
 

 

 

CHAPTER 2 

 

 

 



CHAPTER 2

NEUTROSOPHIC SEMI
CONTINUOUS AND

NEUTROSOPHIC ALMOST
CONTINUOUS MAPPING

To study topological groups and almost topological groups, continuous

mapping, semi-continuous mapping, and almost continuous mapping

are important. For that, in this chapter, the properties of the NSOS,

NSCoS, NROS, NRCoS, NSCM, and NACM are studied.

Definition 2.0.1 blank

Let A be a NS of NTS (X,ℸXN ), then A is called a NSOS of X if ∃ a

B ∈ ℸXN such that A ⊆ N ∼ Cl
(
N ∼ Int(B)

)
.

Definition 2.0.2 blank

Let A be a NS of NTS (X,ℸXN ), then A is called a NSCoS of X if ∃ a

Bc ∈ ℸXN such that N ∼ Int
(
N ∼ Cl(B)

)
⊆ A.

The results discussed in this chapter has published in the journal,
Basumatary, B., & Wary, N., et al. (2022). On some properties of neutrosophic semi continuous and
almost continuous mapping. Computer Modeling in Engineering & Sciences, 130(2), 1017-1031.
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Lemma 2.0.1 blank

Let ϕ : X → Y be a mapping and Aα be a family of NSs of Y , then

(i) ϕ−1(∪ Aα) = ∪ ϕ−1(Aα) and

(ii) ϕ−1(∩ Aα) = ∩ ϕ−1(Aα).

The proof is straightforward.

Lemma 2.0.2 blank

Let A and B be NSs of X and Y respectively, then

1XN −A× B = (Ac × 1XN ) ∪
(
1XN × Bc

)
.

Proof
Let (p, q) be any element of X × Y , then(
1XN −A× B

)
(p, q) = max

(
1XN −A(p), 1XN − B(q)

)
= max

{(
Ac × 1XN

)
(p, q),

(
Bc × 1XN

)
(p, q)

}
=

{(
Ac × 1XN

)
∪

(
1XN × Bc

)}
(p, q),

for each (p, q) ∈ X × Y .

Lemma 2.0.3 blank

Let ϕi : Xi → Yi and Ai be NSs of Yi, i = 1, 2; then(
ϕ1 × ϕ2

)−1
(A1 ×A2) = ϕ−1

1 (A1)× ϕ−1
2 (A2).

Proof
For each (p1, p2) ∈ X1 ×X2, we have

(ϕ1 × ϕ2)
−1(A1 ×A2)(p1, p2) = (A1 ×A2)

(
ϕ1(p1), ϕ2(p1)

)
= min

{
A1ϕ1(p1),A2ϕ2(p2)

}
= min

{
ϕ−1
1 (A1)(p1), ϕ

−1
2 (A2)(p2)

}
=

(
ϕ−1
1 (A1)× ϕ−1

2 (A2)
)
(p1, p2).
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Lemma 2.0.4 blank

Let ψ : X → X × Y be the graph of a mapping ϕ : X → Y . Then, if

A,B be NSs of X and Y , ψ−1(A× B) = A ∩ ϕ−1(B).

Proof
For each p ∈ X , we have

ψ−1(A× B)(p) = (A× B)ψ(p)

= (A× B)
(
p, ϕ(p)

)
.

Lemma 2.0.5 blank

For a family
{
A
}
α

of NSs of NTS (X,ℸXN
), ∪ N ∼ Cl(Aα) ⊆ N ∼

Cl
(
∪ (Aα)

)
. In case B is a finite set, ∪ N ∼ Cl(Aα) ⊆ N ∼

Cl
(
∪ (Aα)

)
. Also, ∪ N ∼ Int(Aα) ⊆ N ∼ Int

(
∪ (Aα)

)
, where a

subfamily B of (X,ℸXN ) is said to be subbase for (X,ℸXN ) if the col-

lection of all intersections of members of B forms a base for (X,ℸXN ).

Lemma 2.0.6 blank

For a NS A of NTS (X,ℸXN ), then

(a) 1XN −N ∼ Int(A) = N ∼ Cl(1XN −A), and

(b) 1XN −N ∼ Cl(A) = N ∼ Int(1XN −A).

The proof is straightforward.

