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Chapter 6 

 

COVERING ENERGY OF A SEMIGRAPH 

 

6.1 Introduction 

Chemical graph energy is the concept stems from chemistry to approximate the 

total 𝜋-electron energy of a molecule. In chemistry the conjugate hydrocarbon can be 

represented by graph called molecular graph, in which the atoms of a molecule are 

represented by the vertices and the chemical bonds are represented by the edges. Ivan 

Gutman [22] first introduced the energy for chemical graphs in the year 1978 and 

defined as the sum of the absolute value of eigenvalues of the adjacency matrix of a 

graph. Further, many authors conceived on different types of graph energy like color 

energy [6, 34, 35], the minimum covering energy [5], distance energy [19] etc. of a 

graph.  

  

In the year 2012 Adiga et.al. [5] introduced a matrix, called minimum covering 

matrix of a graph and its energy, and defined as follows: 

Suppose  𝐺(𝑉, 𝑋) be a graph of order n and size m, with vertex set V and edges 

set X. Let C subset of V be the minimum covering set of a graph G. The minimum 

covering matrix of G is the square matrix 𝐴(𝐺) = (𝑎) of order n, where  

  𝑎   = 1 if    𝑣𝑣 ∈ 𝐸 

        = 1 if  𝑖 = 𝑗 and 𝑣 ∈ 𝐶 

        = 0 otherwise. 

And the minimum covering energy of the graph G is defined as  𝐸(𝐺) = ∑ |𝜆|

ୀଵ   

where 𝜆ଵ, 𝜆ଶ, . . . , 𝜆 are eigenvalues of the minimum covering matrix 𝐴(𝐺). 

 

Adiga et.al. [6], have introduced the concept of color matrix and energy of a 

graph and investigated many properties and results. Further in the year 2015, M. R. 

Rajesh Kanna [30] et.al. investigated minimum covering color energy of a graph and 

their definitions are given below:  
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Let 𝐺 be a vertex-colored graph of order n. Let C subset of V be the minimum 

covering set of a graph G. Then the minimum covering color matrix of 𝐺 is the 

matrix 𝐴
 (𝐺) = (𝑎)× of which,   

𝑎(𝑣, 𝑣)      =  1      if 𝑣 and 𝑣  are adjacent or if 𝑖 = 𝑗 and 𝑣 ∈ 𝐶 

        = -1      if 𝑣  and 𝑣  are non-adjacent with 𝑐(𝑣) = 𝑐(𝑣), 

        =  0      otherwise.   

where 𝑐(𝑣) is the color of the vertex 𝑣 in 𝐺. Recall that, the vertices of the graph  𝐺 

are colored so that two adjacent vertices always have different colors. The minimum 

covering color energy 𝐸
  of a graph 𝐺  with respect to a given coloring is the sum 

of the absolute value of eigenvalues of the minimum covering color matrix 𝐴
 (𝐺).   

 

Motivated by these, we have extended the minimum covering energy of  

semigraphs in section 6.2 and minimum covering color energy of a semigraph in 

section 6.3.   

 

6.2 On minimum covering matrix and energy of semigraphs 

In this section a new type of matrix, called minimum covering matrix of a 

semigraph was introduced and obtained its energy. The minimum covering matrix of 

a semigraph is defined as follows:  

The minimum covering matrix of a semigraph:  

If 𝐺(𝑉, 𝑋) be a semigraph of order n size m. Let C be the minimum covering 

set, then the minimum covering matrix of G is the square matrix 𝐴(𝐺) = ൫𝑎൯ of 

order n, where 

i. For every edge 𝑒 of X of cardinality, say k, let 𝑒 = (𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖) 

such that 𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖 
are distinct vertices in V , for all 𝑖 ∈ 𝑒;   r =

1,2, . . . , 𝑘 

                
(𝑎) 𝑎భೝ

= 𝑟 − 1,
 

                      
(𝑏) 𝑎ೖೝ

= 𝑘 − 𝑟 

ii. 𝑎 = 1
   

if  𝑖 = 𝑗 and  𝑣 ∈ 𝐶.   

iii. All the remaining entries of A are zero. 
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Figure 6.1   

The minimum covering energy of semigraphs:  

Nikiforov [60] defined the energy of a general matrix (of any size) as the 

summation of the singular values of that matrix.   

 

Thus, if 𝜎ଵ, 𝜎ଶ, . . . , 𝜎 be the singular values of minimum covering matrix 

𝐴(𝐺) of the semigraph G, then the minimum covering energy of a semigraph 

denoted by 𝐸(𝐺), is defined as the summation of its singular values. i.e. 

