [\phi_1^{-1}(\mathcal{A}_\alpha) \times \phi_2^{-1}(\mathcal{A}_\beta)].$$

That $(\phi_1 \times \phi_2)^{-1}(\mathcal{A})$ is a NSOS follows from Theorem 2.0.3 and Theorem 2.0.2 (i).

Theorem 2.0.8

Let X, X_1 and X_2 be NTSs and $p_i : X_1 \times X_2 \to X_i$ (i = 1, 2) be the projection of $X_1 \times X_2$ onto X_i . Then, if $\phi : X \to X_1 \times X_2$ is a NSCM, $p_i \phi$ is also NSCM.

Proof

For a NOS \mathcal{A} of X_i , we have $(p_i\phi)^{-1}(\mathcal{A}) = \phi^{-1}(p_i^{-1}(\mathcal{A}))$. That p_i is a NCM and ϕ is a NSCM imply that $(p_i\phi)^{-1}(\mathcal{A})$ is a NSOS of X.

Theorem 2.0.9

Let $\phi : X \to Y$ be a mapping from NTS X to another NTS Y. Then if the graph $\psi : X \to X \times Y$ of ϕ is NSCM, then ϕ is also NSCM.

Proof

From Lemma 2.0.4, we have $\phi^{-1}(\mathcal{A}) = 1_{X_N} \cap \phi^{-1}(\mathcal{A}) = \psi^{-1}(1_{X_N} \times \mathcal{A})$, for each NOS \mathcal{A} of Y. Since ψ is a NSCM and $1_{X_N} \times \mathcal{A}$ is a NOS $X \times Y$, $\phi^{-1}(\mathcal{A})$ is a NSOS of X and hence ϕ is a NSCM.

Remark 2.0.5

The converse of Theorem 2.0.9 is not true.

Definition 2.0.11

A mapping $\phi : (X, \exists_{X_N}) \to (Y, \exists_{Y_N})$ from NTS X to another NTS Y is said to be a NACM, if $\phi^{-1}(\mathcal{A}) \in \exists_{X_N}$ for each NROS \mathcal{A} of Y.

Theorem 2.0.10

Let $\phi : (X, \neg_{X_N}) \to (Y, \neg_{Y_N})$ be a mapping. Then the following statements are equivalent:

- (a) ϕ is a NACM,
- (b) $\phi^{-1}(\mathcal{F})$ is a NCoS, for each NRCoS F of Y,
- (c) $\phi^{-1}(\mathcal{A}) \subseteq \mathcal{N} \sim Int(\phi^{-1}(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})))))$, for each NOS \mathcal{A} of Y,
- (d) $\mathcal{N} \sim Cl\left(\phi^{-1}\left(\mathcal{N} \sim Cl\left(\mathcal{N} \sim Int(\mathcal{N})\right)\right)\right) \subseteq \phi^{-1}(\mathcal{N}), \text{ for each } NCoS \ F \ of \ Y.$

Proof

Consider that $\phi^{-1}(\mathcal{A}^c) = (\phi^{-1}(\mathcal{A}))^c$, for any NS \mathcal{A} of Y, $(a) \Leftrightarrow (b)$ follows from Theorem 2.0.4.

 $(a) \Rightarrow (c). \text{ Since } \mathcal{A} \text{ is a NOS of } Y, \mathcal{A} \subseteq \mathcal{N} \sim Int(Cl(\mathcal{A})) \text{ and} \\ \text{hence } \phi^{-1}(\mathcal{A}) \subseteq \phi^{-1} \Big(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) \Big). \text{ From Theorem} \\ 2.0.6 \text{ (ii), } \mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) \text{ is a NROS of } Y, \text{ hence } \phi^{-1} \Big(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) \Big) \text{ is a NOS of } X. \text{ Thus, } \phi^{-1}(\mathcal{A}) \subseteq \phi^{-1} \Big(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) \Big) = \mathcal{N} \sim Int \Big(\phi^{-1} \Big(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) \Big) \Big). \\ (c) \Rightarrow (a). \text{ Let } \mathcal{A} \text{ be a NROS of } Y, \text{ then we have } \phi^{-1}(\mathcal{A}) \subseteq \mathcal{N} \sim Int \Big(\phi^{-1} \Big(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) \Big) \Big) = \mathcal{N} \sim Int \Big(\phi^{-1} \Big(\mathcal{A}) \subseteq \mathcal{N} \sim Int \Big(\phi^{-1} \Big(\mathcal{A} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) \Big) \Big). \\ (c) = \mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})) \Big) = \mathcal{N} \sim Int(\phi^{-1}(\mathcal{A}) \subseteq \mathcal{N} \sim Int(\phi^{-1}(\mathcal{A}))). \text{ Thus, } \phi^{-1}(\mathcal{A}) = \mathcal{N} \sim Int(\phi^{-1}(\mathcal{A})). \text{ Thus, } \phi^{-1}(\mathcal{A}) = \mathcal{N} \sim Int(\phi^{-1}(\mathcal{A})). \text{ This shows that } \phi^{-1}(\mathcal{A}) \text{ is a NOS of } X.$