Theorem 2.0.1 blank

The following statements are equivalent:

(i) A is a NSCoS,

(ii) Ac is a NSOS,

(iii) N ∼ Int
(
N ∼ Cl(A)

)
⊆ A, and

23



(iv) N ∼ Cl
(
N ∼ Int(Ac)

)
⊇ Ac.

Proof
(i) and (ii) are equivalent follows from Lemma 2.0.6, since for a NS A
of NTS (X,ℸXN ) such that 1XN −N ∼ Int(A) = N ∼ Cl(1XN −A),

and 1XN −N ∼ Cl(A) = N ∼ Int(1XN −A).

(i) ⇒ (iii). By definition ∃ NCoS B such that N ∼ Int(B) ⊆
A ⊆ B and hence N ∼ Int(B) ⊆ A ⊆ N ∼ Cl(A) ⊆ B. Since N ∼
Int(B) is the greatest NOS contained in B, we have N ∼ Int

(
N ∼

Cl(B)
)
⊆ N ∼ Int(B) ⊆ A.

(iii) ⇒ (i) follows by taking B = N ∼ Cl(A).

(ii) ⇔ (iv) can similarly be proved.

Theorem 2.0.2 blank

(i) Arbitrary union of NSOSs is a NSOS, and

(ii) Arbitrary intersection of NSCoSs is a NSCoS.

Proof

(i) Let {Aα} be a collection of NSOSs of NTS (X,ℸXN ) . Then ∃ a

Bα ∈ ℸXN such that Bα ⊆ Aα ⊆ N ∼ Cl(Bα), for each α. Thus,

∩ Bα ⊆ ∪ Aα ⊆ ∪ N ∼ Cl(Bα) ⊆ N ∼ Cl
(
∪ (Bα)

)
[Lemma

2.0.5], and ∪ Bα ∈ ℸXN , this shows that ∪ Bα is a NSOS.

(ii) Let {Aα} be a collection of NSCoSs of NTS (X,ℸXN ). Then ∃
a Bα ∈ ℸXN such that N ∼ Int(Bα) ⊆ Aα ⊆ Bα, for each α.

Thus, N ∼ Int
(
∩ (Bα)

)
⊆ ∩ N ∼ Int(Bα) ⊆ ∩ Aα ⊆ ∩ Bα

[Lemma 2.0.5], and ∪ Bα ∈ ℸXN , this shows that ∩ Bα is a

NSCoS.

Remark 2.0.1 blank

It is clear that every NOS (NCoS) is a NSOS (NSCoS). The converse
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is false, it is seen in Example 2.0.1. It also shows that the intersection

(union) of any two NSOSs (NSCoSs) need not be a NSOS (NSCoS).

Even the intersection (union) of a NSOS (NSCoS) with a NOS (NCoS)

may fail to be a NSOS (NSCoS). It should be noted that the ordinary

topological setting the intersection of a NSOS with an NOS is a NSOS.

Further, the closure of NOS is a NSOS and the interior of NCoS is

a NSCoS.

Example 2.0.1 blank

Let X = {a, b} and A,B be neutrosophic subsets of X such that

A =
{
⟨ a
(0.6, 0.3, 0.2)⟩, ⟨

b
(0.5, 0.2, 0.3)⟩

}
,

B =
{
⟨ a
(0.5, 0.4, 0.3)⟩, ⟨

b
(0.4, 0.2, 0.3)⟩

}
.

Then ℸXN =
{
1XN , 0XN ,A,B,A ∪B,A ∩ B

}
is a NTS on X .

Let P =
{
⟨ a
(0.8, 0.2, 0.1)⟩, ⟨

b
(0.7, 0.2, 0.3)⟩

}
be any neutrosophic set ℸXN ,

then N ∼ Int(P) = ∪
{
G : G is open set, G ⊆ P

}
= A ∪ B = A

and N ∼ Cl(P) = ∩
{
K ⊇ P : K is closed set in ℸXN

}
= 1XN .

Therefore, P is a NSOS, which is not a NOS and also by Theorem 2.0.1,

Pc is a NSCoS, which is not an NCS.

Theorem 2.0.3 blank

If (X,ℸXN ) and (Y,ℸYN ) are NTSs. Then the product A×B of a NSOS

A of X and a NSOS B of Y is NSOS of the neutrosophic product space

X × Y .

