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CHAPTER 2

NEUTROSOPHIC SEMI
CONTINUOUS AND
NEUTROSOPHIC ALMOST
CONTINUOUS MAPPING

To study topological groups and almost topological groups, continuous
mapping, semi-continuous mapping, and almost continuous mapping
are important. For that, in this chapter, the properties of the NSOS,
NSCoS, NROS, NRCoS, NSCM, and NACM are studied.

Definition 2.0.1
Let A be a NS of NTS (X, Tx,.), then Ais called a NSOS of X if Ja
B € Tx,, such that A C N ~ Cl (N ~ ]nt(B)).

Definition 2.0.2
Let A be a NS of NTS (X, Tx,,), then A is called a NSCoS of X if Ja
B¢ € Ax,, such that N ~ Int(./\/ ~ CZ(B)) C A

The results discussed in this chapter has published in the journal,
Basumatary, B., & Wary, N., et al. (2022). On some properties of neutrosophic semi continuous and
almost continuous mapping. Computer Modeling in Engineering & Sciences, 130(2), 1017-1031.
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Lemma 2.0.1
Let ¢ : X — 'Y be a mapping and A,, be a family of NSs of Y, then

(i) o1 (U A,) = U ¢ YA, and
(ii) o7 (N Ax) =N o1 (Aa).
The proof is straightforward.

Lemma 2.0.2
Let A and B be NSs of X and Y respectively, then
1XN — Ax B = (AC X 1XN> U (lXN X BC)

Proof
Let (p, ¢) be any element of X x Y, then

(1x, — A x B)(p.q) = max(lXN — Ap), Lxy — B(q))
— ma:c{ (A° % 1x,) (p, q), (B x 1x,) (p, q)}
= {4 x 1) U (1, x B) bp,a),

for each (p,q) € X x V.

Lemma 2.0.3
Let ¢; : X; — Y, and A; be NSs of Y;, i = 1,2; then
(61 % 62) " (A1 x Ay) = 67" (A1) x " (Aa).

Proof
For each (p1,p2) € X1 X X5, we have

(¢1 X ¢2) 1 (A1 x A2)(p1,p2) = (A1 X «42)<¢1(p1),¢2(p1)>

= min{Aquh (p1), A2¢2(p2)}
= min{¢7" (A1) (p1), 63" (A2)(p2) }
— (41" (A1) x 65" (A2)) (1, o).
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Lemma 2.0.4
Lety : X — X XY be the graph of a mapping ¢ : X — Y. Then, if
A,Bbe NSsof X and Y, v 1 (A x B) = AN ¢ 1(B).

Proof
For each p € X, we have

v (A X B)(p) = (A x B)y(p)
= (A x B) (p, gb(p))

Lemma 2.0.5

For a family {A}a of NSs of NTS (X, Tx, ), UN ~ Cl(A,) CN ~
Cl( U (An)). In case B is a finite set, U N ~ Cl(A,) € N ~
Cl(U (Ay)). Also, UN ~ Int(A,) CN ~ Int(U (A,)), where a
subfamily B of (X, Tx, ) is said to be subbase for (X, x,,) if the col-

lection of all intersections of members of B forms a base for (X, Tx,,).

Lemma 2.0.6
For a NS A of NTS (X, Tx,,), then

(a) 1x,, — N ~ Int(A) =N ~ Cl(1x, — A), and
(b) 1x, — N ~Cl(A) =N ~ Int(1x, — A).
The proof is straightforward.

Theorem 2.0.1

The following statements are equivalent:
(i) Ais a NSCoS,
(ii) A°is a NSOS,

(iii) N~ Int(N ~ CIl(A)) C A, and
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(iv) N~ CL(N ~ Int(A%)) D A

Proof
() and (7i) are equivalent follows from Lemma 2.0.6, since for a NS A
of NTS (X, Tx, ) such that 1x,, — N ~ Int(A) = N ~ Cl(1x, — A),
and 1y, — N ~ Cl(A) =N ~ Int(lx, — A).

(i) = (i17). By definition 3 NCoS B such that N' ~ Int(B) C
A C Band hence N ~ Int(B) C ACN ~ CI(A) C B. Since N ~
Int(B) is the greatest NOS contained in B, we have N ~ Int(N ~
Cl(B)) CN ~ Int(B) C A.

(i11) = (i) follows by taking B = N ~ CI(A).

(77) < (iv) can similarly be proved.
Theorem 2.0.2
(i) Arbitrary union of NSOSs is a NSOS, and
(ii) Arbitrary intersection of NSCoSs is a NSCoS.

