2015

BIOTECHNOLOGY

Paper: 101

BIOCHEMISTRY

Full Marks: 80 Time: 3 hours

The figures in the margin indicate full marks for the questions

Find out the correct answer from the following (any eight)

1.	Find out the correct answer from the following (any eight)		
		1×8=8	
A)	Which amino acid is achiral-		
	i) Serine	ii) Tyrosine	
	iii) Glycine	iv) Asparagine	
B)	An acid is a donor.		
	i) Electron	ii) proton	
	iii) neutron	iv) none of these	
C)	In a DNA strand, the nitrogenous base remain bonded with		
	the pentose sugar by itscarbon.		
	i) 1st	ii) 3rd	
	iii)4th	iv) 5th	
D)	Salting out separates protein by their		
		(1) P.T.O	

- i) Ion exchangeii) Polarityiii) Solubilityiv) None of these
- E) A particular point mutation results in disruption of the á-helical structure in a segment of the mutant protein. The most likely change in the primary structure of the protein is
 - i) Glutamate to aspartate ii
 - ii) Lysine to arginine
 - iii) Methionine to proline
- iv) Valine to alanine
- F) The effect of a competitive inhibitor on the reaction velocity versus substrate shows
 - i) K_m apparently is increased in the presence of a competitive inhibitor
 - ii) K_m apparently is decreased in the presence of a competitive inhibitor
 - iii) K_m apparently is not changed in the presence of competitive inhibitor
 - iv) V_{max} is the same in the presence of a competitive inhibitor.
- G) ADH requires oxidized nicotinamide adenine dinucleotide (NAD+) for catalytic activity. In the reaction catalyzed by ADH, an alcohol is oxidized to an aldehyde as NAD+ reduced to NADH and dissociates from the enzyme. The NAD+ is functioning as a (an):
 - i) Apoenzyme
- ii) Coenzyme-cosubstrate
- iii) Cofactor
- iv) Coenzyme-prosthetic group

H) In cor		nversion of one ATP to AMP and Pi, the standard free sy is	
		i) -6.3 kcal/mol	ii)+6.3 kcal/mol
		iii) -7.3 kcal/mol	iv) +7.3 kcal/mol
I)	Which one of the following conditions decreases the oxidations of acetyl coenzyme A by the citric acid cycle?		
		i) A high availability of calci ii) A high acetyl CoA/CoA	
		iii) A low ATP/ADP ratio iv) A low NAD+/NADH r	atio
J) Pyruvate carboxylase is an important enzyme in a genesis. It requires a coenzyme to covalently bo lysine residue. The coenzyme is			rtant enzyme in gluconeo- o covalently bound with
		i) Biotin iii) Niacin	ii) Pantothenic Acid iv) None of these
2.	Write short notes on- (any six)- $2\times6=12$		
	A)	Ribozyme	
	B)	Pre-Pro-Protein	
	C)	Sigma subunit of RNA poly	ymerase
	D)	Okazaki fragments	
	E)	Prostaglandin	
	F)	Van-Dar-Walls force	
	G)	Standard Free Energy	
		(3)	P.T.O.

	B)	Competitive Inhibition and Non competitive Inhibition	
	C)	α -oxidation and ω -oxidation of fatty acids	
	D)	Functions of Enzyme and Coenzyme	
	E)	Essential and Nonessential amino acids	
4.	Ansv	ver the following questions briefly-(any two) 8×2=16	
	A)	Discuss the stabilizing interactions found in protein.	
	B)	Discuss the structural differences among A-, B- and Z-DNA.	
	C)	Discuss the structure-function relationship of a protein.	
	D)	What are the important considerations to draw a Ramachandran Plot? Discuss.	
5. Answer any two que		wer any two questions from the following- 12×2=24	
	A)	Write briefly about the electron transport chain leading to Oxidative Phosphorylation with appropriate illustrations. 8+4=12	
	B)	Describe the degradation process of long chain fatty acids to release Acetyl-CoA. 12	
	C)	What do you mean by Photophosphorylation? Differentiate the C_3 and C_4 pathways of CO_2 fixation.	
		2+10=12	

Importance of Metal ions in life processes

Lineweaver Burk Plot and Eddie Hofstee Plot

4×5=20

Distinguish between-(any four)

H)

A)

3.