𝐸(𝐺) =  𝜎



ୀଵ

 

We observe that, 𝐴(𝐺)𝐴
ᇱ (𝐺) is a positive semidefinite matrix. So, its 

eigenvalues 𝜆ଵ, 𝜆ଶ, . . . , 𝜆 are non-negative and therefore the singular values of 

𝐴(𝐺) are non-negative real numbers. Thus 𝐸(𝐺) ≥ 0, equality holds if and only 

if the number of edges in G is zero. Minimum covering energy of a semigraph is well 

defined, as if 𝐺 ′ be a semigraph obtained by relabeling of the vertices of G, then 

𝐴(𝐺 ′)𝐴′
(𝐺 ′) is obtained by interchanging the rows and the corresponding 

columns of 𝐴(𝐺)𝐴′
(𝐺). Hence the eigenvalues of 𝐴(𝐺)𝐴′

(𝐺) and 

𝐴(𝐺 ′)𝐴′
(𝐺 ′) are same, and so the singular values of G and 𝐺 ′are also same. 

 

Example 6.1  𝐺(𝑉, 𝑋) be a connected semigraph as shown in Figure 6.1 having 

vertex set  𝑉 = {1,2,3,4,5,6,7,8}  and let 𝐶 = {3, 4, 7} be the minimum covering set. 

And 𝑋 = {(1,2,3), (3,4), (4,5,6), (6,7,3), (7,8)} be the edge set of G. Then,  
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Then, Minimum covering matrix 𝐴(𝐺) of the semigraph 𝐺(𝑉, 𝑋) is     

                          𝐴(𝐺) =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 2 0 0 0 0 0
0 0 1 0 0 0 0 0
2 1 1 1 0 2 1 0
0 0 1 1 1 2 0 0
0 0 0 0 0 0 0 0
0 0 2 2 1 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

6.2.1 Properties of minimum covering energy of semigraphs 

 

Lemma 6.1  Let 𝐴(𝐺) is the minimum covering matrix of a semigraph G, and 𝐶 is 

its minimum covering set. If 𝜆ଵ, 𝜆ଶ, . . . , 𝜆 are eigenvalues of 𝐴(𝐺)𝐴′
(𝐺). Then  

 𝜆



ୀଵ

= 2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+ |𝐶|
 

where the cardinality of an edge 𝑒 ∈ 𝑋 of the semigraph is 𝑘 + 1and 𝑘 ≥ 1 . 

 

Proof:  In the minimum covering matrix 𝐴(𝐺), corresponding to every edge 𝑒 ∈ 𝑋 

of cardinality 𝑘 + 1, there is a sequence {1,2, . . . , 𝑘} in the rows corresponding to 

the end vertices of that edge. And there are |𝐶| nos. of 1’s in the diagonal of 𝐴(𝐺). 

Thus every edge contributes 2 ∑ ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯  and the diagonal elements 

contribute |𝐶| × 1ଶ in the trace of 𝐴𝐴′
.            

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒            𝑇𝑟𝑎𝑐(𝐴𝐴′
) = 2 ൫1ଶ + 2ଶ+. . . +𝑘

ଶ൯

∈

+ |𝐶| × 1ଶ 

𝐻𝑒𝑛𝑐𝑒                      𝜆



ୀଵ

= 2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+ |𝐶| 

 

Theorem 6.1 The minimum covering energy 𝐸(𝐺) of a semigraph G, is a square 

root of an even or odd integer according as |𝐶| is even or odd. 

 

Proof: If 𝜎ଵ, 𝜎ଶ, . . . . , 𝜎 be the singular values of minimum covering matrix 𝐴(𝐺) 
of the semigraph G, then  
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(𝜎ଵ + 𝜎ଶ+. . . . . . . . +𝜎)ଶ =  𝜎
ଶ



ୀଵ

+ 2  𝜎𝜎

ழ
 

Thus     

                 [𝐸(𝐺)]ଶ =  𝜆



ୀଵ

+ 2  𝜎𝜎

ழ
 

                                      = 2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+ |𝐶| + 2  𝜎𝜎

ழ  

                                      = 2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+  𝜎𝜎

ழ

 + |𝐶|
 

                       𝐸(𝐺) = ඩ2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+  𝜎𝜎

ழ

 + |𝐶|
 

 

Thus the minimum covering energy 𝐸(𝐺) of a semigraph G, is a square root 

of an even or odd integer according as |𝐶| is even or odd. 

 

Theorem 6.2   The minimum covering energy 𝐸(𝐺) of a semigraph G, then  

[𝐸(𝐺)]ଶ = |𝐶|(𝑚𝑜𝑑 2) 

 

Proof: By Theorem 6.1, the minimum covering energy 𝐸(𝐺) of a semigraph G, is 

a square root of an even or odd integer according as |𝐶| is even or odd. 

                                    𝐸(𝐺) = ඥ2𝑡 + |𝐶| 

 i.e.                       [𝐸(𝐺)]ଶ = 2𝑡 + |𝐶|             

𝑇ℎ𝑢𝑠,                            [𝐸(𝐺)]ଶ = |𝐶|(𝑚𝑜𝑑 2). 