Proof

(i) Let {A,} be a collection of NSOSs of NTS (X, Ty, ) . Then J a
B, € Tx, suchthat B, C A, CN ~ CI(B,), for each c. Thus,
NBy CUA, CUN ~ Cl(B,) CN ~Cl(U (B,)) [Lemma
2.0.5], and U B,, € Tx,,, this shows that U B,, is a NSOS.

(ii) Let {.A,} be a collection of NSCoSs of NTS (X, Tx,,). Then 3
a B, € Ty, such that N' ~ Int(B,) € A, C B,, for each a.
Thus, N ~ Int( N (B,) C NN ~ Int(B,) C N A, CNB,
[Lemma 2.0.5], and U B, € Ty, , this shows that N B, is a
NSCoS.

Remark 2.0.1
It is clear that every NOS (NCoS) is a NSOS (NSCoS). The converse

24



is false, it is seen in Example 2.0.1. It also shows that the intersection
(union) of any two NSOSs (NSCoSs) need not be a NSOS (NSCoS).
Even the intersection (union) of a NSOS (NSCoS) with a NOS (NCoS)
may fail to be a NSOS (NSCoS). It should be noted that the ordinary
topological setting the intersection of a NSOS with an NOS is a NSOS.

Further, the closure of NOS is a NSOS and the interior of NCoS is
a NSCoS.

Example 2.0.1
Let X = {a,b} and A, B be neutrosophic subsets of X such that

_ a b

A= {<(0.6, 0.3, 0.2)>> <(0.5, 0.2, 0.3)>} ?
_ a b

B= {<(0.5, 0.4, 0.3)>7 <(0.4, 0.2, 0.3)>} )

Then Tx,, = {IXN,OXN,A,B,A UB, AN B} is a NTS on X.

Let P = {<(0.87 072’ 0.1)>, <(0.77 01?2’ 0.3)>} be any neutrosophic set Tx,,,

then N' ~ Int(P) = U {G : G is open set, G C 73} =AuUB=A
and N ~ Cl(P) = N {K D P : K is closed set in _IXN} = 1x,.
Therefore, P is a NSOS, which is not a NOS and also by Theorem 2.0.1,
P¢is a NSCoS, which is not an NCS.

Theorem 2.0.3

If (X, Tx,.) and (Y, Ty,,) are NTSs. Then the product A x B of a NSOS
A of X and a NSOS B of Y is NSOS of the neutrosophic product space
X xY.

Proof

Let P C ACN ~Cl(P)and Q C B C N ~ CI(Q) where
PeTx,and Q € Ty,. Then Px Q C AXB CN ~ CU(P) x N ~
Cl(Q). For NSs P’s of X and Q’s of Y, we have
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(a) inf {P, Q} = min{inf P, inf Q},
(b) inf {P X 1X/\/} = (1nf77) X 1XN’ and
(c) inf {1x, x Q} = 1x, x (inf Q).

It is sufficient to prove that N’ ~ CI(A x B) D N ~ CIl(A) x N ~
Cl(B). Let P € Tx,, and Q € Ty, . Then

N ~ Cl(Ax B) =1inf {(P x Q)|(P x Q) O A x B}
= 1nf{(730 X 1XN) U (1XN X QC)‘(,PC X 1XN) U (1X/\/
x Q°) O A x B}
= 1nf{(PC X 1XN) U (1XN X QC)‘PC D) A or QC D) B}
. |inf {(P¢ x 1x,) U (1x, x Q°)|P° 2 A},
= min
ll’lf{(PC X 1XN) U (1XN X QC)|Q(’ 2 B}
Since, inf {(P° x 1x,) U (1x, x Q9)|P° D A}

D inf{(P° x 1x,)[P° 2 A}
= inf{P°|P° 2 A} x 1x,
:NN OZ(A) X 1X/\/

and inf{ (P° x 1x,) U (1x, x Q)|Q° D B}

D inf{(1x, x Q9)|Q° D B}
= 1x, x inf{Q°|Q° D B}
=1y, x N ~ Cl(B)

we have,

N ~ CU(A x B) 2 min{N ~ Cl(A) x 1x,,1x, x N ~ Cl(B)}
=N ~ CIl(A) x N~ CI(B)}. Hence the result.
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Definition 2.0.3
A NS A of NTS (X, x,,) is called a NROS of X if N ~ Int(N ~
Cl(A)) = A.