Proof
Let P ⊆ A ⊆ N ∼ Cl(P) and Q ⊆ B ⊆ N ∼ Cl(Q) where

P ∈ ℸXN and Q ∈ ℸYN . Then P×Q ⊆ A×B ⊆ N ∼ Cl(P)×N ∼
Cl(Q). For NSs P’s of X and Q’s of Y , we have
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(a) inf {P ,Q} = min{inf P , inf Q},

(b) inf {P × 1XN} = (inf P)× 1XN , and

(c) inf {1XN ×Q} = 1XN × (inf Q).

It is sufficient to prove that N ∼ Cl(A × B) ⊇ N ∼ Cl(A) × N ∼
Cl(B). Let P ∈ ℸXN and Q ∈ ℸYN . Then

N ∼ Cl(A× B) = inf {(P ×Q)c|(P ×Q)c ⊇ A× B}

= inf {(Pc × 1XN ) ∪ (1XN ×Qc)|(Pc × 1XN ) ∪ (1XN

×Qc) ⊇ A× B}

= inf {(Pc × 1XN ) ∪ (1XN ×Qc)|Pc ⊇ A or Qc ⊇ B}

= min

[
inf

{
(Pc × 1XN ) ∪ (1XN

×Qc)|Pc ⊇ A
}
,

inf
{
(Pc × 1XN ) ∪ (1XN ×Qc)|Qc ⊇ B

}]

Since, inf
{
(Pc × 1XN ) ∪ (1XN ×Qc)|P c ⊇ A

}
⊇ inf

{
(Pc × 1XN )|Pc ⊇ A

}
= inf

{
Pc|Pc ⊇ A

}
× 1XN

= N ∼ Cl(A)× 1XN

and inf
{
(Pc × 1XN ) ∪ (1XN ×Qc)|Qc ⊇ B

}
⊇ inf

{
(1XN ×Qc)|Qc ⊇ B

}
= 1XN × inf

{
Qc|Qc ⊇ B

}
= 1XN ×N ∼ Cl(B)

we have,

N ∼ Cl(A× B) ⊇ min
{
N ∼ Cl(A)× 1XN , 1XN ×N ∼ Cl(B)

}
= N ∼ Cl(A)×N ∼ Cl(B)}. Hence the result.
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Definition 2.0.3 blank

A NS A of NTS (X,ℸXN ) is called a NROS of X if N ∼ Int
(
N ∼

Cl(A)
)
= A.

Definition 2.0.4 blank

A NS A of NTS (X,ℸXN ) is called a NRCoS of X if N ∼ Cl
(
N ∼

Int(A)
)
= A.

Theorem 2.0.4 blank

A NS A of NTS (X,ℸXN ) is a NROS iff Ac is NRCoS.

The proof follows from Lemma 2.0.6.

Remark 2.0.2 blank

It is obvious that every NROS (NRCoS) is NOS (NCoS). The converse

need not be true. For this we cite an example-

Example 2.0.2 blank

From Example 2.0.1, it is clear that A is NOS. Now N ∼ Cl(A) =

1XN and N ∼ Int(N ∼ Cl(A)) = 1XN . Therefore, N ∼ Int(N ∼
Cl(A)) ̸= A, henceA is not NROS.

Remark 2.0.3 blank

The union (intersection) of any two NROSs (NRCoS) need not be a

NROS (NRCoS).

Example 2.0.3 blank

Let X = {a, b, c} and ℸXN = {0XN , 1XN ,A,B, C} be NTS on X ,

where

A =
{
⟨ a
(0.4, 0.5, 0.6)⟩, ⟨

b
(0.7, 0.5, 0.3)⟩, ⟨

c
(0.5, 0.5, 0.5)⟩

}
,

B =
{
⟨ a
(0.6, 0.5, 0.4)⟩, ⟨

b
(0.3, 0.5, 0.7)⟩, ⟨

c
(0.5, 0.5, 0.5)⟩

}
,

C =
{
⟨ a
(0.6, 0.5, 0.4)⟩, ⟨

b
(0.7, 0.5, 0.3)⟩, ⟨

c
(0.5, 0.5, 0.5)⟩

}
.
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Then N ∼ Cl(A) = Bc,N ∼ Int(Bc) = A.

Clearly, N ∼ Int
(
N ∼ Cl(A)

)
= A.

Similarly, N ∼ Int
(
Cl(B)

)
= B.

