
Chapter 1

Introduction

Some crucial definitions regarding this thesis which are motivated and inspired us to in-

vestigate the nature of the present model of the universe in the framework of Lyra’s ge-

ometry in the Bianchi type-V cosmological model are as follows:

1.1 Theory of General Relativity

Albert Einstein defined the extensive meaning of relativity. The theory of relativity is

the physical theory that depends on a regular physical explanation of ideas of motion,

space, and time. This statement is related to the fact that motion from the angle of pos-

sible knowledge always seems like the relative motion of one object to another. The

advancement of the theory of relativity has emerged in two parts, The Special Theory of

Relativity and the General Theory of Relativity. Einstein constituted a new theory in the-

oretical cosmology as the Special Theory of Relativity in 1905 that describes the relation

between space and time connected with objects moving at a regular speed in a straight

line. Einstein gave the theory of relativity, which proved that absolute motion could not

be detected. Einstein materialized two postulates on his special theory of relativity-

▶ The nature laws must preserve their forms relative to all observers in a state of relative
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uniform motion. This postulate explains that velocity is not absolute but relative.

▶ The velocity of light is independent of the observer’s. This hypothesis does not support

Galilean transformations. It is an observational fact that the velocity of light calculated

by any method is constant, and this result clearly distinguishes between classical theory

and Einstein’s theory of relativity. Einstein was motivated to develop these postulates by

investigating the properties of Maxwell’s equations.

Albert Einstein (1915) states that GR is the study of the geometric theory of gravita-

tion. GR takes a broad view of special relativity and Newton’s law of universal gravitation,

on the condition that an incorporated representation of gravity as a geometric property of

space and time through metric field gi j

In the 20th century, Einstein realized Newton’s absolute space was a concept without

physical content. Newton’s theory, which describes the object’s motion with a speed

much less than the speed of light, was insufficient to describe the object’s motion when

its speed becomes very close to the speed of light. As a result, Einstein developed a theory

of relativity in 1905, predicting that no object can travel sooner than the speed of light c.

Galilean symmetry is recovered from special relativity, for speed v is significantly less

than by c. Hence, the special theory of relativity gives an excellent approximation for

most everyday physics. This theory fails to study relative motion in accelerated frames

of reference and does not apply to kinds of motion. Given these limitations, Einstein

generalized the particular theory of relativity treated as the general theory of Relativity or

Einstein’s theory of gravitation in 1916. Einstein’s general theory of relativity has suc-

cessfully described gravitational phenomena. It is based on the Riemannian metric tensor

gi j, which describes the gravitational field and the geometry.
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1.2 Cosmology

Cosmology deals with the scientific study of the universe’s LSS, evolution, and origin.

The large-scale mass distribution in the universe tells us about the nature and evolution

of the universe, and the law of gravitational attraction determines the structure described

by models. Gravitation is the sole long-range force binding the universe’s constituents

to understand the nature and evolution of the LSS. Einstein introduced a new influential

theory of gravity, known as the general theory of relativity, in 1916. Einstein considered

the earliest relevance of the general theory of relativity to study cosmology in 1917. He

developed the subject with a static universe, followed by de Sitter’s cosmological model.

A series of significant ideas have characterized subsequent developments. In particular,

cosmological models now form the broad skeleton for astrophysics and provide tests of

different aspects of fundamental physics. Investigating the LSS of the physical Universe

is the most crucial endeavor of cosmology. Cosmologists assemble mathematical models

of the universe and compare these models with the present-day universe as astronomers

observe. In 1922, Hubble published his eminent law connecting to apparent luminosities

of distant galaxies to their redshifts.

i.e. V = HD

where V represents the speed of recession of a galaxy at a distance D from us and H is

the Hubble’s constant.

Friedmann (1922) was the first to explore the most general non-static, homogeneous, and

isotropic spacetime described by the Robertson-Walker metric

ds2 = dt2 −R2(t)
[

dr2

1− kr2 + r2 (dθ
2 + sin2

θdφ
2)] (1.1)

where R(t) is the scale factor and k is the constant curvature of spaces, which takes the

values −1,0 or 1 that represent the open, flat, and closed, respectively.

The astronomical observational evidence suggests that the universe on a large scale could

be as isotropic and homogeneous, but it is not so on a smaller scale. Misner (1968) pro-
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posed the Chaotic Cosmology program according to which an initially highly irregular

universe approaches the Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) model stage

only during cosmological evolution. This program inspired the research of the uni-

verse’s inhomogeneous and anisotropic cosmological models. Spatially homogeneous

and anisotropic spacetime belongs to either the Bianchi class or the Kantowski-Sachs

class.

1.3 Bianchi Type Models

Bianchi cosmology is the study of universes that are homogeneous but not isotropic.

The present-day universe can be described by spatially homogeneous and isotropic FRW

spacetime. However, at a smaller scale, the universe is neither homogeneous nor isotropic,

nor do we expect it to possess these properties in its early stages of evolution. Spatially

homogeneous and anisotropic cosmological models have been widely studied in gen-

eral relativity in different contexts in searching for realistic models of the universe in its

early stages. Bianchi classified spatially homogeneous and anisotropic models into I-IX

types under different conditions on structure constants. Bianchi-type cosmological mod-

els are essential because these are homogeneous and anisotropic, from which the process

of isotropization of the universe over time. The advantage of the Bianchi type models

is that they give a general relativity model with actual dynamics, even though the metric

components consistently are only functions of time.

Here, in this thesis, we are interested in Bianchi type-V cosmological model, as the study

of Bianchi Type-V cosmological models attracts attention since they include particular

isotropic instances and allow for arbitrary tiny anisotropy at some point in cosmic time.

