BIOTECHNOLOGY

BIT 402 COMPUTATIONAL BIOLOGY

Full Marks: 80 Time: 3 Hrs

Figures in the right hand margin indicate full marks for the question

1. Match the followings in column X with appropriate items in column Y: (any five) 5×1=5

Column X		Column Y	
1.a	COBALT	A	protein families and domains
1.b	DIALIGN	В	Family and domain database search
1.c	InterProScan	С	Performs protein multiple sequence alignments
1.d	Jpred	D	Local multiple sequence aligment software
1.e	PANDITplus	Е	Secondary Structure Prediction Server
1.f	PROF	F	protein physical and chemical parameters
1.g	ProtParam	G	Secondary Structure Prediction System

- 2. State whether the following statements are true or false (any five) $5 \times 1 = 5$
- A. Zn-finger motif is ten to twenty amino acids long.
- B. Domain consists of more than 40 residues and up to 700 residues.

C. PRINTS is a amino acid sequence alignment tool. D. SMART is a database. E. Reverse PSI-BLAST is a protein structure analysis tool. F. COG is a server. G. The dihedral angle along the N-C α bond in an amino acid is defined as phi (φ) angle. 3. Define (any five)- $2 \times 5 = 10$ A. Genome Sequencing B. Genome Annotation C. SAGE D. DNA microarray E. Protein Microarrays F. Identification of Posttranslational Modifications in Proteomic Analysis G. PROTEIN SORTING 4. Differentiate between (any three)- $3 \times 5 = 15$ A. SCOP and CATH B. SAGE and DNA Microarrays C. PSI-BLAST and PHI-BLAST D. Homology modeling and Thread Recognition E. Transcriptome and Metabolome 5. Answer the following questions (any three) $3 \times 15 = 45$ A. Describe the secondary structure prediction method for globular proteins. What are the applications of protein secondary structure prediction? 10+5=15B. What are the two prediction methods used for Secondary Structure of RNA. Discuss any one of them. 2+13=15C. Describe the methods of Computer Aided Drug Designing. 15 D. What are the techniques used to investigate Protein- Protein

-----X------

15

Interactions? Describe briefly.