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Chapter 6 

 

COVERING ENERGY OF A SEMIGRAPH 

 

6.1 Introduction 

Chemical graph energy is the concept stems from chemistry to approximate the 

total 𝜋-electron energy of a molecule. In chemistry the conjugate hydrocarbon can be 

represented by graph called molecular graph, in which the atoms of a molecule are 

represented by the vertices and the chemical bonds are represented by the edges. Ivan 

Gutman [22] first introduced the energy for chemical graphs in the year 1978 and 

defined as the sum of the absolute value of eigenvalues of the adjacency matrix of a 

graph. Further, many authors conceived on different types of graph energy like color 

energy [6, 34, 35], the minimum covering energy [5], distance energy [19] etc. of a 

graph.  

  

In the year 2012 Adiga et.al. [5] introduced a matrix, called minimum covering 

matrix of a graph and its energy, and defined as follows: 

Suppose  𝐺(𝑉, 𝑋) be a graph of order n and size m, with vertex set V and edges 

set X. Let C subset of V be the minimum covering set of a graph G. The minimum 

covering matrix of G is the square matrix 𝐴௠௖(𝐺) = (𝑎௜௝) of order n, where  

  𝑎௜௝   = 1 if    𝑣௜𝑣௝ ∈ 𝐸 

        = 1 if  𝑖 = 𝑗 and 𝑣௜ ∈ 𝐶 

        = 0 otherwise. 

And the minimum covering energy of the graph G is defined as  𝐸௠௖(𝐺) = ∑ |𝜆௜|
௡
௜ୀଵ   

where 𝜆ଵ, 𝜆ଶ, . . . , 𝜆௡ are eigenvalues of the minimum covering matrix 𝐴௠௖(𝐺). 

 

Adiga et.al. [6], have introduced the concept of color matrix and energy of a 

graph and investigated many properties and results. Further in the year 2015, M. R. 

Rajesh Kanna [30] et.al. investigated minimum covering color energy of a graph and 

their definitions are given below:  
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Let 𝐺 be a vertex-colored graph of order n. Let C subset of V be the minimum 

covering set of a graph G. Then the minimum covering color matrix of 𝐺 is the 

matrix 𝐴௠௖
௖ (𝐺) = (𝑎௜௝)௡×௡ of which,   

𝑎௜௝(𝑣௜, 𝑣௝)      =  1      if 𝑣௜ and 𝑣௝  are adjacent or if 𝑖 = 𝑗 and 𝑣௜ ∈ 𝐶 

        = -1      if 𝑣௜  and 𝑣௝  are non-adjacent with 𝑐(𝑣௜) = 𝑐(𝑣௝), 

        =  0      otherwise.   

where 𝑐(𝑣௜) is the color of the vertex 𝑣௜ in 𝐺. Recall that, the vertices of the graph  𝐺 

are colored so that two adjacent vertices always have different colors. The minimum 

covering color energy 𝐸௠௖
௖  of a graph 𝐺  with respect to a given coloring is the sum 

of the absolute value of eigenvalues of the minimum covering color matrix 𝐴௠௖
௖ (𝐺).   

 

Motivated by these, we have extended the minimum covering energy of  

semigraphs in section 6.2 and minimum covering color energy of a semigraph in 

section 6.3.   

 

6.2 On minimum covering matrix and energy of semigraphs 

In this section a new type of matrix, called minimum covering matrix of a 

semigraph was introduced and obtained its energy. The minimum covering matrix of 

a semigraph is defined as follows:  

The minimum covering matrix of a semigraph:  

If 𝐺(𝑉, 𝑋) be a semigraph of order n size m. Let C be the minimum covering 

set, then the minimum covering matrix of G is the square matrix 𝐴௠௖(𝐺) = ൫𝑎௜௝൯ of 

order n, where 

i. For every edge 𝑒௜ of X of cardinality, say k, let 𝑒௜ = (𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖௞) 

such that 𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖௞ 
are distinct vertices in V , for all 𝑖௥ ∈ 𝑒௜;   r =

1,2, . . . , 𝑘 

                
(𝑎) 𝑎௜భ௜ೝ

= 𝑟 − 1,
 

                      
(𝑏) 𝑎௜ೖ௜ೝ

= 𝑘 − 𝑟 

ii. 𝑎௜௝ = 1
   

if  𝑖 = 𝑗 and  𝑣௜ ∈ 𝐶.   

iii. All the remaining entries of A are zero. 
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Figure 6.1   

The minimum covering energy of semigraphs:  

Nikiforov [60] defined the energy of a general matrix (of any size) as the 

summation of the singular values of that matrix.   

 

Thus, if 𝜎ଵ, 𝜎ଶ, . . . , 𝜎௡ be the singular values of minimum covering matrix 

𝐴௠௖(𝐺) of the semigraph G, then the minimum covering energy of a semigraph 

denoted by 𝐸௠௖(𝐺), is defined as the summation of its singular values. i.e. 

𝐸௠௖(𝐺) = ෍ 𝜎௜

௡

௜ୀଵ

 

We observe that, 𝐴௠௖(𝐺)𝐴௠௖
ᇱ (𝐺) is a positive semidefinite matrix. So, its 

eigenvalues 𝜆ଵ, 𝜆ଶ, . . . , 𝜆௡ are non-negative and therefore the singular values of 

𝐴௠௖(𝐺) are non-negative real numbers. Thus 𝐸௠௖(𝐺) ≥ 0, equality holds if and only 

if the number of edges in G is zero. Minimum covering energy of a semigraph is well 

defined, as if 𝐺 ′ be a semigraph obtained by relabeling of the vertices of G, then 

𝐴௠௖(𝐺 ′)𝐴′
௠௖(𝐺 ′) is obtained by interchanging the rows and the corresponding 

columns of 𝐴௠௖(𝐺)𝐴′
௠௖(𝐺). Hence the eigenvalues of 𝐴௠௖(𝐺)𝐴′

௠௖(𝐺) and 

𝐴௠௖(𝐺 ′)𝐴′
௠௖(𝐺 ′) are same, and so the singular values of G and 𝐺 ′are also same. 