Now, A ∪ B = C.

But N ∼ Cl(A ∪ B) = 1XN and N ∼ Int
(
Cl(A ∪ B)

)
= 1XN .

Hence, A and B are two NROSs but A ∪ B is not NROS.

Theorem 2.0.5 blank

(i) The intersection of any two NROSs is a NROS, and

(ii) The union of any two NRCoSs is a NRCoS.

Proof

(i) Let A1 and A2 be any two NROSs of NTS (X,ℸXN ). Since

A1 ∩ A2 is NOS [from Remark 2.0.2], we have A1 ∩ A2 ⊆ N ∼
Int

(
N ∼ Cl(A1 ∩ A2)

)
.

Now, N ∼ Int
(
N ∼ Cl(A1∩A2)

)
⊆ N ∼ Int

(
N ∼ Cl(A1)

)
=

A1 and N ∼ Int
(
N ∼ Cl(A1 ∩ A2)

)
⊆ N ∼ Int

(
N ∼

Cl(A2)
)

= A2 implies that N ∼ Int
(
N ∼ Cl(A1 ∩ A2)

)
⊆ A1 ∩ A2. Hence the theorem.

(ii) Let A1 and A2 be any two NROSs of NTS (X,ℸXN ). Since

A1 ∪ A2 is NOS [from Remark 2.0.2], we have A1 ∪ A2 ⊇ N ∼
Cl

(
N ∼ Int(A1 ∪ A2)

)
.

Now, N ∼ Cl
(
N ∼ Int(A1∪A2)

)
⊇ N ∼ Cl

(
N ∼ Int(A1)

)
=

A1 and N ∼ Cl
(
N ∼ Int(A1 ∪ A2)

)
⊇ N ∼ Cl

(
N ∼

Int(A2)
)
= A2 implies that A1∪A2 ⊆ N ∼ Cl

(
N ∼ Int(A1∪

A2)
)
. Hence the theorem.

Theorem 2.0.6 blank

(i) The closure of a NOS is NRCoS, and
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(ii) The interior of a NCoS is NROS.

Proof

(i) Let A be a NOS of NTS (X,ℸXN ), clearly, N ∼ Int
(
N ∼

Cl(A)
)
⊆ N ∼ Cl(A) ⇒ N ∼ Cl

(
N ∼ Int

(
N ∼ Cl(A)

))
⊆

N ∼ Cl(A).

Now, A is NOS implies that A ⊆ N ∼ Int
(
N ∼ Cl(A)

)
and

hence N ∼ Cl(A) ⊆ N ∼ Cl
(
N ∼ Int

(
N ∼ Cl(A)

))
. Thus,

N ∼ Cl(A) is NRCoS.

(ii) Let A be a NCoS of a NTS (X,ℸXN ), clearly, N ∼ Cl
(
N ∼

Int(A)
)
⊇ N ∼ Int(A) ⇒ N ∼ Int

(
N ∼ Cl

(
N ∼ Int(A)

))
⊇ N ∼ Int(A).

Now, A is NCoS implies that A ⊇ N ∼ Cl
(
N ∼ Int(A)

)
and

hence N ∼ Int(A) ⊇ N ∼ Int
(
N ∼ Cl

(
N ∼ Int(A)

))
.

Thus, N ∼ Int(A) is NROS.

Definition 2.0.5 blank

Let ϕ : (X,ℸXN ) → (Y,ℸYN ) be a mapping from NTS (X,ℸXN ) to

another NTS (Y,ℸXN ), then ϕ is called a NCM, if ϕ−1(A) ∈ ℸXN for

each A ∈ ℸXN ; or equivalently ϕ−1(B) is a NCoS of X for each NCoS

B of Y .

Definition 2.0.6 blank

Let ϕ : (X,ℸXN ) → (Y,ℸYN ) be a mapping from NTS (X,ℸXN ) to

another NTS (Y,ℸXN ), then ϕ is said to be a NOM, if ϕ(A) ∈ ℸYN for

each A ∈ ℸXN .

Definition 2.0.7 blank

Let ϕ : (X,ℸXN ) → (Y,ℸYN ) be a mapping from NTS (X,ℸXN ) to

another NTS (Y,ℸXN ), then ϕ is said to be a NCoM, if ϕ(B) is a NCoS

of Y for each NCoS B of X .

