Chapter 6

COVERING ENERGY OF A SEMIGRAPH

6.1 Introduction

Chemical graph energy is the concept stems from chemistry to approximate the
total rr-electron energy of a molecule. In chemistry the conjugate hydrocarbon can be
represented by graph called molecular graph, in which the atoms of a molecule are
represented by the vertices and the chemical bonds are represented by the edges. Ivan
Gutman [22] first introduced the energy for chemical graphs in the year 1978 and
defined as the sum of the absolute value of eigenvalues of the adjacency matrix of a
graph. Further, many authors conceived on different types of graph energy like color

energy [6, 34, 35], the minimum covering energy [5], distance energy [19] etc. of a

graph.

In the year 2012 Adiga et.al. [5] introduced a matrix, called minimum covering
matrix of a graph and its energy, and defined as follows:

Suppose G (V, X) be a graph of order n and size m, with vertex set V" and edges
set X. Let C subset of V' be the minimum covering set of a graph G. The minimum

covering matrix of G is the square matrix A,,.(G) = (a;;) of order n, where

ai]- =1 lf Ul'U]' eEE
=1 ifi=jandv; €C
=0 otherwise.

And the minimum covering energy of the graph G is defined as E,,.(G) = X1,|4]

where 44,45, ..., 4, are eigenvalues of the minimum covering matrix A,,.(G).

Adiga et.al. [6], have introduced the concept of color matrix and energy of a
graph and investigated many properties and results. Further in the year 2015, M. R.
Rajesh Kanna [30] et.al. investigated minimum covering color energy of a graph and

their definitions are given below:
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Let G be a vertex-colored graph of order n. Let C subset of /' be the minimum
covering set of a graph G. Then the minimum covering color matrix of G is the
matrix A7,-(G) = (a;j)nxn of which,

a;j(v,v;) =1 ifv; andv; areadjacentorifi =jandv; € C

=-1  if v; and v; are non-adjacent with c(v;) = c(v;),

= 0 otherwise.
where c(v;) is the color of the vertex v; in G. Recall that, the vertices of the graph G
are colored so that two adjacent vertices always have different colors. The minimum
covering color energy Ef;,. of a graph G with respect to a given coloring is the sum

of the absolute value of eigenvalues of the minimum covering color matrix AS,.(G).

Motivated by these, we have extended the minimum covering energy of
semigraphs in section 6.2 and minimum covering color energy of a semigraph in

section 6.3.

6.2 On minimum covering matrix and energy of semigraphs

In this section a new type of matrix, called minimum covering matrix of a
semigraph was introduced and obtained its energy. The minimum covering matrix of

a semigraph is defined as follows:

The minimum covering matrix of a semigraph:

If G(V,X) be a semigraph of order n size m. Let C be the minimum covering
set, then the minimum covering matrix of G is the square matrix A,,.(G) = (ai ]-) of

order n, where

1. For every edge e; of X of cardinality, say &, let e; = (iy,i3,13,...,1x)
such that iy, i,,i3,..., i) are distinct vertices in V', forall i, € ¢;; r =
1,2,...,k

(@)a;,; =r—1,

(b) aikir =k-—r
1. al-j=1ifi=jandvl-€C.
1il. All the remaining entries of 4 are zero.
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The minimum covering energy of semigraphs:
Nikiforov [60] defined the energy of a general matrix (of any size) as the

summation of the singular values of that matrix.

Thus, if 0y,05,...,0, be the singular values of minimum covering matrix
A (G) of the semigraph G, then the minimum covering energy of a semigraph

denoted by E,,,.(G), is defined as the summation of its singular values. i.e.

n

Ene(6) = ) o1

i=1

We observe that, A,,.(G)Anm:(G) is a positive semidefinite matrix. So, its
eigenvalues A4,4,,..., 4, are non-negative and therefore the singular values of
Apc(G) are non-negative real numbers. Thus E,,,.(G) = 0, equality holds if and only
if the number of edges in G is zero. Minimum covering energy of a semigraph is well
defined, as if G be a semigraph obtained by relabeling of the vertices of G, then
Apmc(GYA',.(G) is obtained by interchanging the rows and the corresponding
columns of A,,.(G)A ,.(G). Hence the eigenvalues of A, (G)A',,.(G) and

A (GHA' (G are same, and so the singular values of G and G ‘are also same.