 

Example 6.1  𝐺(𝑉, 𝑋) be a connected semigraph as shown in Figure 6.1 having 

vertex set  𝑉 = {1,2,3,4,5,6,7,8}  and let 𝐶 = {3, 4, 7} be the minimum covering set. 

And 𝑋 = {(1,2,3), (3,4), (4,5,6), (6,7,3), (7,8)} be the edge set of G. Then,  
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Then, Minimum covering matrix 𝐴௠௖(𝐺) of the semigraph 𝐺(𝑉, 𝑋) is     

                          𝐴௠௖(𝐺) =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 2 0 0 0 0 0
0 0 1 0 0 0 0 0
2 1 1 1 0 2 1 0
0 0 1 1 1 2 0 0
0 0 0 0 0 0 0 0
0 0 2 2 1 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

6.2.1 Properties of minimum covering energy of semigraphs 

 

Lemma 6.1  Let 𝐴௠௖(𝐺) is the minimum covering matrix of a semigraph G, and 𝐶 is 

its minimum covering set. If 𝜆ଵ, 𝜆ଶ, . . . , 𝜆௡ are eigenvalues of 𝐴௠௖(𝐺)𝐴′
௠௖(𝐺). Then  

෍ 𝜆௜

௡

௜ୀଵ

= 2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ |𝐶|
 

where the cardinality of an edge 𝑒 ∈ 𝑋 of the semigraph is 𝑘௘ + 1and 𝑘௘ ≥ 1 . 

 

Proof:  In the minimum covering matrix 𝐴௠௖(𝐺), corresponding to every edge 𝑒 ∈ 𝑋 

of cardinality 𝑘௘ + 1, there is a sequence {1,2, . . . , 𝑘௘} in the rows corresponding to 

the end vertices of that edge. And there are |𝐶| nos. of 1’s in the diagonal of 𝐴௠௖(𝐺). 

Thus every edge contributes 2 ∑ ൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯௘  and the diagonal elements 

contribute |𝐶| × 1ଶ in the trace of 𝐴௠௖𝐴′
௠௖.            

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒            𝑇𝑟𝑎𝑐(𝐴௠௖𝐴′
௠௖) = 2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘

ଶ൯

௘∈௑

+ |𝐶| × 1ଶ 

𝐻𝑒𝑛𝑐𝑒                     ෍ 𝜆௜

௡

௜ୀଵ

= 2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ |𝐶| 

 

Theorem 6.1 The minimum covering energy 𝐸௠௖(𝐺) of a semigraph G, is a square 

root of an even or odd integer according as |𝐶| is even or odd. 

 

Proof: If 𝜎ଵ, 𝜎ଶ, . . . . , 𝜎௡ be the singular values of minimum covering matrix 𝐴௠௖(𝐺) 
of the semigraph G, then  
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(𝜎ଵ + 𝜎ଶ+. . . . . . . . +𝜎௡)ଶ = ෍ 𝜎௜
ଶ

௡

௜ୀଵ

+ 2 ෍ 𝜎௜𝜎௝

௜ழ௝
 

Thus     

                 [𝐸௠௖(𝐺)]ଶ = ෍ 𝜆௜

௡

௜ୀଵ

+ 2 ෍ 𝜎௜𝜎௝

௜ழ௝
 

                                      = 2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ |𝐶| + 2 ෍ 𝜎௜𝜎௝

௜ழ௝  

                                      = 2 ቎෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ ෍ 𝜎௜𝜎௝

௜ழ௝

቏ + |𝐶|
 

                       𝐸௠௖(𝐺) = ඩ2 ቎෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ ෍ 𝜎௜𝜎௝

௜ழ௝

቏ + |𝐶|
 

 

Thus the minimum covering energy 𝐸௠௖(𝐺) of a semigraph G, is a square root 

of an even or odd integer according as |𝐶| is even or odd. 

 

Theorem 6.2   The minimum covering energy 𝐸௠௖(𝐺) of a semigraph G, then  

[𝐸௠௖(𝐺)]ଶ = |𝐶|(𝑚𝑜𝑑 2) 

 

Proof: By Theorem 6.1, the minimum covering energy 𝐸௠௖(𝐺) of a semigraph G, is 

a square root of an even or odd integer according as |𝐶| is even or odd. 

                                    𝐸௠௖(𝐺) = ඥ2𝑡 + |𝐶| 

 i.e.                       [𝐸௠௖(𝐺)]ଶ = 2𝑡 + |𝐶|             

𝑇ℎ𝑢𝑠,                            [𝐸௠௖(𝐺)]ଶ = |𝐶|(𝑚𝑜𝑑 2). 