Definition 2.0.4
A NS A of NTS (X, Tx,,) is called a NRCoS of X if N ~ CI(N ~
Int(A)) = A

Theorem 2.0.4
A NS A of NTS (X, Tx,,) is a NROS iff A® is NRCoS.

The proof follows from Lemma 2.0.6.

Remark 2.0.2
It is obvious that every NROS (NRCoS) is NOS (NCoS). The converse

need not be true. For this we cite an example-

Example 2.0.2

From Example 2.0.1, it is clear that A is NOS. Now N ~ Cl(A) =
lx, and N ~ Int(N ~ CIl(A)) = 1x,. Therefore, N ~ Int(N ~
Cl(A)) # A, henceA is not NROS.

Remark 2.0.3
The union (intersection) of any two NROSs (NRCoS) need not be a
NROS (NRCoS).

Example 2.0.3
Let X = {a,b,c} and Tx,, = {0x,,1x,,A,B,C} be NTS on X,

where

a b c
{<(0.4, 0.5, 0.6)>7 <(0.7, 0.5, 0.3)>7 <(0.5, 0.5, 0.5)>} ?

A
a b c

B {<(0.6, 0.5, 0.4)>7 <(O.3, 0.5, 0.7)>’ <(0.5, 0.5, 0.5)>} ?

C

~
H/_/

{<(0.6, 0?5, 0.4)>7 <(0.7, 01.75, 0.3)>7 <(0.5, 0?5, 0.5)
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Then N ~ Cl(A) = B, N ~ Int(B°) = A.

Clearly, N' ~ Int(N ~ Cl(A)) = A

Similarly, N' ~ Int(Cl(B)) = B.

Now, AUB = C.

But N ~ Cl(AUB) = 1x,, and N ~ Int(Cl(AU B)) = 1x,.
Hence, A and B are two NROSs but AU B is not NROS.

Theorem 2.0.5
(i) The intersection of any two NROSs is a NROS, and

(ii) The union of any two NRCoSs is a NRCoS.

Proof

(i) Let A; and Ay be any two NROSs of NTS (X, Tx,,). Since

A; N Ay is NOS [from Remark 2.0.2], we have 4, N Ay C N ~
Int(N ~ Cl(A; N Ay)).
Now, N ~ Int(N ~ CI(AiNA;)) SN ~ Int(N ~ Cl(A))
Ay and N~ Int(N ~ Cl(A; N Ay)) € N ~ Int(N ~
Cl(As)) = A, implies that N ~ Int(N ~ CIl(A; N Ay))
C A; N A,. Hence the theorem.

(i) Let A; and As be any two NROSs of NTS (X, Ty, ). Since

A, U As is NOS [from Remark 2.0.2], we have A; U Ay D N ~
CUN ~ Int(A; U A,)).
Now, N ~ CL(N ~ Int(A1UA2)) DN ~ CUN ~ Int(A))
Ay and N ~ CIUN ~ Int(A; U A)) DO N ~ CIN ~
Int(Ay)) = Ay implies that A; U Ay C N ~ CUN ~ Int(A U
As)). Hence the theorem.

Theorem 2.0.6

(i) The closure of a NOS is NRCoS, and
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(ii) The interior of a NCoS is NROS.

Proof

(i) Let A be a NOS of NTS (X, Tx, ), clearly, N' ~ Int(N ~
Cl(A)) CN ~ Cl(A) = N ~ CUN ~ Int(N ~ Cl(A))) C
N ~ CIl(A).

Now, A is NOS implies that A C N ~ Int(N ~ Cli(A)) and
hence N ~ Cl(A) C N ~ CI(N ~ Int(N ~ Ci(A))). Thus,
N ~ CI(A) is NRCoS.

(ii) Let A be a NCoS of a NTS (X, T, ), clearly, N' ~ CZ(N ~
Int(A)) DN ~ Int(A) = N ~ Int(N ~ CUN ~ Int(A)))
DN ~ Int(A).

Now, A is NCoS implies that A O N ~ CI(N ~ Int(A)) and
hence N' ~ Int(A) D N ~ Int(N ~ CIUN ~ Int(A))).
Thus, N ~ Int(A) is NROS.

Definition 2.0.5

Let ¢ : (X, 0x,) — (Y, Ty, ) be a mapping from NTS (X, Tx,,) to
another NTS (Y, Tx,,), then ¢ is called a NCM, if ¢~ '(A) € Tx,. for
each A € Tx,.; or equivalently 1 (B) is a NCoS of X for each NCoS
BofY.

