2018

BIOTECHNOLOGY BIT: 402 COMPUTATIONAL BIOLOGY

Full Marks: 80

Time: 3 hours

The figures in the margin indicates full marks for the questions:

1. Find out the correct answer of the following questions (any five):

1x5=5

- a. Which of the following amino acids is least mutable according to the PAM scoring matrix?
 - i. Alanine

ii. Glutamine

iii. Methionine

iv. Cysteine

- b. In a position-specific scoring matrix, the column heading can have the 20 amino acids, and the rows can represent the residues of a query sequence. Within the matrix, the score for any given amino acid residue is assigned based on:
 - i. A PAM or BLOSUM matrix
 - ii. Its frequency of occurrence in a multiple sequence alignment
 - iii. Its background frequency of occurrence
 - iv. The sum of its neighboring amino acids
- c. The main difference between Pfam-A and Pfam-B is that:
 - Pfam-A is manually curated and Pfam-B is automatically curated
 - ii. Pfam-A uses hidden Markov models while Pfam-B does not.
 - iii. Pfam-A provides full length protein alignments while Pfam-B aligns protein fragments

	d.		
	e.	Ligand based and Structure based Drug Desig	ning
5.	Des	scribe any two from the following:	8x2=16
	a.	Describe the experimental procedure and men	rits of NMR and X
		of protein structure	
			4+4=8
	b. State the structural features of alpha helix and beta sheet.		
		parallel and anti parallel strand.	4+4=8
	c.	What is super secondary structure? Mention	two different supe
		secondary structures? Mention in which type	•
		observed and their functional importance.	2+2+2+2=8
6.	Describe <i>any two</i> from the following: 12x2=24		
	a. Discuss the protein secondkary structure prediction r		ction methods. Hov
		prediction accuracy is compared?	10+2=12
	b. How different types of trans-membrane protein structu		otein structures ar
		predicted? Describe with illustrations.	10+2=12
	c. Describe the homology modeling me		of protein tertiar
		structure prediction.	12
	d. Describe the methods for protein-protein		cture prediction by
		highlighting the tools used.	12

Local and Global Energy Minimization method

c.