 

6.2.2 Some bounds on minimum covering energy of semigraphs 

 

Theorem 6.3  If G be a semigraph having n vertices and m edges,  

ඨ2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ |𝐶| ≤ 𝐸௠௖(𝐺) ≤ ඨ𝑛 ൥2 ෍(1ଶ + 2ଶ+. . . +𝑘௘
ଶ)

௘∈௑

+ |𝐶|൩ 
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Proof:  Let 𝜎௜, 𝑖 = 1,2, . . . , 𝑛 be the singular values of minimum covering matrix 

𝐴௠௖, and 𝜆௜, 𝑖 = 1,2, . . . , 𝑛 be the eigenvalues of 𝐴௠௖𝐴′
௠௖ . By Cauchy- Schwarz’s 

inequality on two vector (𝜎ଵ, 𝜎ଶ, . . . . . , 𝜎௡) and (1,1, . . . . . ,1), we have 

(𝜎ଵ + 𝜎ଶ+. . . . . . . . +𝜎௡)ଶ ≤ 𝑛 ෍ 𝜎௜
ଶ

௡

௜ୀଵ

= 𝑛 ෍ 𝜆௜

௡

௜ୀଵ

 

𝑇ℎ𝑢𝑠,                     [𝐸௠௖(𝐺)]ଶ ≤ 𝑛 ൥2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ |𝐶|൩ 

Again, we have 
                   

                                [𝐸௠௖(𝐺)]ଶ = ൭෍ 𝜎௜

௡

௜ୀଵ

൱

ଶ

≥ ෍ 𝜎௜
ଶ

௡

௜ୀଵ

= ෍ 𝜆௜

௡

௜ୀଵ  

𝑖. 𝑒.                          [𝐸௠௖(𝐺)]ଶ ≥ 2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ |𝐶| 

Hence 

ඨ2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ |𝐶| ≤ 𝐸௠௖(𝐺) ≤ ඨ𝑛 ൥2 ෍(1ଶ + 2ଶ+. . . +𝑘௘
ଶ)

௘∈௑

+ |𝐶|൩ 

 

Theorem 6.4.  If G be a semigraph having n vertices and m edges, then  

[𝐸௠௖(𝐺)]ଶ ≥ 2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ |𝐶| + 𝑛(𝑛 − 1)𝛥
ଵ

௡ൗ , 

Where  𝛥 = 𝑑𝑒𝑡( 𝐴௠௖𝐴′
௠௖). 

 

Proof:   Let  𝜎௜, 𝑖 = 1,2, . . . . . , 𝑛 be the singular values of 𝐴௠௖, then we have,  

[𝐸௠௖(𝐺)]ଶ = ൭෍ 𝜎௜

௡

௜ୀଵ

൱

ଶ

= ෍ 𝜎௜
ଶ

௡

௜ୀଵ

+ 2 ෍ 𝜎௜𝜎௝

௜ழ௝

= ෍ 𝜆௜

௡

௜ୀଵ

+ 2 ෍ 𝜎௜𝜎௝

௜ஷ௝  

As 𝜎௜, 𝑖 = 1,2, . . . . . , 𝑛 are non-negative, so 𝑛(𝑛 − 1) nos. of 𝜎௜𝜎௝ are also non-

negative number.  

 

Therefore, applying  𝐴𝑀 ≥ 𝐺𝑀  on 𝑛(𝑛 − 1) nos. of  non-negative numbers 𝜎௜𝜎௝. 

We have  
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1

𝑛(𝑛 − 1)
෍ 𝜎௜𝜎௝

௜ஷ௝

≥ ቌෑ 𝜎௜𝜎௝

௜ஷ௝

ቍ

భ

೙(೙షభ)

= ൭ෑ 𝜎௜
ଶ(௡ିଵ)

௡

௜ୀଵ

൱

భ

೙(೙షభ)

 

𝑖. 𝑒.              ෍ 𝜎௜𝜎௝

௜ஷ௝

 ≥ 𝑛(𝑛 − 1) ൭ሡ 𝜆௜
௡ିଵ

௡

௜ୀଵ

൱

భ

೙(೙షభ)

= 𝑛(𝑛 − 1) ൭ෑ 𝜆௜

௡

௜ୀଵ

൱

భ

೙

 

𝑇ℎ𝑢𝑠          ෍ 𝜎௜𝜎௝

௜ஷ௝

≥ 𝑛(𝑛 − 1)𝛥
భ

೙
 

𝑊ℎ𝑒𝑟𝑒               𝛥 = ෑ 𝜆௜

௡

௜ୀଵ

= 𝑑𝑒𝑡( 𝐴௠௖𝐴′
௠௖) 

Therefore, we get  

[𝐸௠௖(𝐺)]ଶ ≥ ෍ 𝜆௜

௡

௜ୀଵ

+ 𝑛(𝑛 − 1)𝛥
భ

೙ 

by Lemma 6.1 we obtain 

[𝐸௠௖(𝐺)]ଶ ≥ 2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ |𝐶| + 𝑛(𝑛 − 1)𝛥
ଵ

௡ൗ  

 

Lemma 6.2 [60]   If 𝐴 = [𝑎௜௝] is any non-constant matrix and its norm defined as               

||𝐴||ଶ = ඨ෍ 𝑎௜௝
ଶ

௜௝

 

Suppose  𝜎ଵ ≥ 𝜎ଶ ≥. . . . ≥ 𝜎௡ are singular values of A, then 𝐸(𝐴) ≥ 𝜎ଵ +
||஺||మ

మିఙభ
మ

ఙమ
.  

