
Chapter 5

Bianchi Type-V Dark Energy model in

Lyra Geometry in presence of Magnetic

Field

5.1 Introduction

This chapter deals with the study of Bianchi type-V DE model with electromagnetic field

based on Lyra Geometry. The study of Bianchi Type-V cosmological models attracts

attention since they include particular isotropic instances and allow for arbitrary tiny

anisotropy at some point in cosmic time. As demonstrated by numerous high-redshift

supernovae discoveries, the early universe is expanding at a faster rate than previously

anticipated [Riess et al. (1998), Perlmutter et al. (1999), Bennett et al. (2003), Peebles &

Ratra (2003)]. In addition to these tests, observations such as CMB radiations and LSS

[Spergel et al. (2003), Hinshaw et al. (2007), Tegmark et al. (2004) ] suggest that the

universe is expanding at a quicker rate. Because of their capacity to explain the observed
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faster expansion of the universe, modified gravity theories have sparked much attention

in recent years. The essential theories among them are f (R), f (G), f (T ), and f (R,T )

gravity [Sarmah et al. (2022), Sharif & Saba (2020), Bamba et al. (2017), Sahoo et al.

(2016), Nath & Sahu (2019), Singh & Beesham (2020), Tiwari, R. K. et al. (2021), Arora

et al. (2021)].

The most prevailing significant theory in a current cosmological model of the uni-

verse is f (R,T ), where the Lagrangian is an arbitrary function of the Ricci scalar and the

trace of the stress-energy tensor. Recently, Basumatary and Dewri (2021) and Brahma

and Dewri (2021) have studied the DE model with a particular form of scale factor in

Sen-Dunn’s theory and Lyra Geometry of gravitation based on Bianchi type V I0 and V

respectively. The magnetic field significantly describes the universe’s energy distribution

because it includes highly ionized matter. The existence of a magnetic field on a galactic

scale is now a well-known fact, and its significance for several astrophysical phenomena

is well recognized, as Zeldovich et al. (1993) pointed out. Due to adiabatic compression

in clusters of galaxies, a strong magnetic field may form. The large-scale magnetic fields

might potentially be responsible for cosmic anisotropies. In contrast to the scenario when

the pressure is retained isotropic, the anisotropic pressure induced by magnetic fields

dominates the growth of shear anisotropy and decays slowly [Zweibel & Heiles (1997),

Barrow (1997). At the end of an inflationary epoch, such fields can be produced. Melvin

(1975) has also revealed that matter was strongly ionized and seamlessly associated with

the field during the universe’s development.

5.2 Metric and the field equations of f (R,T ) gravity

Let us consider the Bianchi type-V space time in the form

ds2 =−dt2 +A2dx2 + e−2mx(B2dy2 +C2dz2) (5.1)
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where A,B,C are functions of cosmic time (t) and m is a constant.

The EMT of the matter with electromagnetic field is

Ti j = (ρ + p)uiu j + pgi j +Ei j (5.2)

Here, ρ and p denote the energy density and thermodynamic pressure of the matter, where

(Ei j) represents the electromagnetic fields of the source and is given as

Ei j =
1
4

(
FjαF iαgαβ − 1

4
gi jFαβ Fαβ

)
(5.3)

such that Maxwell equation satisfies the relation

Fi j,α +Fjα,i +Fαi, j = 0 and
[
F i j (√−g

)]
, j = 0 (5.4)

In the co-moving coordinate system, it is assumed that the magnetic field is in the direction

of the x axis so that F23 is the only non-vanishing component of the model, i.e., F23 = K =

constant. Also ui = (0,0,0,1) is the four-velocity vector in co-moving coordinate system

satisfying the condition uiui = −1 The non-vanishing components of the source of Ei j

concerning the given line element are as follows:

E1
1 =−E2

2 =−E3
3 = E4

4 =
K2

8πB2C2 (5.5)

Then, for the line element (5.1), with respect to eq. (5.2), the EFE (1.21) reduces to

B̈
B
+

C̈
C
+

ḂĊ
BC

− m2

A2 +
3
4

β
2 =−hp+

(
ρ − p

2

)
+

hK2

8πB2C2 (5.6)

Ä
A
+

C̈
C
+

ĊȦ
CA

− m2

A2 +
3
4

β
2 =−hp+

(
ρ − p

2

)
− hK2

8πB2C2 (5.7)

Ä
A
+

B̈
B
+

ȦḂ
AB

− m2

A2 +
3
4

β
2 =−hp+

(
ρ − p

2

)
− hK2

8πB2C2 (5.8)
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ȦḂ
AB

+
ḂĊ
BC

+
ĊȦ
CA

− 3m2

A2 − 3
4

β
2 = hρ +

(
ρ − p

2

)
+

hK2

8πB2C2 (5.9)

2
Ȧ
A
− Ḃ

B
− Ċ

C
= 0 (5.10)

where, α =
(

8πG−µc2

µc2

)
is a constant and the others symbols have their usual meaning as

in RG.