29



Definition 2.0.8 blank

Let ϕ : (X,ℸXN ) → (Y,ℸYN ) be a mapping from NTS (X,ℸXN ) to

another NTS (Y,ℸXN ), then ϕ is said to be a NSCM, if ϕ−1(A) is a

NSOS of X , for each A ∈ ℸYN .

Definition 2.0.9 blank

Let ϕ : (X,ℸXN ) → (Y,ℸYN ) be a mapping from NTS (X,ℸXN ) to

another NTS (Y,ℸXN ), then ϕ is said to be a NSOM, if ϕ(A) is a NSOS

for each A ∈ ℸXN .

Definition 2.0.10 blank

Let ϕ : (X,ℸXN ) → (Y,ℸYN ) be a mapping from NTS (X,ℸXN ) to

another NTS (Y,ℸYN ), then ϕ is said to be a NSCoM, if ϕ(B) is a

NSCoS for each NCoS B of X .

Remark 2.0.4 blank

From Remark 2.0.1, a NCM (NOM, NCoM) is also a NSCM (NSOM,

NSCoM). But the converse is not true.

Example 2.0.4 blank

Let X = {a, b}, Y = {x, y}, and

A =
{
⟨ a
(0.6, 0.3, 0.2)⟩, ⟨

b
(0.5, 0.2, 0.3)⟩

}
,

B =
{
⟨ x
(0.5, 0.4, 0.3)⟩, ⟨

y
(0.4, 0.2, 0.3)⟩

}
,

C =
{
⟨ x
(0.8, 0.2, 0.1)⟩, ⟨

y
(0.7, 0.2, 0.3)⟩

}
.

Then ℸXN = {0XN , 1XN ,A} and ℸYN = {0XN , 1XN ,B, C} are NTSs

on X and Y .

Let ϕ : (X,ℸXN ) → (Y,ℸYN ) be a mapping defined as ϕ(a) = y, ϕ(b) =

x. Then ϕ : (X,ℸXN ) → (Y,ℸYN ) is NSCM but not NCM.

Theorem 2.0.7 blank

Let X1, X2, Y1 and Y2 be NTSs such that X1 is product related to X2.
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Then, the product ϕ1×ϕ2 : X1×X2 → Y1×Y2 of NSCMs ϕ1 : X1 → Y1

and ϕ2 : X2 → Y2 is NSCM.

Proof
Let A ≡ ∪(Aα × Bβ), where Aα’s and Bβ’s are NOSs of Y1 and Y2
respectively, be a NOS of Y1 × Y2.

By using Lemma 2.0.1 (i) and Lemma 2.0.3, we have

(ϕ1 × ϕ2)
−1(A) = ∪[ϕ−1

1 (Aα)× ϕ−1
2 (Aβ)].

That (ϕ1 × ϕ2)
−1(A) is a NSOS follows from Theorem 2.0.3 and The-

orem 2.0.2 (i).

Theorem 2.0.8 blank

Let X , X1 and X2 be NTSs and pi : X1 ×X2 → Xi (i = 1, 2) be the

projection of X1×X2 onto Xi. Then, if ϕ : X → X1×X2 is a NSCM,

piϕ is also NSCM.

Proof
For a NOS A of Xi, we have (piϕ)

−1(A) = ϕ−1
(
p−1
i (A)

)
. That pi is a

NCM and ϕ is a NSCM imply that (piϕ)−1(A) is a NSOS of X .

Theorem 2.0.9 blank

Let ϕ : X → Y be a mapping from NTS X to another NTS Y . Then if

the graph ψ : X → X × Y of ϕ is NSCM, then ϕ is also NSCM.

Proof
From Lemma 2.0.4, we have ϕ−1(A) = 1XN ∩ ϕ−1(A) = ψ−1(1XN ×
A), for each NOS A of Y . Since ψ is a NSCM and 1XN ×A is a NOS

X × Y , ϕ−1(A) is a NSOS of X and hence ϕ is a NSCM.

Remark 2.0.5 blank

The converse of Theorem 2.0.9 is not true.
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Definition 2.0.11 blank

A mapping ϕ : (X,ℸXN ) → (Y,ℸYN ) from NTS X to another NTS Y

is said to be a NACM, if ϕ−1(A) ∈ ℸXN
for each NROS A of Y .