 $(b) \Leftrightarrow (d)$ similarly can be proved.

Remark 2.0.6

Clearly, a NCM is NACM. But the converse needs not be true.

Example 2.0.5

Let $X = \{a, b\}, Y = \{x, y\}$ *, and*

$$\mathcal{A} = \left\{ \left\langle \frac{a}{(0.6, 0.5, 0.3)} \right\rangle, \left\langle \frac{b}{(0.4, 0.5, 0.5)} \right\rangle \right\}, \\ \mathcal{B} = \left\{ \left\langle \frac{a}{(0.2, 0.5, 0.7)} \right\rangle, \left\langle \frac{b}{(0.4, 0.5, 0.5)} \right\rangle \right\}, \\ \mathcal{C} = \left\{ \left\langle \frac{x}{(0.6, 0.5, 0.3)} \right\rangle, \left\langle \frac{y}{(0.4, 0.5, 0.5)} \right\rangle \right\}, \\ \mathcal{D} = \left\{ \left\langle \frac{x}{(0.2, 0.5, 0.7)} \right\rangle, \left\langle \frac{y}{(0.4, 0.5, 0.5)} \right\rangle \right\}, \\ \mathcal{E} = \left\{ \left\langle \frac{x}{(0.2, 0.5, 0.5)} \right\rangle, \left\langle \frac{b}{(0.3, 0.5, 0.7)} \right\rangle \right\}.$$

Then $\exists_{X_N} = \{0_{X_N}, 1_{X_N}, \mathcal{A}, \mathcal{B}\}$ and $\exists_{Y_N} = \{0_{X_N}, 1_{X_N}, \mathcal{C}, \mathcal{D}, \mathcal{E}\}$ are *NTSs on* X and Y.

Now, let $\phi : (X, \exists_{X_N}) \to (Y, \exists_{Y_N})$ be a mapping defined as $\phi(a) = y, \phi(b) = x$ and clearly, ϕ is NACM. Hence, $0_{X_N}, 1_{X_N}, C, D$ are NOSs in \exists_{Y_N} but $\phi^{-1}(\mathcal{E})$ is not NOS in \exists_{X_N} and hence NACM is not NCM.

Theorem 2.0.11

Neutrosophic semi-continuity and neutrosophic almost continuity are independent notions.

The proof is straightforward.

Definition 2.0.12

A NTS (X, \neg_{X_N}) is said to be a NSRS iff the collection of all NROSs of X forms a base for NT \neg_{X_N} .

Theorem 2.0.12

Let $\phi : (X, \neg_{X_N}) \to (Y, \neg_{Y_N})$ be a mapping from NTS X to a NSRS Y. Then ϕ is NACM iff ϕ is NCM.

Proof

From Remark 2.0.6, it suffices to prove that if ϕ is NACM then it is NCM. Let $\mathcal{A} \in \neg_{Y_N}$, then $\mathcal{A} = \bigcup \mathcal{A}_{\alpha}$, where \mathcal{A}_{α} 's are NROSs of Y. Now, from Lemma 2.0.1(i), 2.0.5 and Theorem 2.0.10 (c), we get

$$\phi^{-1}(\mathcal{A}) = \cup \phi^{-1}\mathcal{A}_{\alpha}$$

$$\subseteq \cup \mathcal{N} \sim Int\left(\phi^{-1}(\mathcal{N} \sim Cl(\mathcal{A}_{\alpha}))\right)$$

$$= \cup \mathcal{N} \sim Int(\phi^{-1}(\mathcal{A}_{\alpha}))$$

$$\subseteq \mathcal{N} \sim Int \cup (\phi^{-1})(\mathcal{A}_{\alpha}))$$

$$= \mathcal{N} \sim Int\left(\phi^{-1}(\mathcal{A}_{\alpha})\right).$$

which shows that $\phi^{-1}(\mathcal{A}_{\alpha}) \in \exists_{X_{\mathcal{N}}}$.