Example 6.1 G(V,X) be a connected semigraph as shown in Figure 6.1 having
vertex set V = {1,2,3,4,5,6,7,8} and let C = {3, 4,7} be the minimum covering set.
And X = {(1,2,3), (3,4), (4,5,6), (6,7,3), (7,8) } be the edge set of G. Then,

Figure 6.1
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Then, Minimum covering matrix A,,.(G) of the semigraph G (V, X) is

Amc(G) =

cCcoococoNOO
coROoOROOO
RRRhrOoOOoOR OO
oroocococoo

SO OO ORrRr O
CSCONORRFRREN
SONO R EFPRr OO
o oo NhMNO O

6.2.1 Properties of minimum covering energy of semigraphs

Lemma 6.1 Let A,,.(G) is the minimum covering matrix of a semigraph G, and C is

its minimum covering set. If A1, A,,..., A, are eigenvalues of A,,.(G)A 1 (G). Then

n

ZAL- = 22(12 + 22+, +k,*) + |C|

i=1 eeX

where the cardinality of an edge e € X of the semigraph is k, + land k, > 1.

Proof: In the minimum covering matrix 4,,.(G), corresponding to every edge e € X
of cardinality k, + 1, there is a sequence {1,2,...,k,} in the rows corresponding to

the end vertices of that edge. And there are |C| nos. of 1’s in the diagonal of A4,,.(G).
Thus every edge contributes 2 Ze(lz + 2%+... +kez) and the diagonal elements

contribute |C| X 12 in the trace of A, A pme.

Therefore Trac(AmeA'me) = 2 2(12 + 224, +k,) + |C| x 12
eeX
n
Hence A =22(12+22+...+k32)+|6|
i=1 eex

Theorem 6.1 The minimum covering energy E,,.(G) of a semigraph G, is a square

root of an even or odd integer according as |C| is even or odd.

Proof: If 04, 0,,....,0, be the singular values of minimum covering matrix A4,,.(G)

of the semigraph G, then
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i=1 i<j
Thus
n
[Emc(@F = Y 4i+2) a0
i=1 i<j
= 22(12 + 224+, +k,2) +|C| + ZZaiaj
eex i<j
=2 Z:(l2 +22+...+k,°) +z 0,07 + |C]|
eex i<j

En.(G)= |2 2(12+22+...+kez)+20iaj +C|

eex i<j

Thus the minimum covering energy E,,,.(G) of a semigraph G, is a square root

of an even or odd integer according as |C| is even or odd.

Theorem 6.2 The minimum covering energy E,,.(G) of a semigraph G, then

[Enc(G)]? = |C|(mod 2)

Proof: By Theorem 6.1, the minimum covering energy E,,.(G) of a semigraph G, is

a square root of an even or odd integer according as |C| is even or odd.

Emc(G) = V2t + IC|
ie. [Ene(G)]? = 2¢ + C]
Thus, [Epe(G)]? = |C|(mod 2).

6.2.2 Some bounds on minimum covering energy of semigraphs

Theorem 6.3 If G be a semigraph having n vertices and m edges,

eex eex

\/22(12 + 224, +k,?) +|C] < Epe(G) < Jn [2 Z(l2 + 2%+, +kE) +[C|
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Proof: Let o0;,i =1,2,...,n be the singular values of minimum covering matrix

Ame, and A;,i = 1,2,...,n be the eigenvalues of A,,cA . . By Cauchy- Schwarz’s

inequality on two vector (a4, 05, ..... ,0,) and (1,1,..... ,1), we have
n n
(01 +0p+........ +0,)? SnZaiz =n2/11
i=1 i=1
Thus, [Ee (O] <1 [2 2(12 + 224 +k,2) +[C|
eex