Bianchi type-V universes are natural generalizations of open FRW models that eventually

become isotropic and homogeneous. They are essential in understanding phenomena like

galaxy formation in the early universe [Misner (1968)]. There are substantial theoretical

arguments for the existence of an anisotropic phase in the universe’s evolution. Many

4



cosmologists believe that before decaying into an isotropic FRW model, the anisotropic

model best reproduces the earliest development phase. Several authors are done lots of

remarkable results and shown the different physical nature in the framework of Bianchi

type-V. Bali and Singh (2005) investigated the Bianchi Type-V bulk viscous fluid string

dust cosmological model in GR, while Singh and Chaubey (2007) examined the evolu-

tion of a homogeneous, anisotropic viscous universe with cosmological constant Λ, in the

same way, Singh and Baghel (2009) investigated with the time-dependent cosmological

term Λ(t).

In a similar context, Ram and Zeyauddin (2008) studied the Bianchi type –V cosmo-

logical models in the presence of perfect fluid and heat conduction in the framework of

Lyra’s geometry. However, Ram et al. (2010) investigated Anisotropic Bianchi type V

for a perfect fluid in the same manner.

Yadav (2011) has studied some anisotropic dark energy models by assuming the skewness

parameters as time-dependent in Bianchi type-V. On the other hand, Naidu et al. (2012)

examined the DE model in a Scalar-Tensor Theory of Gravitation.

Very interestingly, Kumar and Srivastava (2013) have shown the new aspects of the

Bianchi type-V spacetime and then discussed the Electric and Magnetic parts of Weyl

tensors in terms of tilted congruence.

The existence of the Bianchi-V string cosmological model through power-law ex-

pansion is explored by Kumar (2014), based on f (R,T ) gravity. In a similar context,

Tiwari and Singh (2015) have also studied a new class of spatially homogeneous and

anisotropic Bianchi type-V cosmological models based on the perfect fluid distribution

in time-varying cosmological and gravitational constants in GR. Apart from that, Tiwari

and Mishra (2017) have shown the mysterious behavior of Bianchi’s type-V cosmological

model in the framework of the f (R,T ) theory of gravity.
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Recently, Yadav and Bhardwaj (2018) investigated the existence of Lyra cosmology of a

hybrid universe with the minor relations between DE and ordinary matter in Bianchi V

spacetime.

1.4 ΛCDM Model

The ΛCDM (Lambda- cold dark matter) model is a process of finding the parametric

equation s of a curve or a surface of the Big Bang cosmological models, in which the

universe contains three major components: first, a cosmological constant associated with

DE denoted by Lambda (Greek); second, postulated CDM; and third, ordinary matter. It

is sometimes referred to as the standard model of Big Bang cosmology, since it is the

simplest model that accounts for the following aspects of the universe relatively well:

• the cosmological microwave background’s existence and structure.

• the galaxies’ distribution has a large-scale structure.

• hydrogen (including deuterium), helium, and lithium abundances were observed.

• the universe’s accelerated expansion is observed in the light of distant galaxies and su-

pernovae.

Lambda-CDM exhibits difficulties at small scales, which might be due to our limited un-

derstanding of everything from DM to gravity or to the function of baryon physics, which

is poorly understood and incorporated in simulation codes and semi-analytic models. At

this point, it is critical to determine if the Lambda-CDM model’s flaws are a symptom of

the model’s limitations or a sign of our inability to correct the finer details.

1.5 Dark Energy and Dark Matter

DE is one of the mysteries of modern science. Unlike any known form of matter or en-

ergy, it has been detected solely by its gravitational effect of repulsion. The astronomical

observations of SNela, galaxy redshift surveys, cosmic background radiation data, and
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LSS convincingly suggest that the observable universes accelerated expansion. Observa-

tions also suggest a transition of the universe from the earlier deceleration phase to the

recent acceleration phase. Astronomers theorize that this faster expansion rate is due to

a mysterious dark force called dark energy. The simplest DE model is the cosmologi-

cal constant Λ, initially introduced by Einstein in 1917 to construct the Einstein static

universe but later abandoned. The cosmological constant agrees with observational data;

however, its physical interpretation is unsatisfying when adopting a particle physics point

of view. In this context, it is interpreted as a measure of the vacuum energy density, which

leads to the well-known cosmological constant problem [Weinberg (1989), Samanta et al.

(2014)].

DM plays a vital role in forming structure in the early universe. It is an unknown type

of matter distinct from DE, baryonic matter, i.e., ordinary matter and neutrinos. These

matters are invisible to the entire electromagnetic spectrum. Its existence and properties

are inferred from its gravitational effects, influence on galaxies, and effect on the CMB.

The structure of the universe that we observe, galaxies, stars, and other large-scale ob-

jects evolved from small fluctuations in the plasma of the early universe that underwent

gravitational collapse over the eons. Without DM, a structure can only be formed by or-

dinary baryonic matter, but up to the recombination era, ordinary matter is coupled to the

photons in the universe. This coupling results in a restoring force that acts to prevent fur-

ther collapse; the result is acoustic oscillations and inhibition of structure formation. The

addition of DM changes the picture since DM is free to collapse gravitationally without

a restoring force that helps the formation of structure around local concentrations of DM

Current results from the WMAP experiment support the existence of dark matter in the

early universe in amounts comparable to those today, indicating that DM is a long-lived

species. The standard cosmology model indicates that the universe’s total mass energy

contains 68.3% DE, 26.8% DM, and 4.9% ordinary matter [Ade et al. (2013)].
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1.6 Energy-momentum tensors

The EMT is an attribute of matter, radiation, and non-gravitational force fields. The EMT

is the source of the gravitational field in the EFE of GR; just a mass density is the source

of such a field in Newton’s gravity. The EMT involves the use of superscripted variables.

If Cartesian coordinates in SI units are used, then the components of the position four-

vector are given by X0 = t, X1 = x, X2 = y, and X3 = z, where x, y, z are distance in

meters.