The energy conservation equation T i
i; j = 0 takes the form

ρ̇ +
3
2

ββ̇ +

[
(ρ + p)+

3
2

β
2
](

Ȧ
A
+

Ḃ
B
+

Ċ
C

)
= 0 (5.11)

5.3 Solutions and the Physical behavior of the model in

f (R̃,T ) gravity

Case-I: Presence of magnetic field

In solving the above-filed equations (5.6)-(5.10), the following physical parameters are

very important, and these parameters are defined as follows:

The spatial volume and the scale factor are given by

V = a3 = ABC (5.12)

The generalized mean HP is defined as

H =
1
3
(H1 +H2 +H3) (5.13)

where, H1, H2 and H3 are already defined in the chapter 1.

Then, from eqs. (5.12) and (5.13), we obtain

H =
ȧ
a
=

1
3
(H1 +H2 +H3) (5.14)
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Integrating eq. (5.10), we get

A2 = BC (5.15)

In the EFE (5.6)-(5.10), there are five highly non-linear differential equations with six

unknowns, namely A, B, C, p, ρ , β . Thus, in order to establish these six variables’

constants, let us consider power law relation

C = Bn (5.16)

where n ̸= 1 is a positive constant that preserves the anisotropy of the space time [Thorne

(1967)].

Now, we consider a hybrid form of scale factor [Mishra et al. (2017)], which is expressed

as

a(t) = t l
ξ

nt (5.17)

Here, l, n, ξ are positive constants such that ξ lies between 2 and 3 (i.e. 2 ≤ ξ ≤ 3)

where, for ξ = 2.718, the eq. (5.17) reduces to hybrid scale factor and it is very important

to construct cosmic transit from early age of deceleration late time acceleration [Thorne

(1967)].

From eqs. (5.12), (5.15), (5.16) and (5.17) together, we get

A = t l
ξ

nt (5.18)

B =
(

t l
ξ

nt
) 2

n+1 (5.19)

and,

C =
(

t l
ξ

nt
) 2n

n+1 (5.20)

Then, the line element (5.1) in view of eqs. (5.18)-(5.20) reduces to

ds2 =−dt2 +
(

t l
ξ

nt
)2

dx2 + e−2mx
[(

t l
ξ

nt
) 4

n+1
dy2 +

(
t l

ξ
nt
) 4n

n+1
dz2
]

(5.21)
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From eq. (5.12), the volume of the model reduces to

V = a3 =
(

t l
ξ

nt
)3

(5.22)

The other dynamical parameters are obtained from eqs. (5.14), (1.33) - (1.35) as follows:

H = n lnξ +
l
t

(5.23)

θ = 3n lnξ +
3l
t

(5.24)

σ
2 =

(
n−1
n+1

)2(
n lnξ +

l
t

)2

(5.25)

∆ =
2
3

(
n−1
n+1

)2

(5.26)

The DP is obtained from eq. (1.32) as

q =−1+
l

t2
(
n lnξ + l

t

)2 (5.27)

Adding eqs. (5.6)-(5.8) and then applying in eq. (5.9), we get
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Figure 5.1: Variation of q vs. t, for l = 1.75,n = 0.02
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K1ρ =−6
(

n lnξ +
l
t

)2

+
2l
t2 +

(
4m2

(t lξ nt)2

)
(5.28)

where (K1 = hγ − h− 1+ γ) is constant. We choose the parameters γ = −0.96 and h =

0.02 to find the deterministic solution and draw up the model’s behaviour. These values

are crucial in determining the model’s behavior when utilizing the hybrid form of scale

factor. In addition, another condition of the equation of state p = γρ is considered to

derive the negative pressure (DE) of the model, and by applying this condition; we obtain

the equation of DE in our model based on a hybrid form of scale factor as

K1 p =−6γ

(
n lnξ +

l
t

)2

+2γ
l
t2 +

(
4m2γ

(t lξ nt)2

)
(5.29)

