Chapter 6

COVERING ENERGY OF A SEMIGRAPH

6.1 Introduction

Chemical graph energy is the concept stems from chemistry to approximate the total π -electron energy of a molecule. In chemistry the conjugate hydrocarbon can be represented by graph called molecular graph, in which the atoms of a molecule are represented by the vertices and the chemical bonds are represented by the edges. Ivan Gutman [22] first introduced the energy for chemical graphs in the year 1978 and defined as the sum of the absolute value of eigenvalues of the adjacency matrix of a graph. Further, many authors conceived on different types of graph energy like color energy [6, 34, 35], the minimum covering energy [5], distance energy [19] etc. of a graph.

In the year 2012 Adiga *et.al.* [5] introduced a matrix, called minimum covering matrix of a graph and its energy, and defined as follows:

Suppose G(V, X) be a graph of order *n* and size *m*, with vertex set *V* and edges set *X*. Let *C* subset of *V* be the minimum covering set of a graph *G*. The minimum covering matrix of *G* is the square matrix $A_{mc}(G) = (a_{ij})$ of order *n*, where

$$a_{ij} = 1 \qquad \text{if} \quad v_i v_j \in E$$
$$= 1 \qquad \text{if} \quad i = j \text{ and } v_i \in C$$
$$= 0 \qquad \text{otherwise.}$$

And the minimum covering energy of the graph G is defined as $E_{mc}(G) = \sum_{i=1}^{n} |\lambda_i|$ where $\lambda_1, \lambda_2, \dots, \lambda_n$ are eigenvalues of the minimum covering matrix $A_{mc}(G)$.

Adiga *et.al.* [6], have introduced the concept of color matrix and energy of a graph and investigated many properties and results. Further in the year 2015, M. R. Rajesh Kanna [30] *et.al.* investigated minimum covering color energy of a graph and their definitions are given below:

Let G be a vertex-colored graph of order n. Let C subset of V be the minimum covering set of a graph G. Then the minimum covering color matrix of G is the matrix $A_{mc}^{c}(G) = (a_{ij})_{n \times n}$ of which,

$$a_{ij}(v_i, v_j) = 1 \quad \text{if } v_i \text{ and } v_j \text{ are adjacent or if } i = j \text{ and } v_i \in C$$
$$= -1 \quad \text{if } v_i \text{ and } v_j \text{ are non-adjacent with } c(v_i) = c(v_j),$$
$$= 0 \quad \text{otherwise.}$$

where $c(v_i)$ is the color of the vertex v_i in G. Recall that, the vertices of the graph G are colored so that two adjacent vertices always have different colors. The minimum covering color energy E_{mc}^c of a graph G with respect to a given coloring is the sum of the absolute value of eigenvalues of the minimum covering color matrix $A_{mc}^c(G)$.

Motivated by these, we have extended the minimum covering energy of semigraphs in section 6.2 and minimum covering color energy of a semigraph in section 6.3.

6.2 On minimum covering matrix and energy of semigraphs

In this section a new type of matrix, called minimum covering matrix of a semigraph was introduced and obtained its energy. The minimum covering matrix of a semigraph is defined as follows:

The minimum covering matrix of a semigraph:

If G(V, X) be a semigraph of order n size m. Let C be the minimum covering set, then the minimum covering matrix of G is the square matrix $A_{mc}(G) = (a_{ij})$ of order n, where

- i. For every edge e_i of X of cardinality, say k, let e_i = (i₁, i₂, i₃,..., i_k) such that i₁, i₂, i₃,..., i_k are distinct vertices in V, for all i_r ∈ e_i; r = 1,2,...,k
 (a) a_{i1ir} = r 1,
 (b) a_{ikir} = k r
 ii. a_{ij} = 1 if i = j and v_i ∈ C.
- iii. All the remaining entries of A are zero.

The minimum covering energy of semigraphs:

Nikiforov [60] defined the energy of a general matrix (of any size) as the summation of the singular values of that matrix.

Thus, if $\sigma_1, \sigma_2, \ldots, \sigma_n$ be the singular values of minimum covering matrix $A_{mc}(G)$ of the semigraph G, then the minimum covering energy of a semigraph denoted by $E_{mc}(G)$, is defined as the summation of its singular values. i.e.

$$E_{mc}(G) = \sum_{i=1}^{n} \sigma_i$$

We observe that, $A_{mc}(G)A'_{mc}(G)$ is a positive semidefinite matrix. So, its eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$ are non-negative and therefore the singular values of $A_{mc}(G)$ are non-negative real numbers. Thus $E_{mc}(G) \ge 0$, equality holds if and only if the number of edges in G is zero. Minimum covering energy of a semigraph is well defined, as if G' be a semigraph obtained by relabeling of the vertices of G, then $A_{mc}(G')A'_{mc}(G')$ is obtained by interchanging the rows and the corresponding columns of $A_{mc}(G)A'_{mc}(G)$. Hence the eigenvalues of $A_{mc}(G)A'_{mc}(G)$ and $A_{mc}(G')A'_{mc}(G')$ are same, and so the singular values of G and G' are also same.