Again, we have

[Emc(G)]? = (Zn: Ui>2 = zn: af = zn:li

ie. B, (G)]? = 22(12 + 224 +k,2) + [C
eeX

Hence

jz 2(12 + 224, 4k, ) 4 |C| < Eme(G) < \/n [2 2(12 + 224...+k2) + |C|

eeX eeX

Theorem 6.4. If G be a semigraph having n vertices and m edges, then

[Ene(6)]? = 22(12 + 224, +k2) +|Cl + n(n— 1)a'/n,

eex

Where 4 = det( ApmcA'me)-

Proof: Let o, i=12,..... , 1 be the singular values of 4,,., then we have,
n 2 n n
[Epmc(G)]? = (Z Ui) =zai2 +220i0j =Z/1i +220i0j
i=1 i=1 i<j i=1 i%j
As o5, 1=12,..... , M are non-negative, so n(n — 1) nos. of o;0; are also non-

negative number.

Therefore, applying AM = GM on n(n — 1) nos. of non-negative numbers 0;0;.

We have
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1 1

n(n-1) n nn-1)
1 > _ 2(n-1)
nn—nZ7 =) =]
1

Y i%] i=1
1
n n(n-1) n n
ie. Z o;0; =2 n(n—1) (U A?"l) =n(n—1) ( Ai)
iz i=1 i=1
Thus z 0,0 = n(n — 1)A%
1#]
n
Where A= Hli = det(ApcA'me)
i=1

Therefore, we get
n
1
E,.. ()] = Z A +n(n — 1)4n
i=1

by Lemma 6.1 we obtain

[Ene(6)]? = 22(12 + 224, +k2) +|Cl +n(n—1)a"/n

eeX

Lemma 6.2 [60] If A = [a;;] is any non-constant matrix and its norm defined as

4l = ) a,

ij

2_ 2
Suppose 07 = g, =....> 0, are singular values of 4, then E(A) = o; + lAllz =03
2

Thus, evaluate a lower bound for E,,,.(G) as follows:
Theorem 6.5 For a semigraph G on n vertices, if 0, and o, are respectively largest
and second largest singular values of its minimum covering matrix A,,.(G). Then we
have

1
Ene(6) 2 01 +—[2 2(12 + 224 +k,2) + |C] — 07]
2

eeX

Proof: By Lemma 6.2, for the minimum covering matrix 4,,.(G) of G, we have

”Amc”% _012

Epnc(G) =01 +
03
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Clearly, form definition of norm of a matrix we have

[[Amc (O] % = trace(AmcA 'mc)

= 22:(12 + 22+, +k,?) + |C|
eeX

Hence, we get

1
Epnc(G) = oy +J—[2 Z(l2 +22+...+k,?) + |C| — 2]
2 eeX

Which give another lower bound of E,,,.(G).

6.2.3 Relation between energy and minimum covering energy of a

semigraph

Theorem 6.6 Let G(V,X) be a semigraph of order n, size m then E,,.(G) = %,

where E(G) is the energy of the semigraph G.

Proof: 1f G(V, X) be a semigraph of order n, size m, and if E (G) be the energy of the
semigraph. Then by Theorem 2.4.1 we have

jz 2(12 +224...+k,?) S E(G) < jznZuz +224...+K2)

eex eex
i.e. 22(12 +2%2+4....+k?) < [E(®)]* < 2n Z:(l2 + 22+...+k?)
eexX eex
Thus [EG)]? < 2n2(12 + 224, 4k
eex
E(G)]?
Therefore [ (n)] < 22:(12 + 224+...+k?)

eex

If E,;,.(G) be the minimum covering energy of a semigraph G(V, X),

By Theorem 6.4, we get

[Epe (O] = 22(12 + 224 +k,2) + [C] + n(n— 1)aYn

eeX

ie. [Epmc(G)]? = 22(12 +22+...+k,%)

eeX

107



Thus [E . (G)]? >

[E(®)]?
n

Hence Epc(G) = @
mc - \/ﬁ

Theorem 6.7 For a semigraph G(V,X) of order n, size m, if g, and o, are
respectively largest and second largest singular values of its minimum covering
matrix A, (G). Then we have

[E(G)]? —no?