 

6.2.2 Some bounds on minimum covering energy of semigraphs 

 

Theorem 6.3  If G be a semigraph having n vertices and m edges,  

ඨ2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+ |𝐶| ≤ 𝐸(𝐺) ≤ ඨ𝑛 2 (1ଶ + 2ଶ+. . . +𝑘
ଶ)

∈

+ |𝐶|൩ 
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Proof:  Let 𝜎, 𝑖 = 1,2, . . . , 𝑛 be the singular values of minimum covering matrix 

𝐴, and 𝜆, 𝑖 = 1,2, . . . , 𝑛 be the eigenvalues of 𝐴𝐴′
 . By Cauchy- Schwarz’s 

inequality on two vector (𝜎ଵ, 𝜎ଶ, . . . . . , 𝜎) and (1,1, . . . . . ,1), we have 

(𝜎ଵ + 𝜎ଶ+. . . . . . . . +𝜎)ଶ ≤ 𝑛  𝜎
ଶ



ୀଵ

= 𝑛  𝜆



ୀଵ

 

𝑇ℎ𝑢𝑠,                     [𝐸(𝐺)]ଶ ≤ 𝑛 2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+ |𝐶|൩ 

Again, we have 
                   

                                [𝐸(𝐺)]ଶ = ൭ 𝜎



ୀଵ

൱

ଶ

≥  𝜎
ଶ



ୀଵ

=  𝜆



ୀଵ  

𝑖. 𝑒.                          [𝐸(𝐺)]ଶ ≥ 2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+ |𝐶| 

Hence 

ඨ2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+ |𝐶| ≤ 𝐸(𝐺) ≤ ඨ𝑛 2 (1ଶ + 2ଶ+. . . +𝑘
ଶ)

∈

+ |𝐶|൩ 

 

Theorem 6.4.  If G be a semigraph having n vertices and m edges, then  

[𝐸(𝐺)]ଶ ≥ 2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+ |𝐶| + 𝑛(𝑛 − 1)𝛥
ଵ

ൗ , 

Where  𝛥 = 𝑑𝑒𝑡( 𝐴𝐴′
). 

 

Proof:   Let  𝜎, 𝑖 = 1,2, . . . . . , 𝑛 be the singular values of 𝐴, then we have,  

[𝐸(𝐺)]ଶ = ൭ 𝜎



ୀଵ

൱

ଶ

=  𝜎
ଶ



ୀଵ

+ 2  𝜎𝜎

ழ

=  𝜆



ୀଵ

+ 2  𝜎𝜎

ஷ  

As 𝜎, 𝑖 = 1,2, . . . . . , 𝑛 are non-negative, so 𝑛(𝑛 − 1) nos. of 𝜎𝜎 are also non-

negative number.  

 

Therefore, applying  𝐴𝑀 ≥ 𝐺𝑀  on 𝑛(𝑛 − 1) nos. of  non-negative numbers 𝜎𝜎. 

We have  
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1

𝑛(𝑛 − 1)
 𝜎𝜎

ஷ

≥ ቌෑ 𝜎𝜎

ஷ

ቍ

భ

(షభ)

= ൭ෑ 𝜎
ଶ(ିଵ)



ୀଵ

൱

భ

(షభ)

 

𝑖. 𝑒.               𝜎𝜎

ஷ

 ≥ 𝑛(𝑛 − 1) ൭ሡ 𝜆
ିଵ



ୀଵ

൱

భ

(షభ)

= 𝑛(𝑛 − 1) ൭ෑ 𝜆



ୀଵ

൱

భ



 

𝑇ℎ𝑢𝑠           𝜎𝜎

ஷ

≥ 𝑛(𝑛 − 1)𝛥
భ


 

𝑊ℎ𝑒𝑟𝑒               𝛥 = ෑ 𝜆



ୀଵ

= 𝑑𝑒𝑡( 𝐴𝐴′
) 

Therefore, we get  

[𝐸(𝐺)]ଶ ≥  𝜆



ୀଵ

+ 𝑛(𝑛 − 1)𝛥
భ

 

by Lemma 6.1 we obtain 

[𝐸(𝐺)]ଶ ≥ 2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+ |𝐶| + 𝑛(𝑛 − 1)𝛥
ଵ

ൗ  

 

Lemma 6.2 [60]   If 𝐴 = [𝑎] is any non-constant matrix and its norm defined as               

||𝐴||ଶ = ඨ 𝑎
ଶ



 

Suppose  𝜎ଵ ≥ 𝜎ଶ ≥. . . . ≥ 𝜎 are singular values of A, then 𝐸(𝐴) ≥ 𝜎ଵ +
||||మ

మିఙభ
మ

ఙమ
.  