Theorem 2.0.13

Let X_1 , X_2 , Y_1 and Y_2 be the NTSs such that Y_1 is product related to Y_2 . Then the product $\phi_1 \times \phi_2 : X_1 \times X_2 \to Y_1 \times Y_2$ of NACMs $\phi_1 : X_1 \to Y_1$ and $\phi_2 : X_2 \to Y_2$ is NACM.

Proof

Let $\mathcal{A} = \bigcup (\mathcal{A}_{\alpha} \times \mathcal{B}_{\beta})$, where \mathcal{A}_{α} 's and \mathcal{B}_{β} 's are NOSs of Y_1 and Y_2 respectively, be a NOS of $Y_1 \times Y_2$. Following Lemma 2.0.3, for $(p_1, p_2) \in X_1 \times X_2$, we have

$$(\phi_1 \times \phi_2)^{-1}(\mathcal{A})(p_1, p_2) = (\phi_1 \times \phi_2)^{-1} \{ \cup (\mathcal{A}_{\alpha} \times \mathcal{B}_{\beta}) \} (p_1, p_2)$$
$$= \cup \{ (\mathcal{A}_{\alpha} \times \mathcal{B}_{\beta}) (\phi_1(p_1), \phi_2(p_2)) \}$$
$$= \cup \left[\min \{ \mathcal{A}_{\alpha} \phi_1(p_1), \mathcal{B}_{\beta} \phi_2(p_2) \} \right]$$
$$= \cup \left[\min \{ \phi_1^{-1}(\mathcal{A}_{\alpha})(p_1), \phi_2^{-1}(\mathcal{B}_{\beta})(p_2) \} \right]$$
$$= \cup \left[(\phi_1^{-1}(\mathcal{A}_{\alpha}) \times \phi_2^{-1}(\mathcal{B}_{\beta})) \right] (p_1, p_2)$$

i.e., $(\phi_1 \times \phi_2)^{-1}(\mathcal{A}) = \cup \{\phi_1^{-1}(\mathcal{A}_\alpha)\phi_2^{-1}(\mathcal{B}_\beta)\}$

Now, $(\phi_1 \times \phi_2)^{-1}(\mathcal{A})$

$$= \cup \left\{ \phi_{1}^{-1}(\mathcal{A}_{\alpha}) \times \phi_{2}^{-1}(\mathcal{B}_{\beta}) \right\}$$

$$\subseteq \cup \left[\mathcal{N} \sim Int \left(\phi_{1}^{-1} \left(\mathcal{N} \sim Int \left(\mathcal{N} \sim Cl(\mathcal{A}_{\alpha}) \right) \right) \right) \right]$$

$$\times \mathcal{N} \sim Int \left(\phi_{2}^{-1} \left(\mathcal{N} \sim Int \left(\mathcal{N} \sim Cl(\mathcal{B}_{\beta}) \right) \right) \right) \right]$$

$$\subseteq \cup \left[\mathcal{N} \sim Int \left\{ \phi_{1}^{-1} \left(\mathcal{N} \sim Int \left(\mathcal{N} \sim Cl(\mathcal{A}_{\alpha}) \right) \right) \right\} \right]$$

$$\subseteq \mathcal{N} \sim Int \left[\cup \left(\phi_{1} \times \phi_{2} \right)^{-1} \left\{ \mathcal{N} \sim Int \left(\mathcal{N} \sim Cl(\mathcal{A}_{\alpha}) \right) \right\} \right]$$

$$= \mathcal{N} \sim Int \left[\cup \left(\phi_{1} \times \phi_{2} \right)^{-1} \left\{ \mathcal{N} \sim Int \left(\mathcal{N} \sim Cl(\mathcal{A}_{\alpha} \times \mathcal{B}_{\beta}) \right) \right\} \right]$$

$$\subseteq \mathcal{N} \sim Int \left[\cup \left(\phi_{1} \times \phi_{2} \right)^{-1} \left\{ \mathcal{N} \sim Int \left(\mathcal{N} \sim Cl(\mathcal{A}_{\alpha} \times \mathcal{B}_{\beta}) \right) \right\} \right]$$

$$= \mathcal{N} \sim Int \left[(\phi_{1} \times \phi_{2})^{-1} \left\{ \mathcal{N} \sim Int \left(\mathcal{N} \sim Cl(\mathcal{A}_{\alpha} \times \mathcal{B}_{\beta}) \right) \right\} \right]$$

Thus, by Theorem 2.0.10 (c), $\phi_1 \times \phi_2$ is NACM.