The EMT is defined as the tensor T αβ of order two that gives the flux of αth component

of the momentum vector across a surface with constant Xβ coordinate. In relativity, this

momentum vector is taken as the four-momentum, and the stress-energy tensor is sym-

metric.

1.7 Lyra Geometry and the field equations of f (R,T ) grav-

ity

Lyra (1951) proposed a modification of Riemannian geometry by introducing an addi-

tional gauge function into the structure less manifold, as a result of which the cosmolog-

ical constant arises naturally from the geometry. This bears a remarkable resemblance to

Weyl’s (1918) geometry. Lyra defined a displacement vector between two neighbhouring

points P(xi) and Q(xi + dxi) as Adxi where A = A(xi) is a non zero gauge function of

the coordinates. The gauge function A(xi) together with the coordinate system xi form a

refernece system (A,xi). The transformation to a new reference system (A,xi) is given as

A = A(A,xi) xi = x(xi) (1.2)
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such that ∂A
∂A ̸= 0 and det

(
∂x
∂x

)
̸= 0 The symmetric affine connections Γi

jk on this manifold

is given by

Γ̃
i
jk =

1
A

Γ
i
jk +

1
2
(
δ

i
jφk +δ

i
kφ j −g jkφ

i) (1.3)

In which the connection Γi
jk is defined in terms of the metric tensor gi j (as in RG), and

φ i = gi jφ j is called the displacement vector field of Lyra geometry. Lyra (1951) and

Sen (1957) indicate that in any general reference system, the displacement vector field φ i

arises as a natural consequence of the formal introduction of the gauge function A(xi) into

the structureless manifold.

The above equation (1.2) indicates that the component of the affine connection, not only

depends on metric gi j but also on the displacement vector field φ i . In Lyra geometry the

line element, given by

ds2 = A2gi jdxidx j (1.4)

is invariant under both coordinate and gauge transformations.

The infinitesimal parallel transport of a vector field V i is given by

δV i = Γ̃
i
jkV

jAdxk (1.5)

where

Γ̂i
jk = Γ̃

i
jk −

1
2

δ
i
jφk (1.6)

which is not symmetric with respect to j and k, but the Lyra connection Γi
jk is syymetric

with respect to the two lower suffixes (i.e.Γi
jk = Γi

k j). In Lyra geometry the connection

Γi
jk is metric preserving which indicates that length transfers are integrable and this result

indicates the length of a vector is conserved upon parallel transports, as in RG. In the

same manner of RG, the curvature tensor of Lyra geometry is given as

Γ̃
i
jkh =

1
A2

[
∂

∂xk

(
AΓ̃

i
jh

)
− ∂

∂xh

(
AΓ̃

i
jk

)
+A2

(
Γ̂i

akΓ̂a
jh − Γ̂i

ahΓ̂a
jk

)]
(1.7)
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Then the curvature scalar of Lyra geometry reduces to

R̃ = A−2R+3A−1
∇iφ

i +
3
2

φ
i
φi +2A−1(logA2),iφ

i (1.8)

where R indicates the Riemannian curvature scalar, in which the covariant derivative is

taken with respect to the Christiffel symbols. Now applying normal gauge as A = 1 in

(1.7), we have

R̃ = R+3∇iφ
i +

3
2

φ
i
φi (1.9)

This curvature scalar of Lyra geometry is like Weyl’s geometry as in RG.

Harko et al. [2011] have proposed another extension of f (R) gravity (which provides sev-

eral viable models and successful alternative theories of GR) which is called the f (R,T )

gravity theory, where the gravitational Lagrangian is given by an arbitrary function of

Ricci scalar R and trace of the energy-momentum tensor T . In this theory, a covariant of

stress-energy is obtained, and the cosmological models depend on a source term. How-

ever, the source term is expressed as a function of matter Lagrangian Lm, with that several

sets of field equations can be obtained with each choice of Lm. In the framework of this

theory, the field equations of f (R,T ) gravity are obtained from the Hilbert-Einstein prin-

ciple by keeping the metric-dependent Lagrangian density Lm. The action for f (R,T )

gravity is given by using Lyra geometry as

S =
1

16πG

∫
f (R̃,T )

√
−g d4x+

∫
Lm

√
−g d4x (1.10)

where the gravitational Lagrangian comprises of an arbitrary functions of Ricci scalar R̃

and the trace T of the EMT Ti j of the matter source, in which Lm represents the usual

matter Lagrangian density. The stress- energy tensor Ti j for the matter source is given by

Ti j =− 2√
−g

δ (
√
−gLm)

δgi j (1.11)
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its trace is T = gi jTi j

Here, we considered the matter Lagrangian Lm is depends only on the metric tensor com-

ponents gi j rather than its derivatives and hence we obtain as

Ti j = gi jLm −2
∂Lm

∂gi j (1.12)

Varying the action S in eq. (1.9) with respect to metric tensor gi j, the gravitational field

equations of f (R̃,T ) gravity are obtain as

fR̃(R̃,T )R̃i j −
1
2

f (R̃,T )gi j +(gi j∇
i
∇i −∇i∇ j) fR̃(R̃,T )

=−8πG
c2 Ti j − fT (R̃,T )Ti j − fT (R̃,T )Θi j

(1.13)

where

Θi j =−2Ti j +gi jLm −2glm ∂ 2Lm

∂gi j∂glm (1.14)

Here, fR̃(R̃,T ) =
∂ f (R̃,T )

∂ R̃
, fT (R̃,T ) =

∂ f (R̃,T )
∂T and □ ≡ ∇i∇i, where ∇i is represent the

covariant derivative.