Theorem 2.0.10 blank

Let ϕ : (X,ℸXN ) → (Y,ℸYN ) be a mapping. Then the following state-

ments are equivalent:

(a) ϕ is a NACM,

(b) ϕ−1(F) is a NCoS, for each NRCoS F of Y ,

(c) ϕ−1(A) ⊆ N ∼ Int
(
ϕ−1

(
N ∼ Int

(
N ∼ Cl(A)

)))
, for each

NOS A of Y ,

(d) N ∼ Cl
(
ϕ−1

(
N ∼ Cl

(
N ∼ Int(N )

)))
⊆ ϕ−1(N ), for each

NCoS F of Y .

Proof
Consider that ϕ−1(Ac) = (ϕ−1(A))c, for any NS A of Y , (a) ⇔ (b)

follows from Theorem 2.0.4.

(a) ⇒ (c). Since A is a NOS of Y , A ⊆ N ∼ Int
(
Cl(A)

)
and

hence ϕ−1(A) ⊆ ϕ−1
(
N ∼ Int

(
N ∼ Cl(A)

))
. From Theorem

2.0.6 (ii), N ∼ Int
(
N ∼ Cl(A)

)
is a NROS of Y , hence ϕ−1

(
N ∼

Int
(
N ∼ Cl(A)

))
is a NOS of X . Thus, ϕ−1(A) ⊆ ϕ−1

(
N ∼

Int
(
N ∼ Cl

(
A)

))
= N ∼ Int

(
ϕ−1

(
N ∼ Int

(
N ∼ Cl(A)

)))
.

(c) ⇒ (a). Let A be a NROS of Y , then we have ϕ−1(A) ⊆ N ∼
Int

(
ϕ−1

(
N ∼ Int

(
N ∼ Cl(A)

)))
= N ∼ Int

(
ϕ−1(A)

)
. Thus,

ϕ−1(A) = N ∼ Int
(
ϕ−1(A)

)
. This shows that ϕ−1(A) is a NOS of

X .

(b) ⇔ (d) similarly can be proved.
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Remark 2.0.6 blank

Clearly, a NCM is NACM. But the converse needs not be true.

Example 2.0.5 blank

Let X = {a, b}, Y = {x, y}, and

A =
{
⟨ a
(0.6, 0.5, 0.3)⟩, ⟨

b
(0.4, 0.5, 0.5)⟩

}
,

B =
{
⟨ a
(0.2, 0.5, 0.7)⟩, ⟨

b
(0.4, 0.5, 0.5)⟩

}
,

C =
{
⟨ x
(0.6, 0.5, 0.3)⟩, ⟨

y
(0.4, 0.5, 0.5)⟩

}
,

D =
{
⟨ x
(0.2, 0.5, 0.7)⟩, ⟨

y
(0.4, 0.5, 0.5)⟩

}
,

E =
{
⟨ x
(0.2, 0.5, 0.5)⟩, ⟨

b
(0.3, 0.5, 0.7)⟩

}
.

Then ℸXN = {0XN
, 1XN ,A,B} and ℸYN = {0XN , 1XN , C,D, E} are

NTSs on X and Y .

Now, let ϕ : (X,ℸXN ) → (Y,ℸYN ) be a mapping defined as ϕ(a) =

y, ϕ(b) = x and clearly, ϕ is NACM.

Hence, 0XN , 1XN , C,D are NOSs in ℸYN but ϕ−1(E) is not NOS in ℸXN

and hence NACM is not NCM.

Theorem 2.0.11 blank

Neutrosophic semi-continuity and neutrosophic almost continuity are

independent notions.

The proof is straightforward.

Definition 2.0.12 blank

A NTS (X,ℸXN ) is said to be a NSRS iff the collection of all NROSs of

X forms a base for NT ℸXN .

Theorem 2.0.12 blank

Let ϕ : (X,ℸXN ) → (Y,ℸYN ) be a mapping from NTS X to a NSRS Y .

Then ϕ is NACM iff ϕ is NCM.
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Proof
From Remark 2.0.6, it suffices to prove that if ϕ is NACM then it is

NCM. Let A ∈ ℸYN , then A = ∪Aα, where Aα’s are NROSs of Y .