Theorem 2.0.14

Let X, X_1 and X_2 be NTSs and $p_i : X_1 \times X_2 \to X_i$ (i = 1, 2) be the projection of $X_1 \times X_2$ onto X_i . Then if $\phi : X \to X_1 \times X_2$ is a NACM, $p_i \phi$ is also a NACM.

Proof

Since p_i is NCM Definition 2.0.5, for any NS \mathcal{A} of X_i , we have $(i)\mathcal{N} \sim Cl(p_i^{-1}(\mathcal{A})) \subseteq p_i^{-1}(\mathcal{N} \sim Cl(\mathcal{A}))$ and $(ii)\mathcal{N} \sim Int(p_i^{-1}(\mathcal{A})) \supseteq p_i^{-1}(\mathcal{N} \sim Int(\mathcal{A}))$. Again, since (i) each p_i is a NOM, and (ii) for any NS \mathcal{A} of X_i $(a) \mathcal{A} \subseteq p_i^{-1}p_i(\mathcal{A})$, and $(b) p_i^{-1}p_i(\mathcal{A}) \subseteq \mathcal{A}$, we have $p_i(\mathcal{N} \sim Int(p_i^{-1}(\mathcal{A}))) \subseteq p_i p_i^{-1}(\mathcal{A}) \subseteq \mathcal{A}$ and hence $p_i(\mathcal{N} \sim Int(p_i^{-1}(\mathcal{A}))) \subseteq \mathcal{N} \sim Int(\mathcal{A})$. Thus, $\mathcal{N} \sim Int(p_i^{-1}(\mathcal{A})) \subseteq p_i^{-1}p_i(\mathcal{N} \sim Int(p_i^{-1}(\mathcal{A}))) \subseteq (p_i^{-1}(\mathcal{N} \sim Int(\mathcal{A})))$ establishes that $\mathcal{N} \sim Int(p_i^{-1}(\mathcal{A}))$

 $(\mathcal{A}) \subseteq p_i^{-1} \big(\mathcal{N} \sim Int(\mathcal{A}) \big).$ Now, for any *NOS* \mathcal{A} of X_i ,

$$(p_{i}\phi)^{-1}(\mathcal{A}) = \phi^{-1}(p_{i}^{-1}(\mathcal{A}))$$

$$\subseteq \mathcal{N} \sim Int\left\{\phi^{-1}(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(p_{i}^{-1}(\mathcal{A}))))\right\}$$

$$\subseteq \mathcal{N} \sim Int\left\{\phi^{-1}(\mathcal{N} \sim Int(p_{i}^{-1}(\mathcal{N} \sim Cl(\mathcal{A}))))\right\}$$

$$= \mathcal{N} \sim Int\left\{\phi^{-1}(p_{i}^{-1}(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}))))\right\}$$

$$= \mathcal{N} \sim Int((p_{i}\phi)^{-1}(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A})))).$$

Theorem 2.0.15

Let X and Y be NTSs such that X is product related to Y and let $\phi : X \to Y$ be a mapping. Then, the graph $\psi : X \to X \times Y$ of ϕ is NACM iff ϕ is NACM.

Proof

Consider that ψ is a *NACM* and \mathcal{A} is a NOS of Y. Then using Lemma 2.0.4 and Theorem 2.0.10 (c), we have