 

Thus, evaluate a lower bound for 𝐸௠௖(𝐺) as follows: 

Theorem 6.5 For a semigraph G on n vertices, if 𝜎ଵ and 𝜎ଶ are respectively largest 

and second largest singular values of its minimum covering matrix 𝐴௠௖(𝐺). Then we 

have  

𝐸௠௖(𝐺) ≥ 𝜎ଵ +
1

𝜎ଶ
[2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘

ଶ൯

௘∈௑

+ |𝐶| − 𝜎ଵ
ଶ]

 

 

Proof: By Lemma 6.2, for the minimum covering matrix 𝐴௠௖(𝐺) of G, we have  

𝐸௠௖(𝐺) ≥ 𝜎ଵ +
||𝐴௠௖||ଶ

ଶ − 𝜎ଵ
ଶ

𝜎ଶ
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Clearly, form definition of norm of a matrix we have   

||𝐴௠௖(𝐺)||ଶ
ଶ = 𝑡𝑟𝑎𝑐𝑒(𝐴௠௖𝐴′

௠௖) 

                                                  = 2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ |𝐶| 

Hence, we get      

𝐸௠௖(𝐺) ≥ 𝜎ଵ +
1

𝜎ଶ
[2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘

ଶ൯

௘∈௑

+ |𝐶| − 𝜎ଵ
ଶ] 

Which give another lower bound of 𝐸௠௖(𝐺). 

 

6.2.3 Relation between energy and minimum covering energy of a 

semigraph  

Theorem 6.6   Let 𝐺(𝑉, 𝑋) be a semigraph of order n, size m then  𝐸௠௖(𝐺) ≥
ா(ீ)

√௡
, 

where 𝐸(𝐺)

 

is the energy of the semigraph G. 

Proof:  If 𝐺(𝑉, 𝑋) be a semigraph of order n, size m, and if 𝐸(𝐺) be the energy of the 

semigraph.  Then by Theorem 2.4.1  we have  

ඨ2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

≤ 𝐸(𝐺) ≤ ඨ2𝑛 ෍(1ଶ + 2ଶ+. . . +𝐾௘
ଶ)

௘∈௑  

𝑖. 𝑒.            2 ෍(1ଶ + 2ଶ+. . . . +𝑘௘
ଶ)

௘∈௑

≤ [𝐸(𝐺)]ଶ ≤ 2𝑛 ෍(1ଶ + 2ଶ+. . . +𝑘ଶ)

௘∈௑  

𝑇ℎ𝑢𝑠                            [𝐸(𝐺)]ଶ ≤ 2𝑛 ෍(1ଶ + 2ଶ+. . . +𝑘ଶ)

௘∈௑

 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒                 
[𝐸(𝐺)]ଶ

𝑛
≤ 2 ෍(1ଶ + 2ଶ+. . . +𝑘ଶ)

௘∈௑

 

If 𝐸௠௖(𝐺) be the minimum covering energy of a semigraph 𝐺(𝑉, 𝑋),  

 

By  Theorem 6.4,  we get   

[𝐸௠௖(𝐺)]ଶ ≥ 2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

+ |𝐶| + 𝑛(𝑛 − 1)𝛥
ଵ

௡ൗ  

𝑖. 𝑒.               [𝐸௠௖(𝐺)]ଶ ≥ 2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑
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𝑇ℎ𝑢𝑠           [𝐸௠௖(𝐺)]ଶ ≥
[𝐸(𝐺)]ଶ

𝑛
 

𝐻𝑒𝑛𝑐𝑒          𝐸௠௖(𝐺) ≥
𝐸(𝐺)

√𝑛  

Theorem 6.7 For a semigraph 𝐺(𝑉, 𝑋) of order n, size m, if 𝜎ଵ and 𝜎ଶ are 

respectively largest and second largest singular values of its minimum covering 

matrix 𝐴௠௖(𝐺). Then we have   

𝑛𝐸௠௖(𝐺) ≥
[𝐸(𝐺)]ଶ − 𝑛𝜎ଵ

ଶ

𝜎ଶ
 

Where 𝐸(𝐺)

 

is the energy of the semigraph.                                   

 

Proof :  If 𝐺(𝑉, 𝑋) be a semigraph of order n, size m, and if 𝐸(𝐺) be the energy of 

the semigraph.  Then by Theorem 2.4.1  we have  

𝑇ℎ𝑒𝑛,         ඨ2 ෍൫1ଶ + 2ଶ+. . . +𝑘௘
ଶ൯

௘∈௑

≤ 𝐸(𝐺) ≤ ඨ2𝑛 ෍(1ଶ + 2ଶ+. . . +𝐾௘
ଶ)

௘∈௑

 

𝑇ℎ𝑢𝑠                         [𝐸(𝐺)]ଶ ≤ 2𝑛 ෍(1ଶ + 2ଶ+. . . . +𝑘௘
ଶ)

௘∈௑

 

By Theorem 6.5 we have,    

                       𝐸௠௖(𝐺) ≥ 𝜎ଵ +
2 ∑ ൫1ଶ + 2ଶ+. . . . +𝑘௘

ଶ൯௘∈௑ + |𝐶| − 𝜎ଵ
ଶ

𝜎ଶ
 

𝑇ℎ𝑢𝑠                𝜎ଶ𝐸௠௖(𝐺) − 𝜎ଵ𝜎ଶ + 𝜎ଵ
ଶ ≥ 2 ෍(1ଶ + 2ଶ+. . . . +𝑘௘

ଶ)

௘∈௑

+ |𝐶| 

𝑖. 𝑒.                   𝜎ଶ𝐸௠௖(𝐺) − 𝜎ଵ𝜎ଶ + 𝜎ଵ
ଶ ≥ 2 ෍(1ଶ + 2ଶ+. . . . +𝑘௘

ଶ)

௘∈௑
 

𝑖. 𝑒.                   𝑛(𝜎ଶ𝐸௠௖(𝐺) − 𝜎ଵ𝜎ଶ + 𝜎ଵ
ଶ) ≥ 2𝑛 ෍(1ଶ + 2ଶ+. . . . +𝑘௘

ଶ)