The matter field is essential for the field equations of f (R̃,T ) gravity through the met-

ric tensor Θi j. Since different cosmological models of f (R̃,T ) gravity are possible de-

pending on the nature of the matter source, Harko et al. (2011) constructed three explicit

form of f (R̃,T ) gravity such as follows:

f (R̃,T ) =


R̃+2 f (T )

f1(R̃)+ f2(T )

f1(R̃)+ f2(R̃) f3(T )

(1.15)

Here, in this thesis we consider second case of Harko et al. (2011) in all the chapters,

to form the field equations of f (R̃,T ) gravity and to obtained the physical nature of the
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matter field through Θi j. i.e.

f (R̃,T ) = f1(R̃)+ f2(T ) (1.16)

For matter Lagrangian, the standard stress energy tensor is given by

Ti j = (ρ + p)uiu j + pgi j (1.17)

Where ui = (0,0,0,1) is the four velocity vector in co-moving co-ordinate system satisfy-

ing the condition uiui =−1 and ui∇ jui = 0. where, ρ and p denotes the energy density for

the perfect fluid and pressure of the fluid respectively. We assume a perfect fluid matter

as Lm =−p , which yields that

Θi j =−2Ti j − pgi j (1.18)

Then by contracting eq. (1.12), we have

f ′1(R̃,T )R̃i j −
1
2

f1(R̃)gi j +(gi j∇
i
∇i −∇i∇ j) f ′1(R̃) =

−8πG
c2 Ti j + f ′2(T )Ti j +

[
f ′2(T )p+

1
2

f2(T )
]

gi j

(1.19)

By choosing f1(R̃) = µR̃ and f2(T ) = µT [where µ is taken as arbitrary constant], the

field equations of f (R̃,T ) gravity, for a perfect fluid matter source, eq. (1.19) becomes

R̃i j −
1
2

R̃gi j =−
(

8πG−µc2

c2

)
Ti j +

[
p+

1
2

T
]

gi j (1.20)

Now, applying eq. (1.8) in (1.20), the field equation in Lyra geometry is obtained as

[Maurya (2020)] :

Ri j −
1
2

Rgi j +
3
2

φiφ j −
3
4

gi jφiφ
j =−

(
8πG−µc2

c2

)
Ti j +

[
p+

1
2

T
]

gi j (1.21)
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Here, φi = (0,0,0,β (t)) is a displacement vector field.

1.8 Work Related with Lyra’s Geometry

In this thesis, the main reason is to find out the mysterious behavior of the cosmological

models of the present universe in f (R,T ) gravity based on Lyra Geometry in Bianchi

type-V.

In Einstein’s General Theory of Relativity, gravitation is described in terms of the geom-

etry of spacetime, and this result motivated him to geometrize other physical fields. Weyl

(1918) made one of the best attempts in this direction and introduced a generalization of

RG to unify gravitation and electromagnetism. Later, Lyra (1951) suggested a modifica-

tion of RG, which resembles Weyl’s Geometry. Lyra introduced a gauge function, which

removed the non-integrability condition of the length of a vector under parallel transport.

Thus, Lyra modified Riemannian geometry, named Lyra’s Geometry.

In consecutive investigations, Sen (1957), Sen, and Dunn (1971) proposed a new scalar-

tensor theory of gravitation and constructed an analog of the EFE based on Lyra’s geom-

etry with a normal gauge as

Ri j −
1
2

Rgi j +
3
2

φiφ j −
3
4

gi jφiφ
j =−8πGTi j (1.22)

where

⋄ Ri j is the Ricci curvature tensor.

⋄ R is the Ricci scalar tensor.

⋄ G is Newton’s gravitational constant.

⋄ gi j is a 4 x 4 symmetric metric tensor.

⋄ Ti j is the energy-momentum tensor.

In which φi is the time like displacement field vector defined by φi = (0,0,0,β (t)).

Subsequently, Halford (1970, 1972) extensively showed that the energy-conservation law
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does not hold in the cosmological theory. However, the scalar-tensor theory of gravitation

predicts the same effects within observational limits in the Lyra manifold as in the Ein-

stein theory.

In his paper, Murphy (1973) shows that the Einstein equations in a manner that easily

can be integrable. The solutions are found in two ways-one is a steady-state cosmology

(unstable). The other is a start from the steady state, expanding very fast as viscosity

vanishes.

Bhamra (1974) offered a spherically symmetric class-one cosmological model based on

Lyra’s geometry, and the motionless universe is found to be bodily unrealistic.

Ruban and Finkelstein (1975) formulate the dynamics of the homogeneous model of

Bianchi type-I based on the general analytic solutions based on the problems of the initial

singularity in the scalar-tensor anisotropic cosmology of Jordan Brans-Dicke. Solutions

of the model is examined in vacuo and in the presence of matter with equation p = nε

(0 ≤ n ≤ 1)

Reddy (1977) showed that in a scalar-tensor theory of gravitation, Birkhoff’s theorem of

GR exists for electromagnetic fields when it is introduced in theory and is independent of

time, as proposed by Sen and Dunn (1971).

Karade and Borikar (1978) examined the consequences of the thermodynamic equilib-

rium of a gravitating fluid sphere; as a result, they found zero redshifts in a static model

in Lyra’s.

Kalyanshetti and Waghmode (1982), in Lyra Geometry, a stationary cosmological model

is examined in the Einstein-Cartan theory. They observed that the spins of the individual

particles composing the fluid are all aligned in the radial direction and surveyed the detail

of the static Einstein universe.

Berman (1983), in his paper, presented the law of variation of HP in evolutionary models,

which produced a constant value for the DP that leads naturally to the exclusion of open

universes.

Reddy and Innaiah (1986) showed that the pressure and the energy density are unique
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when the source of the gravitational field is in perfect fluid in the framework of Lyra ge-

ometry, based on a non-static plane-symmetric cosmological model. In contrast, a minor

difference without a cosmological constant (Beesham 1986).

