2015 BIOTECHNOLOGY

Paper: 101 (Old Course)

BIOCHEMISTRY

Full Marks: 80 Time: 3 hours

7	Γ <mark>he</mark> figures in the margin indi	cate full marks for the questions		
1.	Find out the correct answer	er from the following (any eight) $1 \times 8 = 8$		
A)	In a DNA strand, the nitrogenous base remain bonded with the pentose sugar by itscarbon.			
	i) 1 st	ii) 3 rd		
	iii) 4 th	iv) 5 th		
B)	Which of the following amino acid is unique in its structure			
	i)Alanine	ii) Valine		
	iii) Leucine	iv) Tryptophan		
C)	SDS separates protein by			
	i) Mass	ii) Polarity		
	iii) Solubility	iv) None of these		
D)	tion, was used as a weight	coupler of oxidative phosphoryla- loss agent in the 1930s. Reports is discontinuation in 1939. Which		

(1)

P.T.O.

of the following would most likely be true concerning individuals taking 2,4-Dinitrophenol?

- i) ATP levels in the mitochondria are greater than normal.
- ii) Body temperature is elevated as a result of hypermetabolism.
- iii) Cyanide has no effect on electron flow.
- iv) The proton gradient across the inner mitochondrial membrane is greater than normal.
- E) Which of the following has the strongest tendency to gain electrons?
 - i) Coenzyme Q
- ii) Cytochrome c

iii) NAD

- iv) Oxygen.
- F) Compared with the resting state, vigorously contracting skeletal muscle shows:
 - i) Decreased AMP/ATP ratio,
 - ii) Decreased NADH/NAD+ ratio
 - iii) Increased oxygen availability
 - iv) Increased reduction of pyruvate to lactate
- G) Which one of the following conditions decreases the oxidations of acetyl coenzyme A by the citric acid cycle?
 - i) A high availability of calcium
 - ii) A high acetyl CoA/CoA ratio
 - iii) Alow ATP/ADP ratio

	iv)	A low NAD+/NADH ratio)		
H)	Pyruvate carboxylase is an important enzyme in gluconeogenesis. It requires a coenzyme to covalently bound with lysine residue. The coenzyme is				
		i) Biotin iii) Niacin	ii) Pantothenic Acid iv) None of these		
I)	Whic	ch of the following reactions is unique to gluconeogenesis?			
	i) 1,3-Biphosphoglycerate to 3-phosphoglycerate				
	ii) Lactate to pyruvate				
	iii) Oxaloacetate to phosphoenolpyruvate iv) phosphoenolpyruvate to pyruvate				
2.	Write short notes on- (any six)- $2\times6=12$				
	A)	Abzyme			
	B)	RNA Splicing			
	C)	Pre-Pro-Protein			
	D)	Sigma subunit of RNA pol	ymerase		
	E)	Eicosanoids			
	F)	Importance of Metal ions	in life processes		
	G)	Ubiquinone			
	H)	Allosteric enzyme			
3.	Distinguish between-(any four) $4 \times 5 = 20$				
	A)	Functions of Enzyme and Coenzyme			
	B)	Essential and Nonessentia	l amino acids		
		(3)		<i>P.T.O.</i>	

 Role of Insulin and Glucagon in metabo 	olism
--	-------

- D) De-amination and Trans-amination
- E) Competitive Inhibition and Non competitive Inhibition
- 4. Answer the following questions briefly-(any two) 8×2=16
 - A) What are the important considerations to draw a Ramachandran Plot? Discuss.
 - B) Derive the Michalis-Menten equation for enzyme catalysis.
 - C) Draw the intermediary metabolic pathways of metabolism with comments.
 - D) Describe function of different classes of enzymes with examples.
- 5. Answer any two questions from the following- $12 \times 2 = 24$
 - A) Describe the cholesterol biosynthesis mechanism in tissues with illustrations.
 - B) What do you mean by Photophosphorylation? Differentiate the C_3 and C_4 pathways of CO_2 fixation. 2+10=12
 - C) Describe the pentose phosphate pathway of hexose metabolism. What are the important functions of the pathway? 10+2=12