03

nE,.(G) =

Where E (G) is the energy of the semigraph.

Proof : 1f G(V,X) be a semigraph of order n, size m, and if E(G) be the energy of
the semigraph. Then by Theorem 2.4.1 we have

Then, jz 2(12 + 224, +k,?) S E(G) < \/mZ(ﬂ + 224, +K2)

eeX eeX
Thus [EO))? < 2n2(12 + 224 +kD)
eeX
By Theorem 6.5 we have,
2 12 4+ 22+....+k,*) +|C| — of
Emc(G) 20'1+ ZeeX( e ) | | 1
02
Thus 03Eo(G) — 0,05 + 02 > 2 2(12 4224 +k2) + [C]
eeX
ie. 02Emc(G) — 0,0, + 02 > 22(12 + 2%2+....+k2)
eeX
ie. N(02Epc(G) — 010, + 02) = 2n z:(l2 + 2%2+4....+k2)
eeX

ie. N(02Epmc(G) — 0,0, + 02) = [E(G)]?

[E(@]  of
. e. Enc(G) = -n—
i.e NnE,L.(G) = o n02+n01

[E(@] of
. e. Enc(G) = -n—
ie R O

E(G)]? — nof
Hence NnE;,.(G) 2[ @] =

03
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6.3 Minimum covering color matrix and color energy of semigraphs

In this section another type of matrix called minimum covering color matrix of
a semigraph was introduced and obtained energy of the matrix, and established some
bonds to realizing the mathematical aspects of the minimum covering color energy of
a semigraph. The minimum covering color matrix of a semigraph is defined as

follows:

Minimum covering color matrix and energy of semigraph: Suppose G(V,X) be a
vertex-colored semigraph of order n and size m, and if c¢(v;) denote the color of the
vertex v;. Let C € V be a minimum covering set, then the minimum covering color
matrix of G is defined by the square matrix Af,,.(G) = (a;j)nxn, and of which
a;j(v,vj) =1 if v; and v; are adjacent or if i = j and v; € C,
=-1 if v; and v; are non-adjacent with c(v;) = c(v;),
= 0, otherwise.
The minimum covering color matrix A%,.(G) of a semigraph G is symmetric
and hence its eigenvalues &, &,, &5, ..., &, are all real, called minimum covering color
eigenvalues of G. The minimum covering color energy of a semigraph G is denoted

by Ef,c(G) and defined as Eq.(G) = X141

Example 6.2 G(V,X) be a connected semigraph as shown in Figure 6.2 having
vertex set V = {1,2,3,4,5,6,7,8} with the minimum colors C1, C1, C2, C1, C2, C2,
C1 and C2 respectively and edge set X = {(1,2,3), (3,4), (4,5,6), (6,7,3),(7,8)}. Let
C = {3, 4,7} be the minimum covering set. Then,

6(C2) 5(c2) 4(c1)

O
\ %

7(c1)

8(C2)
‘ 4
1(c1) 2(c1) 3(c2)

Figure 6.2
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Then, the minimum covering color matrix A$,.(G) of the semigraph G (V, X) is

0 1 1 -1 0 0 -1 017

1 0 1 -1 0 O -1 O

1 1 1 1 -1 1 1 -1

¢ /-1 -1 1 1 1 1 -1 0
Ame(€) = o 0 -1 1 0 1 0 -1
0 0 1 1 1 0 1 -1

-1 -1 1 -1 0 1 1 1
.0 0 -1 0 -1 -1 1 O

6.3.1 Properties of minimum covering color energy of semigraphs

Suppose G(V,X) be a vertex-colored semigraph order n and size m, and if
c(v;) denote the color of the vertex v; and let C be the minimum covering set.
Suppose Af,c(G) = (a;j)nxn be the minimum covering color matrix of G. Suppose
characteristic polynomial of AS,.(G) be

P5.(G, &) = det(é] — A5:(6)) = apé™ + &V 1 + az&™ % 4 azé 3+ +ay,

Theorem 6.8 Using the notations given above, we have

(@)ay=1
(b) a; = —[C]
(c)a, = (lgl) _; (lezzl) —ml

Where m,. = number of pairs of non-adjacent vertices receiving the same color in G.