Definition 2.0.6
Let ¢ : (X, Tx,) — (Y, Ty,) be a mapping from NTS (X, x, ) to
another NTS (Y, Tx,,), then ¢ is said to be a NOM, if p(A) € Ty, for
each A € Tx,.

Definition 2.0.7

Let ¢ : (X, x,) — (Y, Ty,) be a mapping from NTS (X, Tx,,) to
another NTS (Y, Tx,,), then ¢ is said to be a NCoM, if p(B) is a NCoS
of Y for each NCoS B of X.
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Definition 2.0.8

Let ¢ : (X, x,) — (Y, Ty,) be a mapping from NTS (X, Tx,,) to
another NTS (Y, Tx,,), then ¢ is said to be a NSCM, if $~1(A) is a
NSOS of X, for each A € Ty,,.

Definition 2.0.9

Let ¢ : (X, x,) — (Y, Ty,) be a mapping from NTS (X, Tx,,) to
another NTS (Y, Tx,,), then ¢ is said to be a NSOM, if (A) is a NSOS
for each A € Ty,

Definition 2.0.10

Let ¢ : (X, x,) — (Y, Ty,) be a mapping from NTS (X, Tx,,) to
another NTS (Y, ly,.), then ¢ is said to be a NSCoM, if ¢(B) is a
NSCoS for each NCoS B of X.

Remark 2.0.4
From Remark 2.0.1, a NCM (NOM, NCoM) is also a NSCM (NSOM,
NSCoM). But the converse is not true.

Example 2.0.4
Let X = {a,b},Y = {z,y}, and

_ a b
A= {<(0.6, 0.3, o.2)>7 <(o.5, 0.2, 0.3)>} )
b= {<(0.5, 0?4, o.3)>7 <(o.4, og.jz, 0.3)>} ’
C= {<(0.8, 09.62, 0.1)>’ <(0.7, 0?2, 0.3)>} :

Then Tx,, = {0x,,lx,, A} and Ty, = {0x,, 1x,,B,C} are NTSs
on X andY .

Let ¢ : (X, Tx,) — (Y, Ty, ) be amapping defined as ¢p(a) =y, p(b) =
x. Then ¢ : (X, Tx,.) — (Y, Ty, ) is NSCM but not NCM.

Theorem 2.0.7
Let X1, X9,Y1 and Y5 be NTSs such that X is product related to Xo.
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Then, the product 1 X P9 : X1 X X9 — Y1 XYo 0f NSCMs ¢1 : X1 — Y]
and qbQ : Xo — Y5 is NSCM.

Proof
Let A = U(A, x Bg), where A,’s and Bs’s are NOSs of Y; and Y5
respectively, be a NOS of Y7 X Ys.

By using Lemma 2.0.1 (i) and Lemma 2.0.3, we have

(¢1 % ¢2) 7' (A) = U1 (Aa) x 63" (Ag)]-

That (¢1 X ¢) 1 (A) is a NSOS follows from Theorem 2.0.3 and The-
orem 2.0.2 (1).

Theorem 2.0.8

Let X, X1 and Xo be NTSs and p; : X1 x Xo — X; (i = 1,2) be the
projection of X1 x Xo onto X;. Then, if p : X — X1 X Xoisa NSCM,
pi@ is also NSCM.

Proof
For a NOS A of X;, we have (p;¢) *(A) = ¢~ (p; '(A)). That p; is a
NCM and ¢ is a NSCM imply that (p;¢)1(A) is a NSOS of X.

Theorem 2.0.9
Let ¢ : X — Y be a mapping from NTS X to another NTS Y. Then if
the graph ¢ : X — X XY of ¢ is NSCM, then ¢ is also NSCM.

Proof

From Lemma 2.0.4, we have ¢ 1(A) = 1x,, N¢ 1 (A) = v (1x, X
A), for each NOS A of Y. Since ¢ isa NSCM and 1x,, x A is a NOS
X xY, ¢ (A)is aNSOS of X and hence ¢ is a NSCM.

Remark 2.0.5

The converse of Theorem 2.0.9 is not true.
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Definition 2.0.11
A mapping ¢ : (X, Tx,) — (Y, Ty,) from NTS X to another NTS'Y
is said to be a NACM, if ¢~ 1(A) € Tx, for each NROS A of Y.