 

Thus, evaluate a lower bound for 𝐸(𝐺) as follows: 

Theorem 6.5 For a semigraph G on n vertices, if 𝜎ଵ and 𝜎ଶ are respectively largest 

and second largest singular values of its minimum covering matrix 𝐴(𝐺). Then we 

have  

𝐸(𝐺) ≥ 𝜎ଵ +
1

𝜎ଶ
[2 ൫1ଶ + 2ଶ+. . . +𝑘

ଶ൯

∈

+ |𝐶| − 𝜎ଵ
ଶ]

 

 

Proof: By Lemma 6.2, for the minimum covering matrix 𝐴(𝐺) of G, we have  

𝐸(𝐺) ≥ 𝜎ଵ +
||𝐴||ଶ

ଶ − 𝜎ଵ
ଶ

𝜎ଶ
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Clearly, form definition of norm of a matrix we have   

||𝐴(𝐺)||ଶ
ଶ = 𝑡𝑟𝑎𝑐𝑒(𝐴𝐴′

) 

                                                  = 2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+ |𝐶| 

Hence, we get      

𝐸(𝐺) ≥ 𝜎ଵ +
1

𝜎ଶ
[2 ൫1ଶ + 2ଶ+. . . +𝑘

ଶ൯

∈

+ |𝐶| − 𝜎ଵ
ଶ] 

Which give another lower bound of 𝐸(𝐺). 

 

6.2.3 Relation between energy and minimum covering energy of a 

semigraph  

Theorem 6.6   Let 𝐺(𝑉, 𝑋) be a semigraph of order n, size m then  𝐸(𝐺) ≥
ா(ீ)

√
, 

where 𝐸(𝐺)

 

is the energy of the semigraph G. 

Proof:  If 𝐺(𝑉, 𝑋) be a semigraph of order n, size m, and if 𝐸(𝐺) be the energy of the 

semigraph.  Then by Theorem 2.4.1  we have  

ඨ2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

≤ 𝐸(𝐺) ≤ ඨ2𝑛 (1ଶ + 2ଶ+. . . +𝐾
ଶ)

∈  

𝑖. 𝑒.            2 (1ଶ + 2ଶ+. . . . +𝑘
ଶ)

∈

≤ [𝐸(𝐺)]ଶ ≤ 2𝑛 (1ଶ + 2ଶ+. . . +𝑘ଶ)

∈  

𝑇ℎ𝑢𝑠                            [𝐸(𝐺)]ଶ ≤ 2𝑛 (1ଶ + 2ଶ+. . . +𝑘ଶ)

∈

 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒                 
[𝐸(𝐺)]ଶ

𝑛
≤ 2 (1ଶ + 2ଶ+. . . +𝑘ଶ)

∈

 

If 𝐸(𝐺) be the minimum covering energy of a semigraph 𝐺(𝑉, 𝑋),  

 

By  Theorem 6.4,  we get   

[𝐸(𝐺)]ଶ ≥ 2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

+ |𝐶| + 𝑛(𝑛 − 1)𝛥
ଵ

ൗ  

𝑖. 𝑒.               [𝐸(𝐺)]ଶ ≥ 2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈
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𝑇ℎ𝑢𝑠           [𝐸(𝐺)]ଶ ≥
[𝐸(𝐺)]ଶ

𝑛
 

𝐻𝑒𝑛𝑐𝑒          𝐸(𝐺) ≥
𝐸(𝐺)

√𝑛  

Theorem 6.7 For a semigraph 𝐺(𝑉, 𝑋) of order n, size m, if 𝜎ଵ and 𝜎ଶ are 

respectively largest and second largest singular values of its minimum covering 

matrix 𝐴(𝐺). Then we have   

𝑛𝐸(𝐺) ≥
[𝐸(𝐺)]ଶ − 𝑛𝜎ଵ

ଶ

𝜎ଶ
 

Where 𝐸(𝐺)

 

is the energy of the semigraph.                                   

 

Proof :  If 𝐺(𝑉, 𝑋) be a semigraph of order n, size m, and if 𝐸(𝐺) be the energy of 

the semigraph.  Then by Theorem 2.4.1  we have  

𝑇ℎ𝑒𝑛,         ඨ2 ൫1ଶ + 2ଶ+. . . +𝑘
ଶ൯

∈

≤ 𝐸(𝐺) ≤ ඨ2𝑛 (1ଶ + 2ଶ+. . . +𝐾
ଶ)

∈

 

𝑇ℎ𝑢𝑠                         [𝐸(𝐺)]ଶ ≤ 2𝑛 (1ଶ + 2ଶ+. . . . +𝑘
ଶ)

∈

 

By Theorem 6.5 we have,    

                       𝐸(𝐺) ≥ 𝜎ଵ +
2 ∑ ൫1ଶ + 2ଶ+. . . . +𝑘

ଶ൯∈ + |𝐶| − 𝜎ଵ
ଶ

𝜎ଶ
 

𝑇ℎ𝑢𝑠                𝜎ଶ𝐸(𝐺) − 𝜎ଵ𝜎ଶ + 𝜎ଵ
ଶ ≥ 2 (1ଶ + 2ଶ+. . . . +𝑘

ଶ)

∈

+ |𝐶| 

𝑖. 𝑒.                   𝜎ଶ𝐸(𝐺) − 𝜎ଵ𝜎ଶ + 𝜎ଵ
ଶ ≥ 2 (1ଶ + 2ଶ+. . . . +𝑘

ଶ)