௘∈௑  

𝑖. 𝑒.                   𝑛(𝜎ଶ𝐸௠௖(𝐺) − 𝜎ଵ𝜎ଶ + 𝜎ଵ
ଶ) ≥ [𝐸(𝐺)]ଶ

 
𝑖. 𝑒.                   𝑛𝐸௠௖(𝐺) ≥

[𝐸(𝐺)]ଶ

𝜎ଶ
− 𝑛

𝜎ଵ
ଶ

𝜎ଶ
+ 𝑛𝜎ଵ

 

𝑖. 𝑒.                   𝑛𝐸௠௖(𝐺) ≥
[𝐸(𝐺)]ଶ

𝜎ଶ
− 𝑛

𝜎ଵ
ଶ

𝜎ଶ
 

𝐻𝑒𝑛𝑐𝑒             𝑛𝐸௠௖(𝐺) ≥
[𝐸(𝐺)]ଶ − 𝑛𝜎ଵ

ଶ

𝜎ଶ
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3(C2) 2(C1) 

8(C2) 

1 (C1)  

6(C2) 4(C1) 5(C2) 

7(C1)  

Figure 6.2   

6.3 Minimum covering color matrix and color energy of semigraphs 

In this section another type of matrix called minimum covering color matrix of 

a semigraph was introduced and obtained energy of the matrix, and established some 

bonds to realizing the mathematical aspects of the minimum covering color energy of 

a semigraph. The minimum covering color matrix of a semigraph is defined as 

follows: 

Minimum covering color matrix and energy of semigraph: Suppose 𝐺(𝑉, 𝑋) be a 

vertex-colored semigraph of order n and size m, and if 𝑐(𝑣௜) denote the color of the 

vertex 𝑣௜. Let 𝐶 ⊆ 𝑉 be a minimum covering set, then the minimum covering color 

matrix of 𝐺 is defined by the square matrix 𝐴௠௖
௖ (𝐺) = (𝑎௜௝)௡×௡, and of which 

 𝑎௜௝(𝑣௜ , 𝑣௝)   =  1       if 𝑣௜  and 𝑣௝  are adjacent  or  if 𝑖 = 𝑗 and 𝑣௜ ∈ 𝐶,   

        = -1       if 𝑣௜ and 𝑣௝  are non-adjacent with 𝑐(𝑣௜) = 𝑐(𝑣௝),  
   

 

        =  0,      otherwise. 

The minimum covering color matrix 𝐴௠௖
௖ (𝐺) of a semigraph 𝐺 is symmetric 

and hence its eigenvalues 𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . , 𝜉௡ are all real, called minimum covering color 

eigenvalues of 𝐺. The minimum covering color energy of a semigraph 𝐺 is denoted 

by 𝐸௠௖
௖ (𝐺) and defined as  𝐸௠௖

௖ (𝐺) = ∑ |𝜉௜|
௡
௜ୀଵ . 

 

Example 6.2   𝐺(𝑉, 𝑋) be a connected semigraph as shown in Figure 6.2 having 

vertex set  𝑉 = {1,2,3,4,5,6,7,8}  with the minimum colors C1, C1, C2, C1, C2, C2, 

C1 and C2 respectively and edge set 𝑋 = {(1,2,3), (3,4), (4,5,6), (6,7,3), (7,8)}. Let 

𝐶 = {3, 4, 7} be the minimum covering set. Then,  
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Then, the minimum covering color matrix 𝐴௠௖
௖ (𝐺) of the semigraph 𝐺(𝑉, 𝑋) is     

 

                   𝐴௠௖
௖ (𝐺) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 1 1 −1 0 0 −1 0
1 0 1 −1 0 0 −1 0
1 1 1 1 −1 1 1 −1

−1 −1 1 1 1 1 −1 0
0 0 −1 1 0 1 0 −1
0 0 1 1 1 0 1 −1

−1 −1 1 −1 0 1 1 1
0 0 −1 0 −1 −1 1 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

6.3.1 Properties of minimum covering color energy of semigraphs 

Suppose 𝐺(𝑉, 𝑋) be a vertex-colored semigraph order n and size m, and if 

𝑐(𝑣௜) denote the color of the vertex 𝑣௜ and let C be the minimum covering set. 

Suppose  𝐴௠௖
௖ (𝐺) = (𝑎௜௝)௡×௡ be the minimum covering color matrix of 𝐺. Suppose 

characteristic polynomial of 𝐴௠௖
௖ (𝐺) be  

𝑃௠௖
௖ (𝐺, 𝜉) = 𝑑𝑒𝑡൫𝜉𝐼 − 𝐴௠௖

௖ (𝐺)൯ = 𝑎଴𝜉௡ + 𝑎ଵ𝜉௡ିଵ + 𝑎ଶ𝜉௡ିଶ + 𝑎ଷ𝜉௡ିଷ+. . . +𝑎௡ 

 

Theorem 6.8 Using the notations given above, we have 

(a) 𝑎଴ = 1 

(b) 𝑎ଵ = −|𝐶| 

(𝑐) 𝑎ଶ = ቀ
|𝐶|
2

ቁ − ෍ ቀ
|𝑒௜|

2
ቁ −

௠

௜ୀଵ

𝑚௖
ᇱ  

Where 𝑚௖
ᇱ = number of pairs of non-adjacent vertices receiving the same color in 𝐺. 

 

Proof: (a) From the definition of the characteristic polynomial 𝑃௠௖
௖ (𝐺, 𝜉) =

𝑑𝑒𝑡൫𝜉𝐼 − 𝐴௠௖
௖ (𝐺)൯ of 𝐴௠௖

௖ (𝐺), it is clear that  𝑎଴ = 1.  