Soleng (1987), in his paper, pointed out that the cosmologies based on Lyra’s manifold

play an essential role in Hoyle’s creation field cosmology, together with the gauge-vector

term as a cosmological term.

Beesham (1988) studied the FLRW cosmological models in Lyra’s manifold by keeping

the time-dependent displacement field, and as a result, in his study, he obtained singular-

ity, entropy, and, finally, horizon problems.

Reddy and Venkateswarlu (1987) explored the exact Bianchi type-I cosmological model

in the presence of zero-mass scalar fields obtained when the source of the gravitational

field is a perfect fluid with pressure and energy density the same.

In the study of Friedmann universes with bulk viscosity, Johri and Sudharsan (1988) ex-

plored the effect of bulk viscosity on the evolution of Friedmann models. As a result,

they found the presence of a tiny time-independent component of bulk viscosity, which

play a decisive part in motivating the present-day universe into a steady state. Singh and

Singh (1991) investigated the behavior of the model of the Bianchi types of V and V I0

with the gauge function β as a time-dependent and constant function in the framework of

Lyra Geometry.

Singh and Singh (1991) showed the exact solutions for the anisotropic Bianchi type-I

model in normal gauge based on Lyra’s geometry; they also discussed the physical be-

havior of the models in a vacuum in the presence of perfect fluids.

Ram and Singh (1992) studied spatially homogeneous cosmological models of types III

and V in the normal gauge to obtain the exact solutions of EFE in a vacuum in the pres-

ence of stiff matter.

In the study of Lyra’s Geometry and Cosmology: A Review, Singh, and Singh (1993)

thoroughly reviewed Lyra’s geometry. Further, they also investigated the cosmological

models with constant and time-dependent displacement fields.
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To produce several solutions to the EFE, they use a form of HP with variable cosmologi-

cal and gravitational constants. Moreover, these parameters offer an array of solutions in

the Robertson-Walker spacetimes and Bianchi type-I [Maharaj and Naidu (1993)].

Johri and Desikan (1994) have found a specific study of the cosmological model with

constant DPs undertaken in Brans-Dicke’s theory. These models are (i) Singular models

with expansion driven by Big- Bang impulse and (ii) Nonsingular models with expansion

driven by the creation of matter particles.

Singh and Desikin (1997) studied FRW models have been in the cosmological theory

based on Lyra’s geometry by considering a time-dependent displacement.

Pradhan et al. (2001) studied an isotropic homogeneous FRW universe in the presence

of a bulk viscous fluid within the framework of Lyra’s geometry. They obtained the exact

solutions of the Sen equations assuming the constant DP.

On the other hand, Rahaman and Bera (2001), the Kaluza-Klein cosmological model is

explored within the framework of Lyra geometry, and the physical behavior of the model

is examined in a vacuum and the presence of perfect fluids.

Pradhan and Vishwakarma (2004) studied the LRS Bianchi type-I cosmological model

based on Lyra’s geometry with a new class of exact solutions considering a time-dependent

displacement field for constant DP models of the universe.

Rahaman et al. (2005) discussed the two cosmological models as Bianchi-I and Kan-

towski Sachs models with constant DPs within the framework of Lyra geometry. The

study has taken ad hoc EMT components and the field-theoretic approach with a flat po-

tential.

Singh and Dewri (2006) investigated the Robertson–Walker model universe with a hybrid

scale factor using flat and open models interacting with the Brans–Dicke field and elec-

tromagnetic field, respectively.

Singh and Chaubey (2006) have studied a self-consistent system of the gravitational field

with a binary mixture of perfect fluid and DE through a cosmological constant based on
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Bianchi’s type-V universe.

On the other hand, Ram et al. (2008) studied the EFE with a time-dependent displacement

vector field in Bianchi type-V with a perfect fluid and heat flow based on Lyra geometry.

In the same way, Kumar and Singh (2008) explored a spatially homogeneous and anisotropic

Bianchi type-I spacetime within the framework of Lyra’s geometry with a time-dependent

gauge function.

Singh and kale (2009) obtained a new class of exact solutions given various well-known

power-law relations among scale factors, cosmological and gravitational constants, and

cosmic time in the Bianchi type-V cosmological model filled with a bulk viscous cosmic

and fluid in GR.

Ram et al. (2010) discussed the law of variation for mean HP with average scale factor

in an anisotropic Bianchi type V cosmological spacetime within the framework of Lyra’s

manifold.

Yadav (2011) examined Bianchi type V universe by introducing three different skewness

parameters along with spatial directions and obtaining the dynamical DE’s anisotropic na-

ture. The skewness parameters are assumed to be time-dependent; as a result, he showed

that the universe achieves flatness in the quintessence model.

Bali et al. (2012) examined the Bianchi type V viscous fluid cosmological model for

barotropic fluid distribution with varying cosmological term Λ; also, they explored a cos-

mological scenario by assuming a variation law for HP in the background of homogeneous

Bianchi type V spacetime.

In the same way, Kumari et al. (2013) explored an anisotropic Bianchi type-III cosmo-

logical model in the occurrence of a bulk viscous fluid based on Lyra geometry through a

time-dependent displacement vector.

On the other hand, Singh and Sharma (2014), here in his paper, the spatially homoge-

neous and anisotropic Bianchi type-II cosmological model has been discussed in GR in

the presence of a hypothetical anisotropic DE fluid with constant DP within the frame-

work of the Lyra’s manifold with uniform and time-varying displacement field vector.
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Das and Sarma (2014) have derived the mysterious DE and some exact solutions for

Bianchi type V string cosmological model in Lyra geometry.

However, considering a particular form and linearly varying deceleration parameter, Bishi

and Mahanta (2015) studied the Bianchi type-V string cosmological model with bulk vis-

cosity in the f (R,T ) theory of gravity.