∈
 

𝑖. 𝑒.                   𝑛(𝜎ଶ𝐸(𝐺) − 𝜎ଵ𝜎ଶ + 𝜎ଵ
ଶ) ≥ 2𝑛 (1ଶ + 2ଶ+. . . . +𝑘

ଶ)

∈  

𝑖. 𝑒.                   𝑛(𝜎ଶ𝐸(𝐺) − 𝜎ଵ𝜎ଶ + 𝜎ଵ
ଶ) ≥ [𝐸(𝐺)]ଶ

 
𝑖. 𝑒.                   𝑛𝐸(𝐺) ≥

[𝐸(𝐺)]ଶ

𝜎ଶ
− 𝑛

𝜎ଵ
ଶ

𝜎ଶ
+ 𝑛𝜎ଵ

 

𝑖. 𝑒.                   𝑛𝐸(𝐺) ≥
[𝐸(𝐺)]ଶ

𝜎ଶ
− 𝑛

𝜎ଵ
ଶ

𝜎ଶ
 

𝐻𝑒𝑛𝑐𝑒             𝑛𝐸(𝐺) ≥
[𝐸(𝐺)]ଶ − 𝑛𝜎ଵ

ଶ

𝜎ଶ
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Figure 6.2   

6.3 Minimum covering color matrix and color energy of semigraphs 

In this section another type of matrix called minimum covering color matrix of 

a semigraph was introduced and obtained energy of the matrix, and established some 

bonds to realizing the mathematical aspects of the minimum covering color energy of 

a semigraph. The minimum covering color matrix of a semigraph is defined as 

follows: 

Minimum covering color matrix and energy of semigraph: Suppose 𝐺(𝑉, 𝑋) be a 

vertex-colored semigraph of order n and size m, and if 𝑐(𝑣) denote the color of the 

vertex 𝑣. Let 𝐶 ⊆ 𝑉 be a minimum covering set, then the minimum covering color 

matrix of 𝐺 is defined by the square matrix 𝐴
 (𝐺) = (𝑎)×, and of which 

 𝑎(𝑣 , 𝑣)   =  1       if 𝑣  and 𝑣  are adjacent  or  if 𝑖 = 𝑗 and 𝑣 ∈ 𝐶,   

        = -1       if 𝑣 and 𝑣  are non-adjacent with 𝑐(𝑣) = 𝑐(𝑣),  
   

 

        =  0,      otherwise. 

The minimum covering color matrix 𝐴
 (𝐺) of a semigraph 𝐺 is symmetric 

and hence its eigenvalues 𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . , 𝜉 are all real, called minimum covering color 

eigenvalues of 𝐺. The minimum covering color energy of a semigraph 𝐺 is denoted 

by 𝐸
 (𝐺) and defined as  𝐸

 (𝐺) = ∑ |𝜉|

ୀଵ . 

 

Example 6.2   𝐺(𝑉, 𝑋) be a connected semigraph as shown in Figure 6.2 having 

vertex set  𝑉 = {1,2,3,4,5,6,7,8}  with the minimum colors C1, C1, C2, C1, C2, C2, 

C1 and C2 respectively and edge set 𝑋 = {(1,2,3), (3,4), (4,5,6), (6,7,3), (7,8)}. Let 

𝐶 = {3, 4, 7} be the minimum covering set. Then,  
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Then, the minimum covering color matrix 𝐴
 (𝐺) of the semigraph 𝐺(𝑉, 𝑋) is     

 

                   𝐴
 (𝐺) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 1 1 −1 0 0 −1 0
1 0 1 −1 0 0 −1 0
1 1 1 1 −1 1 1 −1

−1 −1 1 1 1 1 −1 0
0 0 −1 1 0 1 0 −1
0 0 1 1 1 0 1 −1

−1 −1 1 −1 0 1 1 1
0 0 −1 0 −1 −1 1 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

6.3.1 Properties of minimum covering color energy of semigraphs 

Suppose 𝐺(𝑉, 𝑋) be a vertex-colored semigraph order n and size m, and if 

𝑐(𝑣) denote the color of the vertex 𝑣 and let C be the minimum covering set. 

Suppose  𝐴
 (𝐺) = (𝑎)× be the minimum covering color matrix of 𝐺. Suppose 

characteristic polynomial of 𝐴
 (𝐺) be  

𝑃
 (𝐺, 𝜉) = 𝑑𝑒𝑡൫𝜉𝐼 − 𝐴

 (𝐺)൯ = 𝑎𝜉 + 𝑎ଵ𝜉ିଵ + 𝑎ଶ𝜉ିଶ + 𝑎ଷ𝜉ିଷ+. . . +𝑎 

 

Theorem 6.8 Using the notations given above, we have 

(a) 𝑎 = 1 

(b) 𝑎ଵ = −|𝐶| 

(𝑐) 𝑎ଶ = ቀ
|𝐶|
2

ቁ −  ቀ
|𝑒|

2
ቁ −



ୀଵ

𝑚
ᇱ  

Where 𝑚
ᇱ = number of pairs of non-adjacent vertices receiving the same color in 𝐺. 