Theorem 2.0.10
Let ¢ : (X, Tx,) — (Y, Ty, ) be a mapping. Then the following state-

ments are equivalent:
(a) ¢ is a NACM,
(b) ¢71(F) is a NCoS, for each NRCoS F of Y,

(c) 971 A) CN ~ Int(¢_1</\/ ~ Int(N ~ Cl(.A)))) , for each
NOS A of Y,

(d) N ~ C’l<¢_1(N ~ ClN ~ Imf(/\/)))) C ¢ L(N), for each
NCoS F'of Y.

Proof
Consider that ¢~ 1(A°) = (¢~ 1(A))¢, for any NS A of YV, (a) & (D)
follows from Theorem 2.0.4.

(a) = (c). Since AisaNOSof Y, A C N ~ Int(Cli(A)) and
hence ¢ 1(A) C ¢_1<./\/ ~ Int(N ~ CZ(A))). From Theorem
2.0.6 (i), N ~ Int(N ~ CI(A)) is a NROS of Y, hence qbl(N ~
Int(N ~ C’Z(A))) is a NOS of X. Thus, ¢~ 1(A) C qb_l(/\f ~
Int(N ~ CI(A) ) =N ~ Int (671 (N ~ Int (N ~ CU(A))) ).

(¢) = (a). Let A be a NROS of Y, then we have ¢ 1(A) C N ~
]nt(gb_l(/\f ~ Int(N ~ CZ(A)))) = N ~ Int(¢ '(A)). Thus,
¢ (A) = N ~ Int(¢'(A)). This shows that ¢~ '(A) is a NOS of
X.

(b) & (d) similarly can be proved.
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Remark 2.0.6
Clearly, a NCM is NACM. But the converse needs not be true.

Example 2.0.5
Let X = {a,b},Y = {z,y}, and

{02050 )

(
( 5

{< e
(T
(

(@2 )
) (7 )
) < 02./5, 0.5)>
) (w3 )
{ ) (o)
Then Tx, = {0x,,1x,, A B} and Ty,, = {0x,, 1x,,C,D,E} are
NTSs on X and Y.

Now, let ¢ : (X, Tx,,) — (Y, Ty,) be a mapping defined as ¢(a) =
y, ¢(b) = x and clearly, ¢ is NACM.

Hence, 0x,, 1x,,,C, D are NOSs in Ty, but ¢ (E) is not NOS in Tx,
and hence NACM is not NCM.

Theorem 2.0.11
Neutrosophic semi-continuity and neutrosophic almost continuity are

independent notions.
The proof is straightforward.

Definition 2.0.12
A NTS (X, Tx, ) is said to be a NSRS iff the collection of all NROSs of
X forms a base for NT Tx,..

Theorem 2.0.12
Let ¢ : (X, Tx,) — (Y, Ty,.) be a mapping from NTS X to a NSRS Y.
Then ¢ is NACM iff ¢ is NCM.
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Proof

From Remark 2.0.6, it suffices to prove that if ¢ is NACM then it is
NCM. Let A € Ty,,, then A = UA,, where A,’s are NROSs of Y.
Now, from Lemma 2.0.1(i), 2.0.5 and Theorem 2.0.10 (c), we get

¢ (A) =U oA,
CUN ~ Int(67 (W ~ CU(A)))
= UN ~ Int(¢ 1 (AL))
CN ~ IntU (¢7Y)(As))
=N ~ Int(¢ " (Aa)).

which shows that ¢~ 1(A,) € Tx,.-

Theorem 2.0.13

Let X1, Xo, Y1 and Y5 be the NTSs such that Y is product related to Y.
Then the product ¢1 X ¢ : X1 X X9 — Y1 XY 0f NACMs ¢1 : X1 — Y}
and ¢ : Xo — Y5 is NACM.

Proof

Let A = U(A, x Bg), where A,’s and Bs’s are NOSs of Y} and
Y5 respectively, be a NOS of Y7 x Y. Following Lemma 2.0.3, for
(p1,p2) € X1 x X5, we have