Rani, Singh & Sharma (2015) have investigated the spatially homogeneous and anisotropic

Bianchi type-III string cosmological models in the presence and without magnetic field

within the framework of f (R,T ) gravity. The orientation of the string has been chosen in

the z-direction along with the magnetic field.

Similarly, Singh et al. (2016) investigated the Bianchi type-I spacetime in the presence of

bulk viscosity and Chaplygin gas based on Lyra geometry.

By the relevance of the above work, Sahoo et al. (2017) studied the Bianchi type-III cos-

mological model with bulk viscosity for a cloud of string in Lyra geometry.

Interestingly, Tiwari and Mishra (2017) have studied the Bianchi type V cosmological

models in the f (R,T ) modified theory of gravity thoroughly.

As we found from the recent observations that the expansion rate of our universe is decel-

erating and accelerating in early and present epochs, respectively, which is a mysterious

unsolved matter, and from this motivation, Zia and Murya (2018) have developed a new

modification of Einstein theory of gravity, one is a geometrical modification, and another

is an EMT, and using these two modifications they have obtained the exact solutions of

Einstein Brans-Dicke field equations for a spatially homogeneous Bianchi type-I space-

time with time-dependent DP in Lyra’s geometry.

Later, using the above-motivated result, Maurya and Zia (2019) investigated spatially

homogeneous and anisotropic Bianchi type-I cosmological models with Brans-Dicke the-

ory in Lyra geometry.

Apart from that, in the context of GR, Naidu, et al. (2019) have discussed spatially homo-

geneous and anisotropic Bianchi type-V DE models in an attractive massive scalar field.
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Godani (2019) has presented his work to focus on studying the LRS Bianchi type-II model

with perfect fluid in f (R,T ) gravity. The EOS is used to derive physical parameters

concerning cosmic time and redshift using the first frame of Harko et al. (2011) [i.e.,

f (R,T ) = R+ 2 f (T ). The current values of the DP, HP, and universe age are computed

and compared to the ΛCDM model findings.

Yadav et al. (2020) have studied a bulk viscous universe in f (R,T ) gravity. As a result of

these observations, they have obtained the explicit solutions of field equations by consid-

ering the power-law form of scale factor in modified gravity.

Similarly, Sharma et al. (2020) investigated the viability of Bianchi type V universe in

f (R,T ) theory of gravity, and to solve the deterministic equations of EFE, they consid-

ered the power law for scale factor and constructed a singular Lagrangian model based on

the coupling between Ricci scalar R and trace of energy-momentum tensor T .

Gogoi and Goswami (2020) have introduced a new f (R) gravity model to create a model

with further parametric control to explain the existing problems and explore new direc-

tions in the physics of gravity. They also looked at the potential and mass of scalar

gravitons in both Jordan and Einstein frames to learn more about the model’s properties.

On the other hand, in Brans-Dicke’s scalar-tensor theory of gravity, Dewri (2020) inves-

tigated the spatially homogeneous Robertson-Walker cosmological models with magne-

tized isotropic DE like fluid. Exact solutions of models with volumetric expansion and

power-law connection have been found using a variable cosmological constant and the

Polytropic equation of state.

Recently, in the occurrence of DM and HDE model components, Gusu and Santhi (2021)

have examined an anisotropic and homogeneous Bianchi type V spacetime based on GR

and Lyra’s geometry.

But, Chundawat and Mehta (2021) studied the Bianchi type-III string cosmological model

with bulk viscous fluid in f (R,T ) gravity theory, and the barotropic equation of state for

bulk viscous pressure is proportional to pressure density to get the deterministic solutions

of the model.
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Very recently, Singh and Devi (2022) examined the LRS Bianchi type-I cosmological

models in f (R,T ) gravity with HEL for the average scale factor. These results have ob-

tained that the universe becomes anisotropic in the early phase and later transforms into

an isotropic universe at the late epoch.

1.9 f (R) and Gauss - Bonnet gravity

Generally, f (R) gravity is a modified theory of Einstein’s theory of gravitation, which is

a family of theories by replacing Ricci scalar R in the EHA with a general function f (R).

f (R) gravity is vital in explaining inflation, DE, and cosmological perturbations. There

are many ways to approach gravity modification in place of a scalar field addition into

the EHA. The EHA can be modified by replacing the Ricci- Scalar R with an arbitrary

function of f (R), and this modification is called the f (R) gravity theory. f (R) gravity

was first proposed by Buddhal (1970). Nojiri and Odinstov (2007, 2008) proved that the

f(R) theory of gravity provides a natural unification of early-time inflation and late-time

acceleration. Bertolami et al. (2007), Capozziello et al. (2007), Capozziello et al. (2008),

Felice, and Tsujikawa (2010), Capozziello and Laurentis (2011) are some of the authors

that studied thoroughly in the area of f (R) gravity in different context also studied in ex-

tended theories of gravity.

Thus, the action for f (R) gravity theory is given by

S =
1

16πG

∫
f (R)

√
−g d4x+

∫
Lm

√
−g d4x (1.23)

where f (R) is the general function of Ricci scalar R and Lm is the matter Lagrangian.

By varying the action, the field equations can be obtained. One could contrast the exploit

concerning the metric connection [alternatively concerning the metric]. The metric by

variation principle variation is called metric f (R) gravity. Similarly, variation concerning

metric and connection yields the palatini f (R) gravity, where the connection is indepen-
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dent of metric and vice versa. These two approaches lead to the same field equation in the

usual EHA. The metric-affine f (R) gravity is the last and most important general man-

ner. We use the palatini formalism abandoning the assumption that the matter action is

independent of the connection. Performing the variation of action, the field equation is

FRi j −
1
2

f gi j = gi j∇i∇ jF −∇i∇ jF = 8πGTi j (1.24)

where, □= ∇i∇
j and F = f ′(R), where ∇i is the covariant derivative and Ti j is the stan-

dard matter EMT.