Adding eqs. (5.6) - (5.8), we obtain the displacement field vector as

(1− γ)
3
4

β
2 =−3

(
n lnξ +

l
t

)2

+
2l
t2 −3γ

(
n lnξ +

l
t

)2

+
m2(1+3γ)

(t lξ nt)2 +
K2h(1− γ)

(t lξ nt)4

− 3K3

K1

(
n lnξ +

l
t

)2

− K3

K1

(
n
ξ
− l

t2

)
+

2K3

K1

m2

(t lξ nt)2

− (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t

)2

(5.30)

where K2 =
K2

24π
and K3 = (1+γ)(1−γ) are both positive constant and depict the variation

of graph, by considering the choice of K1 = −5.88, K2 = 0.16 and K3 = 0.078, being

K = 3.5

From eqs. (5.28) and (5.29), the trace (T = ρ − 3p) and the Riemannian curvature of

f (R̃,T ) gravity and the function of Ricci Scalar tensor with electromagnetic field based

on Lyra geometry are obtained as

T =

(
1−3γ

K1

)[
−6
(

n lnξ +
l
t

)2

+
2l
t2 +

4m2

(t lξ nt)2

]
(5.31)
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Figure 5.2: Variation of p and ρ vs. t for n = 0.02, l = 1.75,ξ = 2.25,h = 2,γ =
−1.96,m = 0.09

R =
6m2

(t lξ nt)2 −6
(

n lnξ +
l
t

)2

−6
(

n
ξ
− l

t2

)
−8K4

(
n lnξ +

l
t

)2

(5.32)

and,

R̃ =
6m2

(t lξ nt)2 −6
(

n lnξ +
l
t

)2

−6
(

n
ξ
− l

t2

)
−8K4

(
n lnξ +

l
t

)2

+9W1

(
n lnξ +

l
t

)
+W2K5

[
3l
t2

(
n lnξ +

l
t2

)(
1+2γ +

2K3

K1

)
+

2l
t2 (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t2

)]

−W2K5

[(
2+

K3

K1

)
2l
t3 − 2m2(1+3γ)

(t lξ nt)2

(
n lnξ +

l
t

)
+

4hK2(1− γ)

(t lξ nt)4

(
n lnξ +

l
t

)]
−W2K5

[
4m2K3

K1(t lξ nt)2

(
n lnξ +

l
t

)
+

(
2

1− γ

)(
−3
(

1+ γ +
K3

K1

)(
n lnξ +

l
t

)2
)]

+K5

[
2l
t2 +

m2(1+3γ)

(t lξ nt)2 − hK2(1− γ)

(t lξ nt)4 − K3

K1

(
n
ξ
− l

t2

)
+

2K3

K1

m2

(t lξ nt)2

]
−2
(

n−1
n+1

)2(
n lnξ +

l
t2

)2

(5.33)
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where K4 =
n2+n+1

n2+2n+1 and K5 =
2

1−γ
are positive constant and keeping n = 0.02 to describe

the behaviour of the model, provided n ̸= 1. W1 and W2 are given by

W1(t) =
2√

3(1− γ)
[−3

(
1+ γ +

K3

K1

)(
n lnξ +

l
t

)2

+
2l
t2 +

m2(1+3γ)

(t lξ nt)2 − hK2(1− γ)

(t lξ nt)4

− K3

K1

(
n
ξ
− l

t2

)
+

2K3

K1

m2

(t lξ nt)2 − (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t2

)2

]
1
2

(5.34)

and,

W2(t) =

√
3(1− γ)

2
[−3

(
1+ γ +

K3

K1

)(
n lnξ +

l
t

)2

+
2l
t2 +

m2(1+3γ)

(t lξ nt)2 − hK2(1− γ)

(t lξ nt)4

− K3

K1

(
n
ξ
− l

t2

)
+

2K3

K1

m2

(t lξ nt)2 − (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t2

)2

]
−1
2

(5.35)
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Figure 5.3: Variation of β 2 vs. t, for n = 0.02, l = 1.75,ξ = 2.25,h = 2,γ =−1.96,m =
0.09

Here, we are interested in obtaining the behavior of the DE model using the frame of