Now, from Lemma 2.0.1(i), 2.0.5 and Theorem 2.0.10 (c), we get

ϕ−1(A) = ∪ ϕ−1Aα

⊆ ∪ N ∼ Int
(
ϕ−1

(
N ∼ Cl(Aα)

))
= ∪ N ∼ Int(ϕ−1(Aα))

⊆ N ∼ Int ∪
(
ϕ−1)(Aα)

)
= N ∼ Int

(
ϕ−1(Aα)

)
.

which shows that ϕ−1(Aα) ∈ ℸXN .

Theorem 2.0.13 blank

LetX1,X2, Y1 and Y2 be the NTSs such that Y1 is product related to Y2.

Then the product ϕ1×ϕ2 : X1×X2 → Y1×Y2 of NACMs ϕ1 : X1 → Y1

and ϕ2 : X2 → Y2 is NACM.

Proof
Let A = ∪(Aα × Bβ), where Aα’s and Bβ’s are NOSs of Y1 and

Y2 respectively, be a NOS of Y1 × Y2. Following Lemma 2.0.3, for

(p1, p2) ∈ X1 ×X2, we have

(ϕ1 × ϕ2)
−1(A)(p1, p2) = (ϕ1 × ϕ2)

−1
{
∪ (Aα × Bβ)

}
(p1, p2)

= ∪
{
(Aα × Bβ)

(
ϕ1(p1), ϕ2(p2)

)}
= ∪

[
min

{
Aαϕ1(p1),Bβϕ2(p2)

}]
= ∪

[
min

{
ϕ−1
1 (Aα)(p1), ϕ

−1
2 (Bβ)(p2)

}]
= ∪

[(
ϕ−1
1 (Aα)× ϕ−1

2 (Bβ)
)]
(p1, p2)

i.e., (ϕ1 × ϕ2)
−1(A) = ∪

{
ϕ−1
1 (Aα)ϕ

−1
2 (Bβ)

}
34



Now, (ϕ1 × ϕ2)
−1(A)

= ∪
{
ϕ−1
1 (Aα)× ϕ−1

2 (Bβ)
}

⊆ ∪
[
N ∼ Int

(
ϕ−1
1

(
N ∼ Int

(
N ∼ Cl(Aα)

)))
×N ∼ Int

(
ϕ−1
2

(
N ∼ Int

(
N ∼ Cl(Bβ)

)))]
⊆ ∪

[
N ∼ Int

{
ϕ−1
1

(
N ∼ Int

(
N ∼ Cl(Aα)

))
× ϕ−1

2

(
N ∼ Int

(
N ∼ Cl(Bβ)

))}]
⊆ N ∼ Int

[
∪
(
ϕ1 × ϕ2

)−1{
N ∼ Int

(
N ∼ Cl(Aα)

)
×N ∼ Int

(
N ∼ Cl(Bβ)

)}]
= N ∼ Int

[
∪ (ϕ1 × ϕ2)

−1
{
N ∼ Int

(
N ∼ Cl(Aα × Bβ)

)}]
⊆ N ∼ Int

[
(ϕ1 × ϕ2)

−1
{
N ∼ Int

(
N ∼ Cl

(
∪ (Aα × Bβ)

))}]
= N ∼ Int

[
(ϕ1 × ϕ2)

−1
(
N ∼ Int

(
N ∼ Cl(A)

))]
Thus, by Theorem 2.0.10 (c), ϕ1 × ϕ2 is NACM.

Theorem 2.0.14 blank

Let X , X1 and X2 be NTSs and pi : X1 ×X2 → Xi (i = 1, 2) be the

projection of X1 ×X2 onto Xi. Then if ϕ : X → X1 ×X2 is a NACM,

piϕ is also a NACM.

Proof
Since pi is NCM Definition 2.0.5, for any NS A ofXi, we have (i)N ∼
Cl

(
p−1
i (A)

)
⊆ p−1

i

(
N ∼ Cl(A)

)
and (ii)N ∼ Int

(
p−1
i (A)

)
⊇

p−1
i

(
N ∼ Int(A)

)
. Again, since (i) each pi is a NOM, and (ii) for

any NS A of Xi (a) A ⊆ p−1
i pi(A), and (b) p−1

i pi(A) ⊆ A, we

have pi
(
N ∼ Int

(
p−1
i (A)

))
⊆ pip

−1
i (A) ⊆ A and hence pi

(
N ∼

Int
(
p−1
i (A)

))
⊆ N ∼ Int(A). Thus, N ∼ Int

(
p−1
i (A)

)
⊆ p−1

i pi

(
N

∼ Int
(
p−1
i (A)

))
⊆ (p−1

i

(
N ∼ Int(A)

)
establishes that N ∼ Int

(
p−1
i
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(A)
)
⊆ p−1

i

(
N ∼ Int(A)

)
.