 

(b) (−1)ଵ𝑎ଵ = Sum of all first order principal minors of 𝐴௠௖
௖ (𝐺) = Trace of  

𝐴௠௖
௖ (𝐺) = |𝐶| 

Thus  𝑎ଵ = −|𝐶| 

 

(c) (−1)ଶ𝑎ଶ = Sum of all the 2 × 2 principal minors of 𝐴௠௖
௖ (𝐺) 



 

111 
 

= ෍ ቚ
𝑎௜௜ 𝑎௜௝

𝑎௝௜ 𝑎௝௝
ቚ

ଵஸ௜ழ௝ஸ௡

= ෍ ൫𝑎௜௜𝑎௝௝ − 𝑎௜௝𝑎௝௜൯

ଵஸ௜ழ௝ஸ௡

= ቀ
|𝐶|
2

ቁ − ෍ 𝑎ଶ
௜௝

ଵஸ௜ழ௝ஸ௡

 

𝑇ℎ𝑢𝑠,    𝑎ଶ = ቀ
|𝐶|
2

ቁ − ෍ ቀ
|𝑒௜|

2
ቁ −

௠

௜ୀଵ

𝑚௖
ᇱ  

Where, 𝑚௖
ᇱ = number of pairs of non-adjacent vertices receiving the same color in 𝐺. 

Theorem 6.9  If  𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . . , 𝜉௡ are the eigenvalues of the minimum covering 

color matrix 𝐴௠௖
௖ (𝐺) of a semigraph 𝐺(𝑉, 𝐸) of order n, having m edges and if C be 

a minimum covering set of 𝐺, then    

𝑖.   ෍ 𝜉௜

௡

௜ୀଵ

= |𝐶| 

𝑖𝑖.  ෍ 𝜉௜
ଶ

௡

௜ୀଵ

= 2 ൥෍ ቀ
|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + |𝐶| 

Where 𝑚௖
ᇱ
 is the number of pairs of non-adjacent vertices receiving the same color 

and |𝑒௜| 
is the number of vertices in the edge  𝑒௜ ∈ 𝐸. 

Proof:   i. Since, the sum of the eigenvalues of 𝐴௠௖
௖ (𝐺) is equal to the trace of 

𝐴௠௖
௖ (𝐺) 

𝐻𝑒𝑛𝑐𝑒         ෍ 𝜉௜

௡

௜ୀଵ

= ෍ 𝑎௜௜

௡

௜ୀଵ

= |𝐶| 

ii.  Consider   

෍ 𝝃𝒊
𝟐

𝒏

𝒊ୀ𝟏

= ෍((𝐴௠௖
௖ )ଶ)𝒊𝒊

𝒏

𝒊ୀ𝟏

= ෍ ෍ 𝑎௜௝

௡

௝ୀଵ

௡

௜ୀଵ

𝑎௝௜ 

As 𝐴௠௖
௖ (𝐺) is a symmetric matrix, 

෍ 𝝃𝒊
𝟐

𝒏

𝒊ୀ𝟏

= ෍ ෍ 𝑎௜௝
ଶ

௡

௝ୀଵ

௡

௜ୀଵ

 

             = 2 ෍൫𝑎௜௝൯
ଶ

௜ழ௝

+ ෍(𝑎௜௜)
ଶ

௡

௜ୀଵ

 

             = 2 ൥෍ ቀ
|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + |𝐶|          𝑆𝑖𝑛𝑐𝑒,   ෍(𝑎௜௜)
ଶ =

௡

௜ୀଵ

|𝐶|  

Where, 𝑚௖
ᇱ
  is the number of pairs of non-adjacent vertices receiving the same color. 
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6.3.2 Some bounds for minimum covering color energy of  

Semigraphs 

 

Theorem 6.10  Let 𝐺(𝑉, 𝐸) be the minimum covering colored semigraph 

having n vertices and m edges with a minimum covering set C. Then  

𝐸௠௖
௖ (𝐺) ≤ ඩ2𝑛 ൥෍ ቀ

|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + 𝑛|𝐶| 

Where, 𝑚௖
ᇱ  is the number of pairs of non-adjacent vertices in 𝐺 receiving the same 

color. 

 

Proof:  The minimum covering color matrix of a semigraph, 𝐴௠௖
௖ (𝐺) is symmetric 

and hence its eigenvalues are real and can be ordered as 𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥. . . . ≥ 𝜉௡.  

 

Appling the Cauchy-Schwarz inequality, we have  

൭෍ 𝑢௜𝑣௜

௡

௜ୀଵ

൱

ଶ

≤ ൭෍ 𝑢௜
ଶ

௡

௜ୀଵ

൱ ൭෍ 𝑣௜
ଶ

௡

௜ୀଵ

൱ 

Substituting 𝑢௜ = 1 , 𝑣௜ = |𝜉௜| in the above inequality and by Theorem 6.9 we have 

 

[𝐸௠௖
௖ (𝐺)]ଶ = ൭෍|𝜉௜|

௡

௜ୀଵ

൱

ଶ

≤ 𝑛 ൭෍|𝜉௜|
ଶ

௡

௜ୀଵ

൱ 

                                                = 𝑛 ෍ 𝜉௜
ଶ

௡

௜ୀଵ

 

= 𝑛 ൥2 ൝෍ ቀ
|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

ൡ + |𝐶|൩ 

𝐻𝑒𝑛𝑐𝑒,                  𝐸௠௖
௖ (𝐺) ≤ ඩ2𝑛 ൥෍ ቀ

|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + 𝑛|𝐶| 
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Theorem 6.11   Let 𝐺(𝑉, 𝐸) be a minimum covering colored semigraph having n 

vertices and m edges with a minimum covering set C. Let 𝑚௖
ᇱ
 be the number of pairs 

of non-adjacent vertices receiving the same color in 𝐺. If  𝛥 = |𝑑𝑒𝑡 𝐴௠௖
௖ (𝐺)| then  