 

Proof: (a) From the definition of the characteristic polynomial 𝑃
 (𝐺, 𝜉) =

𝑑𝑒𝑡൫𝜉𝐼 − 𝐴
 (𝐺)൯ of 𝐴

 (𝐺), it is clear that  𝑎 = 1.  

 

(b) (−1)ଵ𝑎ଵ = Sum of all first order principal minors of 𝐴
 (𝐺) = Trace of  

𝐴
 (𝐺) = |𝐶| 

Thus  𝑎ଵ = −|𝐶| 

 

(c) (−1)ଶ𝑎ଶ = Sum of all the 2 × 2 principal minors of 𝐴
 (𝐺) 
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=  ቚ
𝑎 𝑎

𝑎 𝑎
ቚ

ଵஸழஸ

=  ൫𝑎𝑎 − 𝑎𝑎൯

ଵஸழஸ

= ቀ
|𝐶|
2

ቁ −  𝑎ଶ


ଵஸழஸ

 

𝑇ℎ𝑢𝑠,    𝑎ଶ = ቀ
|𝐶|
2

ቁ −  ቀ
|𝑒|

2
ቁ −



ୀଵ

𝑚
ᇱ  

Where, 𝑚
ᇱ = number of pairs of non-adjacent vertices receiving the same color in 𝐺. 

Theorem 6.9  If  𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . . , 𝜉 are the eigenvalues of the minimum covering 

color matrix 𝐴
 (𝐺) of a semigraph 𝐺(𝑉, 𝐸) of order n, having m edges and if C be 

a minimum covering set of 𝐺, then    

𝑖.    𝜉



ୀଵ

= |𝐶| 

𝑖𝑖.   𝜉
ଶ



ୀଵ

= 2  ቀ
|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + |𝐶| 

Where 𝑚
ᇱ
 is the number of pairs of non-adjacent vertices receiving the same color 

and |𝑒| 
is the number of vertices in the edge  𝑒 ∈ 𝐸. 

Proof:   i. Since, the sum of the eigenvalues of 𝐴
 (𝐺) is equal to the trace of 

𝐴
 (𝐺) 

𝐻𝑒𝑛𝑐𝑒          𝜉



ୀଵ

=  𝑎



ୀଵ

= |𝐶| 

ii.  Consider   

 𝝃𝒊
𝟐

𝒏

𝒊ୀ𝟏

= ((𝐴
 )ଶ)𝒊𝒊

𝒏

𝒊ୀ𝟏

=   𝑎



ୀଵ



ୀଵ

𝑎 

As 𝐴
 (𝐺) is a symmetric matrix, 

 𝝃𝒊
𝟐

𝒏

𝒊ୀ𝟏

=   𝑎
ଶ



ୀଵ



ୀଵ

 

             = 2 ൫𝑎൯
ଶ

ழ

+ (𝑎)
ଶ



ୀଵ

 

             = 2  ቀ
|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + |𝐶|          𝑆𝑖𝑛𝑐𝑒,   (𝑎)
ଶ =



ୀଵ

|𝐶|  

Where, 𝑚
ᇱ
  is the number of pairs of non-adjacent vertices receiving the same color. 
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6.3.2 Some bounds for minimum covering color energy of  

Semigraphs 

 

Theorem 6.10  Let 𝐺(𝑉, 𝐸) be the minimum covering colored semigraph 

having n vertices and m edges with a minimum covering set C. Then  

𝐸
 (𝐺) ≤ ඩ2𝑛  ቀ

|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + 𝑛|𝐶| 

Where, 𝑚
ᇱ  is the number of pairs of non-adjacent vertices in 𝐺 receiving the same 

color. 

 

Proof:  The minimum covering color matrix of a semigraph, 𝐴
 (𝐺) is symmetric 

and hence its eigenvalues are real and can be ordered as 𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥. . . . ≥ 𝜉.  

 

Appling the Cauchy-Schwarz inequality, we have  

൭ 𝑢𝑣



ୀଵ

൱

ଶ

≤ ൭ 𝑢
ଶ



ୀଵ

൱ ൭ 𝑣
ଶ



ୀଵ

൱ 

Substituting 𝑢 = 1 , 𝑣 = |𝜉| in the above inequality and by Theorem 6.9 we have 

 

[𝐸
 (𝐺)]ଶ = ൭|𝜉|



ୀଵ

൱

ଶ

≤ 𝑛 ൭|𝜉|
ଶ



ୀଵ

൱ 

                                                = 𝑛  𝜉
ଶ



ୀଵ

 