Proof: (a) From the definition of the characteristic polynomial Pg.(G,¢&) =
det(&l — A5,:(G)) of A5,.(G), it is clear that a, = 1.

(b) (—1)*a; = Sum of all first order principal minors of AS,.(G) = Trace of
A (G) = |C]

Thus a; = —|C|

(c) (—1)%a, = Sum of all the 2 X 2 principal minors of AS,.(G)
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S, e =) 3
= z |a]-i ajjl = (a”a” al]ajl)_ 2 azij

1<i<jsn 1<i<jsn 1<i<jsn
m
C e;
Thus, a, = (I I) — (I ‘I) —m;,
2 = 2
=

Where, m; = number of pairs of non-adjacent vertices receiving the same color in G.

Theorem 6.9 If ¢&;,&,,&5,....,&, are the eigenvalues of the minimum covering
color matrix A$,.(G) of a semigraph G (V, E) of order n, having m edges and if C be

a minimum covering set of G, then

n
Zfi = |C|
=1

n

i. ng =2 [Z ('ezi|) +m.

i=1

+1C|

Where m( is the number of pairs of non-adjacent vertices receiving the same color

and |e;| is the number of vertices in the edge e; € E.

Proof: i. Since, the sum of the eigenvalues of A%,.(G) is equal to the trace of

A (G)
n

Hence Z Z = |C]|
i=1

i=1

ii. Consider

zn:((A )i = zn:zn:aijaji
i1

i= i=1j=1

As AS,.(G) is a symmetric matrix,

XIS

i=1 j=

= ZZ(aU) + z:(au)2

i<j

=2 [; (If;il) +m!

Where, m,. is the number of pairs of non-adjacent vertices receiving the same color.

n
+1Cl  Since, Z(aii)2=|0|
i=1

111



6.3.2 Some bounds for minimum covering color energy of

Semigraphs

Theorem 6.10 Let G(V,E) be the minimum covering colored semigraph

having n vertices and m edges with a minimum covering set C. Then

m
Ef(G) < Zn[z (lei|)+m’c + n|C|
=2

Where, m,. is the number of pairs of non-adjacent vertices in G receiving the same

color.

Proof: The minimum covering color matrix of a semigraph, A%,.(G) is symmetric

and hence its eigenvalues are real and can be ordered as §; = &, = &5 >.... = &,.

Appling the Cauchy-Schwarz inequality, we have
2

i=1 i=1 i=1

Substituting u; = 1, v; = |§;| in the above inequality and by Theorem 6.9 we have

(B (@) = (im) < n(i|fi|2>

i=1

m
Hence, EL:(G) < [2n Z Ie‘ )+m’c
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Theorem 6.11 Let G(V, E) be a minimum covering colored semigraph having n
vertices and m edges with a minimum covering set C. Let m; be the number of pairs

of non-adjacent vertices receiving the same color in G. If 4 = |det AS,.(G)| then

Enc(G) = |2 (i (lezil) + m’c) +[C|l +n(n—1)4%n

i=1

Proof: We have,

B ()12 (il&)
=1
=if + ) 1&d Ig)

= i#)

By applying AM > GM, we have

1/n(n—l)
1)Z|a| HE ];[lallf,
1/n(n—l)
1—[|fi|2(n_1)
i#j
2/n
= 1_[51'
i#j
— Az/n
ie. Z|§i| €] = n(n — 1)a%n
i#j
Thus [E<,.(G)]? Z £ + n(n — 1)4%n

By Theorem 6.9 we get

[E5uc(6)]2 <z (teh) +m'c>+|C|+n(n—1)A2/n

i=1

Hence the result.
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Theorem 6.12 Let G(V, E) be a minimum covering colored semigraph of order n,

size m and having C be a minimum covering set. Then a < Ef,.(G) < B,

m m
Where, a = z |e l lCl Z lel + [C|
i=1 i=1

+1C|

and f =2[§: (lezi|)+mg
i=1

Where, m; be the number of pairs of non-adjacent vertices in G receiving the same

color.