Harko et al. (2011) as f (R̃,T ) = µR̃+ µT which leads from the Eqs. (5.31) and (5.33),
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given by

1
µ

f (R̃,T ) =
6m2

(t lξ nt)2 −6
(

n lnξ +
l
t

)2

−6
(

n
ξ
− l

t2

)
−8K4

(
n lnξ +

l
t

)2

+9W1

(
n lnξ +

l
t

)
+W2K5

[
3l
t2

(
n lnξ +

l
t2

)(
1+2γ +

2K3

K1

)
+

2l
t2 (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t2

)]

−W2K5

[(
2+

K3

K1

)
2l
t3 − 2m2(1+3γ)

(t lξ nt)2

(
n lnξ +

l
t

)
+

4hK2(1− γ)

(t lξ nt)4

(
n lnξ +

l
t

)]
−W2K5

[
4m2K3

K1(t lξ nt)2

(
n lnξ +

l
t

)
+

(
2

1− γ

)(
−3
(

1+ γ +
K3

K1

)(
n lnξ +

l
t

)2
)]

+K5

[
2l
t2 +

m2(1+3γ)

(t lξ nt)2 − hK2(1− γ)

(t lξ nt)4 − K3

K1

(
n
ξ
− l

t2

)
+

2K3

K1

m2

(t lξ nt)2

]
−2
(

n−1
n+1

)2(
n lnξ +

l
t2

)2

+

(
1−3γ

K1

)[
−6
(

n lnξ +
l
t

)2

+
2l
t2 +

4m2

(t lξ nt)2

]
(5.36)

Case-II: In absence of magnetic field, i.e. F23 =K = 0 In this case, the model’s pressure,

density and the displacement vector are obtained as

K1 p =−6γ

(
n lnξ +

l
t

)2

+
2lγ
t2 +

4m2γ

(t lξ nt)2 (5.37)

K1ρ =−6
(

n lnξ +
l
t

)2

+
2l
t2 +

4m2

(t lξ nt)2 (5.38)

and,

(1− γ)
3
4

β
2 =−3

(
n lnξ +

l
t

)2

+
2l
t2 −3γ

(
n lnξ +

l
t

)2

+
m2(1+3γ)

(t lξ nt)2 − 3K3

K1

(
n lnξ +

l
t

)2

− K3

K1

(
n
ξ
− l

t2

)
+

2K3

K1

m2

(t lξ nt)2 − (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t

)2

(5.39)

83



Displacement vector

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

Figure 5.4: Variation of β 2 vs. t, in absence of magnetic field, for n = 0.02, l = 1.75,ξ =
2.25,h = 2,γ =−1.96,m = 0.09

In the same way, the trace, function of Ricci Scalar Tensor, Riemannian curvature,

and the f (R̃,T ) gravity are obtained as follows:

T =

(
1−3γ

K1

)[
−6
(

n lnξ +
l
t

)2

+
2l
t2 +

4m2

(t lξ nt)2

]
(5.40)

R =
6m2

(t lξ nt)2 −6
(

n lnξ +
l
t

)2

−6
(

n
ξ
− l

t2

)
−8K4

(
n lnξ +

l
t

)2

(5.41)
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and,

R̃ =
6m2

(t lξ nt)2 −6
(

n lnξ +
l
t

)2

−6
(

n
ξ
− l

t2

)
−8K4

(
n lnξ +

l
t

)2

+9W4

(
n lnξ +

l
t

)
+W3K5

[
3l
t2

(
n lnξ +

l
t2

)(
1+2γ +

2K3

K1

)
+

2l
t2 (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t2

)]

−W3K5

[(
2+

K3

K1

)
2l
t3 − 2m2(1+3γ)

(t lξ nt)2

(
n lnξ +

l
t

)
− 4m2K3

K1(t lξ nt)2

(
n lnξ +

l
t

)]
+K5

[
−3
(

1+ γ +
K3

K1

)(
n lnξ +

l
t

)2

+
2l
t2 +

m2(1+3γ)

(t lξ nt)2 − K3

K1

(
n
ξ
− l

t2

)]

+K5

[
2K3

K1

m2

(t lξ nt)2 − (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t2

)2
]

+

(
1−3γ

K1

)[
−6
(

n lnξ +
l
t

)2

+
2l
t2 +

4m2

(t lξ nt)2

]
(5.42)