$$\begin{split} \phi^{-1}(\mathcal{A}) &= \mathbf{1}_{X_{\mathcal{N}}} \cap \phi^{-1}(\mathcal{A}) \\ &= \psi^{-1}(\mathbf{1}_{X_{\mathcal{N}}} \times \mathcal{A}) \\ &\subseteq \mathcal{N} \sim Int\Big(\psi^{-1}\Big(\mathcal{N} \sim Int\big(\mathcal{N} \sim Cl(\mathbf{1}_{X_{\mathcal{N}}} \times \mathcal{A})\big)\Big)\Big) \\ &= \mathcal{N} \sim Int\Big(\psi^{-1}\Big(\mathbf{1}_{X_{\mathcal{N}}} \times \mathcal{N} \sim Int\big(\mathcal{N} \sim Cl(\mathcal{A})\big)\Big)\Big) \\ &= \mathcal{N} \sim Int\Big(\psi^{-1}\Big(\mathcal{N} \sim Int\big(\mathbf{1} \times N \sim Cl(\mathcal{A})\big)\Big)\Big) \\ &= \mathcal{N} \sim Int\Big(\psi^{-1}\Big(\mathcal{N} \sim Int\big(\mathcal{N} \sim Cl(\mathcal{A})\big)\Big)\Big) \end{split}$$

Thus, by Theorem 2.0.10 (c), ϕ is *NACM*.

Conversely, let ϕ be a *NACM* and $\mathcal{B} = \bigcup (\mathcal{B}_{\alpha} \times \mathcal{A}_{\beta})$, where \mathcal{B}_{α} 's and \mathcal{A}_{β} 's are *NOS*s of X and Y respectively, be a *NOS* of $X \times Y$.

Since $\mathcal{B}_{\alpha} \cap \mathcal{N} \sim Int(\phi^{-1}(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}_{\beta})))))$ is a *NOS*s of *X* contained in

$$\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{B}_{\alpha})) \cap \phi^{-1}(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}_{\beta}))),$$

$$\mathcal{B}_{\alpha} \cap \mathcal{N} \sim Int(\phi^{-1}(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}_{\beta})))))$$

$$\subseteq \mathcal{N} \sim Int[\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{B}_{\alpha})) \cap \phi^{-1}(\mathcal{N} \sim Int(\mathcal{N} \sim Cl(\mathcal{A}_{\beta})))]$$

and hence using Lemmas 2.0.1 (i), 2.0.4 and 2.0.5 and Theorem 2.0.10(c), we have

$$\begin{split} \phi^{-1}(\mathcal{B}) &= \phi^{-1} \big(\cup (\mathcal{B}_{\alpha} \times \mathcal{A}_{\beta}) \big) \\ &= \cup \big[\mathcal{B}_{\alpha} \cap \phi^{-1}(\mathcal{A}_{\beta}) \big] \\ &\subseteq \cup \Big[\mathcal{B}_{\alpha} \cap \mathcal{N} \sim Int \Big(\phi^{-1} \Big(\mathcal{N} \sim Int \big(\mathcal{N} \sim Cl(\mathcal{A}_{\beta}) \big) \Big) \Big) \Big] \\ &\subseteq \cup \Big[\mathcal{N} \sim Int \Big(\mathcal{N} \sim Int \Big(\mathcal{N} \sim Cl(\mathcal{B}_{\alpha}) \Big) \Big) \cap \phi^{-1} \Big(\mathcal{N} \sim Int \\ \Big(\mathcal{N} \sim Cl(\mathcal{A}_{\beta}) \Big) \Big) \Big] \\ &\subseteq \mathcal{N} \sim Int \Big[\cup \psi^{-1} \Big(\mathcal{N} \sim Int \big(\mathcal{N} \sim Cl(\mathcal{B}_{\alpha}) \big) \Big) \times \mathcal{N} \sim Int \\ \Big(\mathcal{N} \sim Cl(\mathcal{A}_{\beta}) \big) \Big] \\ &= \mathcal{N} \sim Int \Big[\psi^{-1} \Big(\cup \Big(\mathcal{N} \sim Int \big(\mathcal{N} \sim Cl(\mathcal{B}_{\alpha} \times \mathcal{A}_{\beta}) \big) \Big) \Big) \Big] \\ &\subseteq \mathcal{N} \sim Int \Big[\psi^{-1} \Big(\mathcal{N} \sim Int \Big(\mathcal{N} \sim Cl(\cup (\mathcal{B}_{\alpha} \times \mathcal{A}_{\beta}) \big) \Big) \Big) \Big] \\ &= \mathcal{N} \sim Int \Big[\psi^{-1} \Big(\mathcal{N} \sim Int \big(\mathcal{N} \sim Cl(\mathcal{B}) \big) \Big) \Big]. \end{split}$$

Thus, by Theorem 2.0.10 (c), ψ is *NACM*.