𝑬𝒎𝒄
𝒄 (𝑮) ≥ ඩ2 ൭෍ ቀ

|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൱ + |𝐶| + 𝑛(𝑛 − 1)𝛥
ଶ

௡ൗ  

Proof:    We have, 

[𝑬𝒎𝒄
𝒄 (𝑮)]𝟐 = ൭෍|𝝃𝒊|

𝒏

𝒊ୀ𝟏

൱

𝟐

 

                                      = ෍ 𝝃𝒊
𝟐

𝒏

𝒊ୀ𝟏

+ ෍|𝝃𝒊|

𝒊ஷ𝒋

ห𝝃𝒋ห 

 

By applying  𝑨𝑴 ≥ 𝑮𝑴, we have 

 
1

𝑛(𝑛 − 1)
෍|𝜉௜|

௜ஷ௝

ห𝜉௝ห ≥ ቌෑ|𝜉௜|ห𝜉௝ห

௜ஷ௝

ቍ

ଵ
௡(௡ିଵ)ൗ

 

                                            = ቌෑ|𝜉௜|
ଶ(௡ିଵ)

௜ஷ௝

ቍ

ଵ
௡(௡ିଵ)ൗ

 

                   = ቮෑ 𝜉௜

௜ஷ௝

ቮ

ଶ
௡ൗ

 

       = 𝛥
ଶ

௡ൗ
 

𝑖. 𝑒.                                               ෍|𝜉௜|

௜ஷ௝

ห𝜉௝ห ≥ 𝑛(𝑛 − 1)𝛥
ଶ

௡ൗ  

𝑇ℎ𝑢𝑠                                            [𝑬𝒎𝒄
𝒄 (𝑮)]ଶ ≥ ෍ 𝜉௜

ଶ

௡

௜ୀଵ

+ 𝑛(𝑛 − 1)𝛥
ଶ

௡ൗ
 

 By Theorem 6.9 we get                    

[𝑬𝒎𝒄
𝒄 (𝑮)]ଶ ≥ 2 ൭෍ ቀ

|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൱ + |𝐶| + 𝑛(𝑛 − 1)𝛥
ଶ

௡ൗ
 

Hence the result.  
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Theorem 6.12     Let 𝐺(𝑉, 𝐸) be a minimum covering colored semigraph of order n, 

size m and having C be a minimum covering set.  Then 𝛼 ≤ 𝐸௠௖
௖ (𝐺) ≤ 𝛽,  

𝑊ℎ𝑒𝑟𝑒,   𝛼 = ඩ2 ൥෍ ቀ
|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

+ อቀ
|𝐶|
2

ቁ − ෍ ቀ
|𝑒௜|

2
ቁ −

௠

௜ୀଵ

𝑚௖
ᇱ อ൩ + |𝐶| 

𝒂𝒏𝒅         𝛽 = 𝟐 ൥෍ ቀ
|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + |𝐶| 

Where, 𝑚௖
ᇱ  be the number of pairs of non-adjacent vertices in 𝐺 receiving the same 

color.  

Proof :  Consider      

[𝐸௠௖
௖ (𝐺)]ଶ = ൭෍|𝜉௜|

௡

௜ୀଵ

൱

ଶ

                  

 

                        = ෍|𝜉௜|
ଶ

௡

௜ୀଵ

+ ෍|𝜉௜|

௜ஷ௝

ห𝜉௝ห

 

= ෍|𝜉௜|
ଶ

௡

௜ୀଵ

+ 2 ෍|𝜉௜|

௜ழ௝

ห𝜉௝ห                               (6.1) 

We have,            

෍ 𝜉௜𝜉௝

ଵஸ௜ழ௝ஸ௡

= ෍ ቚ
𝑎௜௜ 𝑎௜௝

𝑎௝௜ 𝑎௝௝
ቚ

ଵஸ௜ழ௝ஸ௡  

                                  = ෍ ൫𝑎௜௜𝑎௝௝ − 𝑎௜௝𝑎௝௜൯

ଵஸ௜ழ௝ஸ௡
 

 

For minimum covering color matrix 𝐴௠௖
௖ (𝐺) is symmetric, 𝑎௜௝ = 𝑎௝௜ Thus,  

 

෍ 𝜉௜𝜉௝ = ෍ 𝑎௜௜𝑎௝௝

ଵஸ௜ழ௝ஸ௡

− ෍ 𝑎௜௝𝑎௝௜

ଵஸ௜ழ௝ஸ௡ଵஸ௜ழ௝ஸ௡

 

                                     = ෍ 𝑎௜௜𝑎௝௝

ଵஸ௜ழ௝ஸ௡

− ෍ ൫𝑎௜௝൯
ଶ

ଵஸ௜ழ௝ஸ௡  

                           = ቀ
|𝐶|
2

ቁ − ෍ ቀ
|𝑒௜|

2
ቁ −

௠

௜ୀଵ

𝑚௖
ᇱ  
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We know that,   

෍ |𝜉௜|

௜ழ௝

|𝜉௝| ≥ | ෍ 𝜉௜𝜉௝

௜ழ௝

 

Thus                         ෍|𝝃𝒊|

𝒊ழ௝

ห𝝃𝒋ห ≥ อቀ
|𝐶|
2

ቁ − ෍ ቀ
|𝑒௜|

2
ቁ −

௠

௜ୀଵ

𝑚௖
ᇱ อ                                    (6.2) 

 