Now, for any NOS A of Xi,

(piϕ)
−1(A) = ϕ−1

(
p−1
i (A)

)
⊆ N ∼ Int

{
ϕ−1

(
N ∼ Int

(
N ∼ Cl

(
p−1
i (A)

)))}
⊆ N ∼ Int

{
ϕ−1

(
N ∼ Int

(
p−1
i

(
N ∼ Cl(A)

)))}
= N ∼ Int

{
ϕ−1

(
p−1
i

(
N ∼ Int

(
N ∼ Cl(A)

)))}
= N ∼ Int

(
(piϕ

)−1
(
N ∼ Int

(
N ∼ Cl(A)

))
.

Theorem 2.0.15 blank

Let X and Y be NTSs such that X is product related to Y and let

ϕ : X → Y be a mapping. Then, the graph ψ : X → X × Y of ϕ is

NACM iff ϕ is NACM.

Proof
Consider that ψ is a NACM and A is a NOS of Y . Then using Lemma

2.0.4 and Theorem 2.0.10 (c), we have

ϕ−1(A) = 1XN ∩ ϕ−1(A)

= ψ−1(1XN ×A)

⊆ N ∼ Int
(
ψ−1

(
N ∼ Int

(
N ∼ Cl(1XN ×A)

)))
= N ∼ Int

(
ψ−1

(
1XN ×N ∼ Int

(
N ∼ Cl(A)

)))
= N ∼ Int

(
ψ−1

(
N ∼ Int

(
1×N ∼ Cl(A)

)))
= N ∼ Int

(
ψ−1

(
N ∼ Int

(
N ∼ Cl(A)

)))
Thus, by Theorem 2.0.10 (c), ϕ is NACM.

Conversely, let ϕ be a NACM and B = ∪(Bα×Aβ), where Bα’s and

Aβ’s are NOSs of X and Y respectively, be a NOS of X × Y .
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Since Bα ∩ N ∼ Int
(
ϕ−1

(
N ∼ Int

(
N ∼ Cl(Aβ)

)))
is a NOSs of

X contained in

N ∼ Int
(
N ∼ Cl(Bα)

)
∩ ϕ−1

(
N ∼ Int

(
N ∼ Cl(Aβ)

))
,

Bα ∩N ∼ Int
(
ϕ−1

(
N ∼ Int

(
N ∼ Cl(Aβ)

)))
⊆ N ∼ Int

[
N ∼ Int

(
N ∼ Cl(Bα)

)⋂
ϕ−1

(
N ∼ Int

(
N ∼ Cl(Aβ)

))]
and hence using Lemmas 2.0.1 (i), 2.0.4 and 2.0.5 and Theorem 2.0.10(c),

we have

ϕ−1(B) = ϕ−1
(
∪ (Bα ×Aβ)

)
= ∪

[
Bα ∩ ϕ−1(Aβ)

]
⊆ ∪

[
Bα ∩N ∼ Int

(
ϕ−1

(
N ∼ Int

(
N ∼ Cl(Aβ)

)))]
⊆ ∪

[
N ∼ Int

(
N ∼ Int

(
N ∼ Cl(Bα)

))
∩ ϕ−1

(
N ∼ Int(

N ∼ Cl(Aβ)
))]

⊆ N ∼ Int
[
∪ ψ−1

(
N ∼ Int

(
N ∼ Cl(Bα)

))
×N ∼ Int(

N ∼ Cl(Aβ)
)]

= N ∼ Int
[
ψ−1

(
∪
(
N ∼ Int

(
N ∼ Cl(Bα ×Aβ)

)))]
⊆ N ∼ Int

[
ψ−1

(
N ∼ Int

(
N ∼ Cl

(
∪ (Bα ×Aβ)

)))]
= N ∼ Int

[
ψ−1

(
N ∼ Int

(
N ∼ Cl(B)

))]
.

Thus, by Theorem 2.0.10 (c), ψ is NACM.
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