Proof : Consider

(B ()] (Zm )
Zmz + ) Il ¢

i#j
Zmz +2 ) lal 5] (6D
i<j
We have,
ai;  4jj
z $i$j = z |a-- s
o oy D L
1<i<j=sn 1<i<jsn
= z (aua; — aija;i)
1<i<jsn

For minimum covering color matrix 4¢,.(G) is symmetric, a;; = a;; Thus
mc > Uij ji 5

z $i$j = z a;;ajj — z a;;aji

1<i<jsn 1<i<jsn 1<i<jsn
2
= z @i % — Z (ai;)
1<i<jsn 1<i<jsn
m
_ ICI z Iel
i=1
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We know that,

Dlallg =1 &

i<j i<

|C| i |el _ ‘ (6.2)

i=1

Thus Zlfll |€]| =

i<j

Using inequation (6.1) and (6.2) and Theorem 6.9, we get

m m
c 2 |ei| ’ |C| _Z |ei| _
[ESc(6)] 22[2(2)+mc+ (150 =2 (51 —me|| +1c
=1 =1
Taking positive square-root, we get
m m
ES.(6) > |2 Z (1) 4 my + (N Z (tel) —mef| +1c1
i=1 i=1
Again, we obtain
m r’m
Z (el <2 > (1) + mi| +1c
i=1 Li=1
m T m
le] ' Z le; /
Thus n[2[2(2)+mc+|6| <2, (2)+mc+|C|
=1 E =1
Taking positive square-root, we get
Zn[z Ie‘ +m,, +n|C|<2[Z(|ezi|)+m’c +|C]
i=1

Thus, by using Theorem 6.10

m

ES,.(G) <2 [Z (";”) +m.

i=1

+1C|

Hence the result.

Theorem 6.13 Let G(V,E) be a minimum covering colored semigraph of order n
and size m, with minimum covering set C. Let minimum covering color eigenvalues

of A5, (G)be & 28,28 =...2&,. Then
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mdmswﬁ+<w444§X@b+m

+|C|—€12]

Where, m. is the number of pairs of non-adjacent vertices in G receiving the same

color.
Proof: Let & =&, >2é3>........ > &, be the minimum covering color eigenvalues

of A¢..(G). Appling the Cauchy-Schwarz inequality on to vectors
(&1, 1¢51, ..., 1&,D) and (1,1,...,1) with n — 1 entries,

(ZI&-I)Z s(-1 <le‘ilz>
ie. <Z|€il> < |[(n—-1) <Z|€i|2>

i.e. Z|fi|‘|f1|§ (n—l)(Zfiz—ﬁz)
i=1

i=1

By using Theorem 6.9, we have

m

mdmswﬁ+<w444§X@b+m

+|C|—€12]

i=1

Theorem 6.14  Let G(V,E) be a minimum covering colored semigraph of order n
and size m with minimum covering set C. Let &,,,, be the largest absolute value of

minimum covering color eigenvalue. Then

2[sm, (1) + mi] +1c)

ngax

Efnc(G) =2

Where, m,. is the number of pairs of non-adjacent vertices in G receiving the same

color.
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Proof: Let &,,, be the largest absolute value of the minimum covering color

eigenvalue of A%,.(G). Then
fmaxlfil = 512

n n
Thus Z fmax Ifll = z ELZ
i=1 i=1

By Theorem 6.9, we have

fmaxim >2 [i ('eh) + m
i=1 i=1

2 [z, (190) + me] + 1)

&nax

+1C|

Hence ES.(G) =

fekdfk
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