= 𝑛 2 ൝ ቀ
|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

ൡ + |𝐶|൩ 

𝐻𝑒𝑛𝑐𝑒,                  𝐸
 (𝐺) ≤ ඩ2𝑛  ቀ

|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + 𝑛|𝐶| 
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Theorem 6.11   Let 𝐺(𝑉, 𝐸) be a minimum covering colored semigraph having n 

vertices and m edges with a minimum covering set C. Let 𝑚
ᇱ
 be the number of pairs 

of non-adjacent vertices receiving the same color in 𝐺. If  𝛥 = |𝑑𝑒𝑡 𝐴
 (𝐺)| then  

𝑬𝒎𝒄
𝒄 (𝑮) ≥ ඩ2 ൭ ቀ

|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൱ + |𝐶| + 𝑛(𝑛 − 1)𝛥
ଶ

ൗ  

Proof:    We have, 

[𝑬𝒎𝒄
𝒄 (𝑮)]𝟐 = ൭|𝝃𝒊|

𝒏

𝒊ୀ𝟏

൱

𝟐

 

                                      =  𝝃𝒊
𝟐

𝒏

𝒊ୀ𝟏

+ |𝝃𝒊|

𝒊ஷ𝒋

ห𝝃𝒋ห 

 

By applying  𝑨𝑴 ≥ 𝑮𝑴, we have 

 
1

𝑛(𝑛 − 1)
|𝜉|

ஷ

ห𝜉ห ≥ ቌෑ|𝜉|ห𝜉ห

ஷ

ቍ

ଵ
(ିଵ)ൗ

 

                                            = ቌෑ|𝜉|
ଶ(ିଵ)

ஷ

ቍ

ଵ
(ିଵ)ൗ

 

                   = ቮෑ 𝜉

ஷ

ቮ

ଶ
ൗ

 

       = 𝛥
ଶ

ൗ
 

𝑖. 𝑒.                                               |𝜉|

ஷ

ห𝜉ห ≥ 𝑛(𝑛 − 1)𝛥
ଶ

ൗ  

𝑇ℎ𝑢𝑠                                            [𝑬𝒎𝒄
𝒄 (𝑮)]ଶ ≥  𝜉

ଶ



ୀଵ

+ 𝑛(𝑛 − 1)𝛥
ଶ

ൗ
 

 By Theorem 6.9 we get                    

[𝑬𝒎𝒄
𝒄 (𝑮)]ଶ ≥ 2 ൭ ቀ

|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൱ + |𝐶| + 𝑛(𝑛 − 1)𝛥
ଶ

ൗ
 

Hence the result.  
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Theorem 6.12     Let 𝐺(𝑉, 𝐸) be a minimum covering colored semigraph of order n, 

size m and having C be a minimum covering set.  Then 𝛼 ≤ 𝐸
 (𝐺) ≤ 𝛽,  

𝑊ℎ𝑒𝑟𝑒,   𝛼 = ඩ2  ቀ
|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

+ อቀ
|𝐶|
2

ቁ −  ቀ
|𝑒|

2
ቁ −



ୀଵ

𝑚
ᇱ อ൩ + |𝐶| 

𝒂𝒏𝒅         𝛽 = 𝟐  ቀ
|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + |𝐶| 

Where, 𝑚
ᇱ  be the number of pairs of non-adjacent vertices in 𝐺 receiving the same 

color.  

Proof :  Consider      

[𝐸
 (𝐺)]ଶ = ൭|𝜉|



ୀଵ

൱

ଶ

                  

 

                        = |𝜉|
ଶ



ୀଵ

+ |𝜉|

ஷ

ห𝜉ห

 

= |𝜉|
ଶ



ୀଵ

+ 2 |𝜉|

ழ

ห𝜉ห                               (6.1) 

We have,            

 𝜉𝜉

ଵஸழஸ

=  ቚ
𝑎 𝑎

𝑎 𝑎
ቚ

ଵஸழஸ  

                                  =  ൫𝑎𝑎 − 𝑎𝑎൯

ଵஸழஸ
 

 

For minimum covering color matrix 𝐴
 (𝐺) is symmetric, 𝑎 = 𝑎 Thus,  

 

 𝜉𝜉 =  𝑎𝑎

ଵஸழஸ

−  𝑎𝑎

ଵஸழஸଵஸழஸ

 

                                     =  𝑎𝑎

ଵஸழஸ

−  ൫𝑎൯
ଶ

ଵஸழஸ  

                           = ቀ
|𝐶|
2

ቁ −  ቀ
|𝑒|

2
ቁ −



ୀଵ

𝑚
ᇱ  
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We know that,   

 |𝜉|

ழ

|𝜉| ≥ |  𝜉𝜉

ழ

 

Thus                         |𝝃𝒊|

𝒊ழ

ห𝝃𝒋ห ≥ อቀ
|𝐶|
2

ቁ −  ቀ
|𝑒|

2
ቁ −



ୀଵ

𝑚
ᇱ อ                                    (6.2) 

 