1
µ

f (R̃,T ) =
6m2

(t lξ nt)2 −6
(

n lnξ +
l
t

)2

−6
(

n
ξ
− l

t2

)
−8K4

(
n lnξ +

l
t

)2

+9W4

(
n lnξ +

l
t

)
+W3K5

[
3l
t2

(
n lnξ +

l
t2

)(
1+2γ +

2K3

K1

)]
+W3K5

[
2l
t2 (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t2

)
−
(

2+
K3

K1

)
2l
t3

]

−W3K5

[
2m2(1+3γ)

(t lξ nt)2

(
n lnξ +

l
t

)
− 4m2K3

K1(t lξ nt)2

(
n lnξ +

l
t

)]
+K5

[
−3
(

1+ γ +
K3

K1

)(
n lnξ +

l
t

)2

+
2l
t2 +

m2(1+3γ)

(t lξ nt)2

]

−K5

[
K3

K1

(
n
ξ
− l

t2

)
+

2K3

K1

m2

(t lξ nt)2 − (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t2

)2
]

+

(
1−3γ

K1

)[
−6
(

n lnξ +
l
t

)2

+
2l
t2 +

4m2

(t lξ nt)2

]
(5.43)
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Figure 5.5: Variation of r and s vs. t, for n = 0.02, l = 1.75,ξ = 2.25

W3(t) =
2√

3(1− γ)
[−3

(
1+ γ +

K3

K1

)(
n lnξ +

l
t

)2

+
2l
t2 +

m2(1+3γ)

(t lξ nt)2 − K3

K1

(
n
ξ
− l

t2

)
+

2K3

K1

m2

(t lξ nt)2 − (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t2

)2

]
1
2

(5.44)

and,

W4(t) =

√
3(1− γ)

2
[−3

(
1+ γ +

K3

K1

)(
n lnξ +

l
t

)2

+
2l
t2 +

m2(1+3γ)

(t lξ nt)2 − K3

K1

(
n
ξ
− l

t2

)
+

2K3

K1

m2

(t lξ nt)2 − (1− γ)

(
n−1
n+1

)2(
n lnξ +

l
t2

)2

]
−1
2

(5.45)

The statefinder parameter are defined as

r =
...a
a

= 1+3
Ḣ
H2 +

Ḧ
H3 (5.46)

and,

s =
r−1

3(q− 1
2)

(5.47)
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which are obtained from (5.18), (5.23) and (5.27) as follows:

r = 1+
3

nξ (lnξ )2 −
3l

n2t2(lnξ )2 +
2l

t3(n lnξ + l
t )

3
(5.48)

and,

s =

3
nξ (lnξ )2 − 3l

n2t2(lnξ )2 +
2l

t3(n lnξ+ l
t )

3

3
[
−3

2 +
l

t2

(n lnξ+ l
t )

2

] (5.49)

5.4 Conclusion

In this study, the solutions of the models are obtained by using a hybrid form of scale fac-

tor in Lyra based f (R̃,T ) gravity. The magnetic field source is along the x axis, F23 ̸= 0.

It is found that the absence of an electromagnetic field does not affect much in the present

model. We have obtained the pressure, density, and displacement vector in both circum-

stances. Also, at the initial moment t = 0, all the physical and kinematical parameters like

p, ρ , R, β , R̃, T and f (R̃,T ) tends to infinity. As a result, the model begins from an initial

singularity with infinite pressure and density. However, when t → ∞, p, ρ , R, β , R̃, T and

f (R̃,T ), all the parameters tend to a constant value. From the eq. (5.22), it is seen that

the universe approaches an infinitely large volume as time increases in both scenarios of

the f (R̃,T ) gravity model. Fig. 5.1 shows behavior of DP to be q < 0 for t → ∞. Fig. 5.2

shows the pressure orientation and the energy density in positive and negative directions

in each case with an increase in time (t). As per these observations of p and q, the present

model has a presence of DE with the accelerated universe expansion with an electromag-

netic field, and this result fits the recent observational data like LSS, CMB, SNe Ia. It is

clear from Fig. 5.4 that the displacement field vector positively gradually decreases with

an increase in cosmic time t. From Fig. 5.5, it is concluded that the ΛCDM model does

not evolve in this model. Eqs. (5.25) and (5.26) indicate that this model of f (R̃,T ) gravity

is not free from shear scalar, and the behavior of the model is anisotropic provided n ̸= 1.
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