(¢1 % ¢2) " H(A)(p1,p2) = (¢1 X ¢2) " { U (Aa x Bg) } (p1,p2)
— U{(Aa x Bg) (o1(p1), ¢2(p2))}
— :mz'n{Aa@(pl)aBﬁ@(m)}}
= Ufmin{ér (A)(p1). 65" (B5)(p) )
= U[ (61 (Aa) % 651(85))] (b1, )

i.e., (61 X o) (A) = U1 (Au) ey (Bs)}
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Now, (¢1 X )~ (A)
= U{o1 " (Aa) x 03" (Bg) }
cu :/\/ ~ Int (qs;l (N ~ Int(N ~ Cl(Aa))))
XN~ It (67 (N~ Int (W~ CU(By)) ) )|
CuU :N ~ [mf{(bl—l(j\/ ~ Int(N ~ Cl(Aa)))
X ¢21</\/ ~ Int(N ~ Cl(Bﬁ))) H
CN ~ Int| U (61 % 2) _1{/\/ ~ Int(N ~ CI(A,))
X N~ Int(N ~ CU(By)) }]
=N ~ Imf:U (¢1 x cbz)‘l{/\f ~ W(N ~ Cl(Aa Bﬁ)) H
C N~ 1t (91 % 62 A~ (N~ €1 (0 (A x B)) )]
= N~ Int[(61 % 62) 7 (N ~ It (N ~ CU(A)) )]

Thus, by Theorem 2.0.10 (c), ¢1 X ¢ is NACM.

Theorem 2.0.14

Let X, Xi and X5 be NTSs and p; : X1 X Xo — X; (i = 1,2) be the
projection of X1 X X9 onto X;. Thenif ¢ : X — X1 X Xois a NACM,
pi@ is also a NACM.

Proof

Since p; is NCM Definition 2.0.5, for any NS A of X, we have (/)N ~
Cl(pi'(A) € p' (N ~ CI(A)) and (i@)N ~ Int(p;'(A)) 2
p;'(N ~ Int(A)). Again, since (i) each p; is a NOM, and (ii) for
any NS A of X; (a) A C p;'pi(A), and (b) p;'p;(A) C A, we
have p; (N ~ Int(pf(.A))) C pipjl(A) C A and hence p; (N ~
Int(pi_l(A))) C N ~ Int(A). Thus, N ~ Int(p; ' (A)) Cp; 'p: (N
~ Int (pi_l(A))> C (p; (N ~ Int(A)) establishes that N ~ Int(p; "
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(A)) € p; (N~ Int(A)).
Now, for any NOS A of X,

(pi0) " (A) = &~ (p ' (A))

Theorem 2.0.15

Let X and Y be NTSs such that X is product related to Y and let
¢ : X — Y be a mapping. Then, the graph ) : X — X XY of ¢ is
NACM iff ¢ is NACM.

Proof
Consider that v is a NACM and A is a NOS of Y. Then using Lemma
2.0.4 and Theorem 2.0.10 (c), we have

¢ (A) =1x, No ' (A)
= Ly, x A)
C N~ Int< ( ~ Int(N ~ Cl(1y,, X A))))
(w 1(1XN X N~ Int(N ~ Ol(fD)))
— N~ Imf<¢ 1(/\/ ~ Int(1x N ~ CZ(A))>)
=N~ Int<¢1<N ~ Int(N ~ CZ(A))))
Thus, by Theorem 2.0.10 (c), ¢ is NACM.

Conversely, let ¢ be a NACM and B = U(B,, x Ag), where 3,’s and
Ap’s are NOSs of X and Y respectively, be a NOS of X x Y.
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Since B, NN ~ ]nt(qﬁ_l(/\/ ~ Int(N ~ Cl(A@))) is a NOSs of

X contained in

N~ Int(N ~ CU(BL)) 067 (N~ Int (N ~ CI(A)) ).

Ba NN ~ Int(¢7} (N ~ Int(N ~ Cl(A2)) )

C N ~ It [N ~ It (N~ CUBL) ) (67 (N ~ Int(W ~ CI(A)) )|

and hence using Lemmas 2.0.1 (i), 2.0.4 and 2.0.5 and Theorem 2.0.10(c),

we have

671 (B) = ¢ (U (Ba x Ag))
= U[Ba N (Ap)]
CU|B. NN ~ It (67 (N ~ It (N ~ Cl(A)) ) )]

CUW ~ Int(N ~ Int (N ~ CU(B,)) ) 167 (N ~ Int
(M ~ Cl(45)))]

CN ~ Int| Ug™ (N ~ Int (N ~ CUB,)) ) x N ~ Int
(N~ Cl(Ay))]

=N~ Int [0 (U (N~ Int(N ~ CUBL x Ay)) ) )]
CN ~ Int[y (N ~ Int (N ~ CU(U (B, x A9)) )]
— N ~ Int :¢—1 (N ~ Int(N ~ 01(3)))].

Thus, by Theorem 2.0.10 (c), ¢ is NACM.

37



	NEUTROSOPHIC SEMI CONTINUOUS AND NEUTROSOPHIC ALMOST CONTINUOUS MAPPING