Using inequation (6.1) and (6.2) and Theorem 6.9, we get 

[𝑬𝒎𝒄
𝒄 (𝑮)]𝟐 ≥ 2  ቀ

|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

+ อቀ
|𝐶|
2

ቁ −  ቀ
|𝑒|

2
ቁ −



ୀଵ

𝑚
ᇱ อ൩ + |𝐶|

 

Taking positive square-root, we get
                                            

𝑬𝒎𝒄
𝒄 (𝑮) ≥ ඩ2  ቀ

|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

+ อቀ
|𝐶|
2

ቁ −  ቀ
|𝑒|

2
ቁ −



ୀଵ

𝑚
ᇱ อ൩ + |𝐶|

 

Again, we obtain 

𝒏 ≤ 𝟐  ቀ
|𝑒|

2
ቁ



ୀଵ

≤ 𝟐  ቀ
|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + |𝐶|

 

𝑇ℎ𝑢𝑠             𝒏 2  ቀ
|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + |𝐶|൩ ≤ 𝟐  ቀ
|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + |𝐶|൩

𝟐

 

 

Taking positive square-root, we get
                                              

ඩ2𝑛  ቀ
|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + 𝑛|𝐶| ≤ 𝟐  ቀ
|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + |𝐶| 

Thus, by using Theorem 6.10 

𝑬𝒎𝒄
𝒄 (𝑮) ≤ 𝟐  ቀ

|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + |𝐶| 

Hence the result.  

 

Theorem 6.13    Let 𝐺(𝑉, 𝐸)  be a minimum covering colored semigraph of order n 

and size m, with minimum covering set C. Let minimum covering color eigenvalues 

of 𝐴
 (𝐺) be       𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥. . . ≥ 𝜉. Then 
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𝐸
 (𝐺) ≤ |𝜉ଵ| + ඩ(𝑛 − 1) 2  ቀ

|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + |𝐶| − 𝜉ଵ
ଶ൩ 

Where, 𝑚
ᇱ  is the number of pairs of non-adjacent vertices in  𝐺 receiving the same 

color.  
 

Proof: Let  𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥. . . . . . . . ≥ 𝜉  be the minimum covering color eigenvalues 

of  𝐴
 (𝐺). Appling the Cauchy-Schwarz inequality on to vectors 

(|𝜉ଶ|, |𝜉ଷ|, . . . , |𝜉|) and  (1,1, . . . ,1)  with  𝑛 − 1 entries,  

൭|𝜉|



ୀଶ

൱

ଶ

≤ (𝑛 − 1) ൭|𝜉|
ଶ



ୀଶ

൱

 

𝑖. 𝑒.                                          ൭|𝜉|



ୀଶ

൱ ≤ ඩ(𝑛 − 1) ൭|𝜉|
ଶ



ୀଶ

൱

 

𝑖. 𝑒.                                   |𝜉|



ୀଵ

− |𝜉ଵ| ≤ ඩ(𝑛 − 1) ൭ 𝜉
ଶ



ୀଵ

− 𝜉ଵ
ଶ൱

 

 

By using Theorem 6.9, we have  
 

𝐸
 (𝐺) ≤ |𝜉ଵ| + ඩ(𝑛 − 1) 2  ቀ

|𝑒|

2
ቁ + 𝑚

ᇱ



ୀଵ

൩ + |𝐶| − 𝜉ଵ
ଶ൩ 

 

Theorem 6.14     Let 𝐺(𝑉, 𝐸) be a minimum covering colored semigraph of order n 

and size m with minimum covering set C. Let 𝜉௫ be the largest absolute value of 

minimum covering color eigenvalue. Then 

𝐸
 (𝐺) ≥

2 ቂ∑ ቀ
|𝑒|
2

ቁ + 𝑚
ᇱ

ୀଵ ቃ + |𝐶|

𝜉௫
 

Where, 𝑚
ᇱ  is the number of pairs of non-adjacent vertices in 𝐺 receiving the same 

color. 
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Proof:  Let 𝜉௫ be the largest absolute value of the minimum covering color 

eigenvalue of 𝐴
 (𝐺). Then          

𝜉௫|𝜉| ≥ 𝜉
ଶ 

𝑇ℎ𝑢𝑠                                     𝜉௫



ୀଵ

|𝜉| ≥  𝜉
ଶ



ୀଵ

 

By Theorem 6.9, we have     

𝜉௫ |𝜉|



ୀଵ

≥ 𝟐  ቀ
|𝒆𝒊|

𝟐
ቁ + 𝒎𝒄

ᇱ

𝒎

𝒊ୀ𝟏

൩ + |𝑪| 

𝐻𝑒𝑛𝑐𝑒                                   𝑬𝒎𝒄
𝒄 (𝑮) ≥

𝟐 ቂ∑ ቀ
|𝒆𝒊|
𝟐

ቁ + 𝒎𝒄
ᇱ𝒎

𝒊ୀ𝟏 ቃ + |𝑪|

𝜉௫
  . 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

***** 