1.10 f (G ), f (R,G ), f (G ,T ), f (T ) gravity

. With the help of Gauss-Bonnet invariant, some other important modified gravity theories

are investigated and these theories are f (G ), f (R,G ) and f (G ,T ). In cosmology, the

Lagrangian is modified with an addition of arbitrary function of f (G ) in Einstein Hilbert

action [Nojiri and Odintsov (2005), Nojiri et al. (2006), Amendola et al. (2007)], and this

theory is an alternate study of DE model, like other modified theories. The action of this

theory is

S =
1

16πG

∫ √
−g(R+ f (G )d4x+

∫ √
−gLmd4x (1.25)

In the same manner, we have obtained a further specific modified gravity that reduces a

general class of non-linear gravity model having the action in the following form as given

by

S =
1

16πG

∫ √
−g(R,(G ))d4x+

∫ √
−gLmd4x (1.26)

where R and G denotes respectively the Ricci scalar and Gauss-Bonnet. In the similar

way recently, shamir and Sadiq (2018) introduced modified Gauss–Bonnet gravity with
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radiating fluids in general form for f (G ,T ) gravity as

S =
1

16πG

∫ √
−g(R+ f (G ,T ))d4x+

∫ √
−gLmd4x (1.27)

In the above equation, G and T represent the Gauss-Bonnet invariant and trace of the

stress energy-momentum tensor , respectively.

A different fascinating kind of modified theory is the so-called f (T ) gravity (T is called

torsion). Recently, it is revealed that without resorting to DE f (T ) gravity theories also

admit the accelerated expansion of the universe [Ferraro and Fiorini (2007), Bengochea

and Ferraro (2009)]. Remarkably, their equations of motion are always second-order in

contrast with GR, whereas the field equations are fourth-order equations. The action of

this gravity is given by

S =
1

16πG

∫
d4xe f (T )+

∫
d4xeLm (1.28)

1.11 Cosmological Parameters

The following parameters are vital in describing the nature of the models.

1.11.1 Hubble Parameter

Hubble’s discovered that the galaxies recede from the earth with a velocity, i.e., pro-

portional to their distance. i.e., the recession velocity is proportional to the mass. In

cosmology, it is denoted and defined by

H =
ȧ
a

(1.29)
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Here, a is the average scale factor, which describes the universe’s present expansion rate.

As we know that the relation between the recessional velocity and the Hubble constant

together with distance is V = H×D. From this relation, we can also conclude that the HP

is not a constant but can be a function of time. In recent years the value of the HP has been

considerably refined, and the current value given by WMAP mission is 71 km/sec/M.Pc.

From the above relation, we know that the HP or Hubble constant H defines the rate of

cosmic expansion.

1.11.2 Co-moving co-ordinate systems

The co-ordinate system xµ is said to be co-moving coordinate system if, g44 = 1, dxi

ds = 0,
dt
ds = 1, for i= 1,2,3 co-moving coordinates are natural coordinates. They assign constant

spatial coordinate values to observers who distinguish the universe as isotropic.

A co-moving observer is the only observer that will distinguish the universe and the CMB

radiation to be isotropic. The co-moving time coordinate is the elapsed time since the Big

Bang according to a clock of a co-moving observer and is a measure of cosmological time.

Space in co-moving coordinates is called static, as most bodies on the scale of galaxies

or larger are approximately co-moving, and co-moving bodies have static, unchanging

co-moving coordinates.

1.11.3 Deceleration Parameter

H and q play a vital role in describing the character of the universe’s evolution. In cos-

mology, the DP, denoted by q, is a dimensionless parameter of the cosmic acceleration of

the expansion. The universe is accelerating if 0 ≤ q ≤ 1. And if q = 0, then the universe

expands at a constant rate. While the universe decelerates when q is more significant
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than zero, the universe also has an exponential expansion and super-exponential expan-

sion for q =−1 and q ≤−1, respectively. To obtain the cosmological solutions, Berman

(1983) proposed a particular law of variation of HP by assuming a DP is constant, and it

is defined as follows:

q =−aä

ȧ2
(1.30)

where a is the average scale factor of the universe and the dot denotes derivatives con-

cerning the proper time. We have found that Reddy et al. (2012) examined a spatially

homogeneous Bianchi type-III spacetime with a perfect fluid source in f (R,T ) gravity

with the help of a special law of variation for HP Similarly, Mahanta et al. (2014) have

studied the DE models in self-creation cosmology.

In terms of H, the DP is expressed as follows:

q =−1− Ḣ
H2 (1.31)

We found that Berman and Gomide (1988) have explored the concept of the theory of

constant DP. Rao et al. (2008) studied the Bianchi type-V cosmological model with the

occurrence of perfect fluid by using a constant negative DP in a scalar-tensor theory based

on the framework of Lyra Manifold. In the same manner, by taking a particular form

of DP, Singha and Debnath (2009) have explored the quintessence model with a mini-

mally coupled scalar, which provides an early deceleration and late time acceleration for

barotropic fluid and Chaplygin gas-dominated models, whereas Tiwari (2009) has ex-

plored the Bianchi type-V spacetime within the framework of the scalar-tensor theory of

gravitation [proposed by Saez and Ballester (1986)] and obtained a constant value of the

DP, by using a particular law of variation for HP, Pradhan et al. (2011) studied the evolu-

tion of the DE parameter with a spatially homogeneous and isotropic FRW universe filled

with barotropic fluid, and DE with a constant DP Mamon and Das (2017) reconstructed

DP in a model flat FRW universe filled with DE and non-relativistic matter.