Using inequation (6.1) and (6.2) and Theorem 6.9, we get 

[𝑬𝒎𝒄
𝒄 (𝑮)]𝟐 ≥ 2 ൥෍ ቀ

|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

+ อቀ
|𝐶|
2

ቁ − ෍ ቀ
|𝑒௜|

2
ቁ −

௠

௜ୀଵ

𝑚௖
ᇱ อ൩ + |𝐶|

 

Taking positive square-root, we get
                                            

𝑬𝒎𝒄
𝒄 (𝑮) ≥ ඩ2 ൥෍ ቀ

|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

+ อቀ
|𝐶|
2

ቁ − ෍ ቀ
|𝑒௜|

2
ቁ −

௠

௜ୀଵ

𝑚௖
ᇱ อ൩ + |𝐶|

 

Again, we obtain 

𝒏 ≤ 𝟐 ෍ ቀ
|𝑒௜|

2
ቁ

௠

௜ୀଵ

≤ 𝟐 ൥෍ ቀ
|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + |𝐶|

 

𝑇ℎ𝑢𝑠             𝒏 ൥2 ൥෍ ቀ
|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + |𝐶|൩ ≤ ൥𝟐 ൥෍ ቀ
|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + |𝐶|൩

𝟐

 

 

Taking positive square-root, we get
                                              

ඩ2𝑛 ൥෍ ቀ
|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + 𝑛|𝐶| ≤ 𝟐 ൥෍ ቀ
|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + |𝐶| 

Thus, by using Theorem 6.10 

𝑬𝒎𝒄
𝒄 (𝑮) ≤ 𝟐 ൥෍ ቀ

|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + |𝐶| 

Hence the result.  

 

Theorem 6.13    Let 𝐺(𝑉, 𝐸)  be a minimum covering colored semigraph of order n 

and size m, with minimum covering set C. Let minimum covering color eigenvalues 

of 𝐴௠௖
௖ (𝐺) be       𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥. . . ≥ 𝜉௡. Then 
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𝐸௠௖
௖ (𝐺) ≤ |𝜉ଵ| + ඩ(𝑛 − 1) ൥2 ൥෍ ቀ

|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + |𝐶| − 𝜉ଵ
ଶ൩ 

Where, 𝑚௖
ᇱ  is the number of pairs of non-adjacent vertices in  𝐺 receiving the same 

color.  
 

Proof: Let  𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥. . . . . . . . ≥ 𝜉௡  be the minimum covering color eigenvalues 

of  𝐴௠௖
௖ (𝐺). Appling the Cauchy-Schwarz inequality on to vectors 

(|𝜉ଶ|, |𝜉ଷ|, . . . , |𝜉௡|) and  (1,1, . . . ,1)  with  𝑛 − 1 entries,  

൭෍|𝜉௜|

௡

௜ୀଶ

൱

ଶ

≤ (𝑛 − 1) ൭෍|𝜉௜|
ଶ

௡

௜ୀଶ

൱

 

𝑖. 𝑒.                                          ൭෍|𝜉௜|

௡

௜ୀଶ

൱ ≤ ඩ(𝑛 − 1) ൭෍|𝜉௜|
ଶ

௡

௜ୀଶ

൱

 

𝑖. 𝑒.                                   ෍|𝜉௜|

௡

௜ୀଵ

− |𝜉ଵ| ≤ ඩ(𝑛 − 1) ൭෍ 𝜉௜
ଶ

௡

௜ୀଵ

− 𝜉ଵ
ଶ൱

 

 

By using Theorem 6.9, we have  
 

𝐸௠௖
௖ (𝐺) ≤ |𝜉ଵ| + ඩ(𝑛 − 1) ൥2 ൥෍ ቀ

|𝑒௜|

2
ቁ + 𝑚௖

ᇱ

௠

௜ୀଵ

൩ + |𝐶| − 𝜉ଵ
ଶ൩ 

 

Theorem 6.14     Let 𝐺(𝑉, 𝐸) be a minimum covering colored semigraph of order n 

and size m with minimum covering set C. Let 𝜉௠௔௫ be the largest absolute value of 

minimum covering color eigenvalue. Then 

𝐸௠௖
௖ (𝐺) ≥

2 ቂ∑ ቀ
|𝑒௜|
2

ቁ + 𝑚௖
ᇱ௠

௜ୀଵ ቃ + |𝐶|

𝜉௠௔௫
 

Where, 𝑚௖
ᇱ  is the number of pairs of non-adjacent vertices in 𝐺 receiving the same 

color. 
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Proof:  Let 𝜉௠௔௫ be the largest absolute value of the minimum covering color 

eigenvalue of 𝐴௠௖
௖ (𝐺). Then          

𝜉௠௔௫|𝜉௜| ≥ 𝜉௜
ଶ 

𝑇ℎ𝑢𝑠                                    ෍ 𝜉௠௔௫

௡

௜ୀଵ

|𝜉௜| ≥ ෍ 𝜉௜
ଶ

௡

௜ୀଵ

 

By Theorem 6.9, we have     

𝜉௠௔௫ ෍|𝜉௜|

௡

௜ୀଵ

≥ 𝟐 ൥෍ ቀ
|𝒆𝒊|

𝟐
ቁ + 𝒎𝒄

ᇱ

𝒎

𝒊ୀ𝟏

൩ + |𝑪| 

𝐻𝑒𝑛𝑐𝑒                                   𝑬𝒎𝒄
𝒄 (𝑮) ≥

𝟐 ቂ∑ ቀ
|𝒆𝒊|
𝟐

ቁ + 𝒎𝒄
ᇱ𝒎

𝒊ୀ𝟏 ቃ + |𝑪|

𝜉௠௔௫
  . 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

***** 