24



1.12 Dynamical Parameters

Dynamical Parameters are also plays an important role in cosmology and the some of the

relevant paramaters are defined as follows:

1.12.1 Expansion scalar

The expansion scalar of the cosmological model is denoted by θ , which shows the expan-

sion of the universe and is given by (in tensor form)

θ = ui
; j (1.32)

1.12.2 Shear scalar

It palys a vital role in general relativistic and stellar cosmological models, which is defined

as

σ
2 =

1
2

σi jσ
i j (1.33)

where the shear tensor σ i
j or σi j is given by

σi j =
1
2
(
ui;αPα

j +u j;αPα
i
)
− 1

3
θPi j (1.34)

where the projection Pi j has the form given by

Pi j = gi j −uiu j (1.35)
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1.12.3 Anisotropy Parameter

The anisotropy parameter (denoted by Am or ∆), is defined as:

Am =
1
3

3

∑
i=1

(
∆Hi

H

)
(1.36)

where ∆Hi = Hi −H(i = 1,2,3), Then this eq. can be written as

Am =
1
3

[(
Hx −H

H

)2

+

(
Hy −H

H

)2

+

(
Hz −H

H

)2
]

(1.37)

where Hx =
Ȧ
A , Hy =

Ḃ
B and Hz =

Ċ
C are the directional Hubble’s prameters in the directions

of x, y and z respectively.

1.13 Observational Constraints

1.13.1 Type Ia Supernovae Observation

A Type Ia supernova occurs in binary systems where one star is a white dwarf, and the

other star is anything from a giant to a smaller white dwarf. Supernova Cosmology Project

and High-redshift Supernova Search Team are two observable SNe Ia Supernovae in late

time acceleration in cosmology. 42 redshift range supernovae and 16 high redshift su-

pernovae were discovered around 34 supernovae by Perlmutter et al. (1999) and Riess et

al. (1998). Supernovae have a dazzling history and generate a detonation of radiations.

Researchers classify different types of supernovae. If there are no hydrogen lines in their

spectra, they are categorised as Type I supernovae; otherwise, they are classified as Type

II supernovae. Then each of the two types is divided into subcategories based on the exis-

tence of the absorption line of the other element. Those having a strong silicon line at 615

nm in their spectra are classified as type Ia, those with strong helium lines are classified as

type Ib, and those without helium lines are classified as type Ic. Type Ia supernovae have
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become essential as the most accurate cosmic distance measurement, usable for distances

greater than 1000 M.Pc.

1.13.2 Cosmic Microwave Background Radiation

It is a valuable source of knowledge about the early Universe 32. The CMB appears

to have formed due to thermal equilibrium between radiation and matter during a period

when the universe’s contents were ionised and photons scattered readily off free electrons,

resulting in a nearly uniform and isotropic radiation field with the same temperature as

baryonic matter. Penzias and Wilson (1965) discovered the CMB, which is today one of

the most important foundations of modern cosmology, offering a wealth of knowledge

about the parameters that describe our Universe [White et al. (1994), Hu and Dodelson

(2002)]. The CMB photons discovered today came from the last scattering surface (LSS),

when the universe was around 380000 years old and had cooled down sufficiently (about

3000K) to allow the production of neutral atoms owing to its expansion. 1 sec after the

Big Bang, the universe’s temperature would have dropped by around ten thousand million

degrees. Photons, electrons, and neutrinos and their antiparticles, as well as protons and

neutrons, would have been present in the universe at the time. In 1992, the Cosmic Back-

ground Explorer satellite analyzed the spectrum of CMB radiation and discovered minor

temperature changes.

1.13.3 Planck’s observation

Planck’s high-precision cosmic microwave background map has allowed scientists to

choose the most accurate value of the universe’s constituents [Ade et al. (2014)]. Cos-

mology comprises 4.9 percent of simple matter, creating galaxies and stars. Cosmology

is made up of 26.8% dark matter. For DE, the remaining section of the cosmology is 68.3
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percent. PLANCK Collaboration has gone beyond the traditional cosmological scenario

to investigate the implications of cosmic data for DE models and their modified gravity

[Ade et al. (2016)]. They put various models to the test, including k-essence, f (R) the-

ories, and related DE. They enhanced the current limitations and revealed that the initial

predicted DE density must be less than 2% of the critical density.
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1.14 Aims and Objectives

The aims and objectives of the research work are

• To study Bulk Viscous Bianchi Type-V DE model with charged fluid distribution in

Lyra Geometry.

• To study Bianchi Type-V cosmological models with perfect fluid and Heat conduction

in Lyra Geometry.

• To explore anisotropic Bianchi Type-V perfect fluid cosmological models in Lyra’s Ge-

ometry with kinematics test.

• To explore Bianchi Type-V DE cosmological models in Lyra geometry in the presence

of a massive scalar field.

• To investigate Bianchi Type-V anisotropic DE model with varying EOS parameter in

Lyra Geometry.

• To examine Bianchi Type-V model in Lyra Geometry in the presence of a magnetic field.

1.15 Methodology and tools

Here, secondary data is used for this research work, referencing books, journals, and

published materials on this topic available at the library and on the internet. The field

equations will be generated in Lyra geometry using the Bianchi type V metric, and the

issues will be solved using various examples. After solving the field equations, the cos-

mological parameter found will be compared to observational data. Also, use software

like Python, Maple, and Reduce-Algebra to solve differential equations of field equations

and make graphs to visualize the various cosmological parameters. The primary tool for

tackling the problem is tensor algebra.
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1.16 Importance of proposed study

Generally, the study of Bianchi type V cosmological models plays a vital role in studying

the universe. It creates more interest as these models contain exceptional isotropic cases

and permit arbitrary small anisotropy levels at some instant of time. This property makes

them suitable as a model of our universe. The spatially homogeneous Bianchi Type V

cosmological models also create more interest in studying physical and geometrical prop-

erties. It is a natural generalization of the FRW model.
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