Example 6.1 G(V, X) be a connected semigraph as shown in Figure 6.1 having vertex set $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$ and let $C = \{3, 4, 7\}$ be the minimum covering set. And $X = \{(1, 2, 3), (3, 4), (4, 5, 6), (6, 7, 3), (7, 8)\}$ be the edge set of *G*. Then,

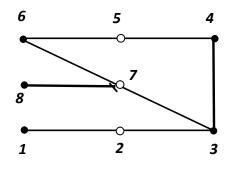


Figure 6.1

Then, Minimum covering matrix $A_{mc}(G)$ of the semigraph G(V, X) is

6.2.1 Properties of minimum covering energy of semigraphs

Lemma 6.1 Let $A_{mc}(G)$ is the minimum covering matrix of a semigraph G, and C is its minimum covering set. If $\lambda_1, \lambda_2, ..., \lambda_n$ are eigenvalues of $A_{mc}(G)A'_{mc}(G)$. Then

$$\sum_{i=1}^{n} \lambda_i = 2 \sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2) + |C|$$

where the cardinality of an edge $e \in X$ of the semigraph is $k_e + 1$ and $k_e \ge 1$.

Proof: In the minimum covering matrix $A_{mc}(G)$, corresponding to every edge $e \in X$ of cardinality $k_e + 1$, there is a sequence $\{1, 2, ..., k_e\}$ in the rows corresponding to the end vertices of that edge. And there are |C| nos. of 1's in the diagonal of $A_{mc}(G)$. Thus every edge contributes $2\sum_e (1^2 + 2^2 + ... + k_e^2)$ and the diagonal elements contribute $|C| \times 1^2$ in the trace of $A_{mc}A'_{mc}$.

Therefore
$$Trac(A_{mc}A'_{mc}) = 2\sum_{e \in X} (1^2 + 2^2 + ... + k_e^2) + |C| \times 1^2$$

Hence $\sum_{i=1}^n \lambda_i = 2\sum_{e \in X} (1^2 + 2^2 + ... + k_e^2) + |C|$

Theorem 6.1 The minimum covering energy $E_{mc}(G)$ of a semigraph G, is a square root of an even or odd integer according as |C| is even or odd.

Proof: If $\sigma_1, \sigma_2, \ldots, \sigma_n$ be the singular values of minimum covering matrix $A_{mc}(G)$ of the semigraph G, then

$$(\sigma_1 + \sigma_2 + \dots + \sigma_n)^2 = \sum_{i=1}^n \sigma_i^2 + 2\sum_{i < j} \sigma_i \sigma_j$$

Thus

$$[E_{mc}(G)]^{2} = \sum_{i=1}^{n} \lambda_{i} + 2 \sum_{i < j} \sigma_{i} \sigma_{j}$$

= $2 \sum_{e \in X} (1^{2} + 2^{2} + ... + k_{e}^{2}) + |C| + 2 \sum_{i < j} \sigma_{i} \sigma_{j}$
= $2 \left[\sum_{e \in X} (1^{2} + 2^{2} + ... + k_{e}^{2}) + \sum_{i < j} \sigma_{i} \sigma_{j} \right] + |C|$
 $E_{mc}(G) = \sqrt{2 \left[\sum_{e \in X} (1^{2} + 2^{2} + ... + k_{e}^{2}) + \sum_{i < j} \sigma_{i} \sigma_{j} \right] + |C|}$

Thus the minimum covering energy $E_{mc}(G)$ of a semigraph G, is a square root of an even or odd integer according as |C| is even or odd.

Theorem 6.2 The minimum covering energy $E_{mc}(G)$ of a semigraph G, then $[E_{mc}(G)]^2 = |C| \pmod{2}$

Proof: By Theorem 6.1, the minimum covering energy $E_{mc}(G)$ of a semigraph G, is a square root of an even or odd integer according as |C| is even or odd.

 $E_{mc}(G) = \sqrt{2t + |C|}$

i.e. $[E_{mc}(G)]^2 = 2t + |C|$

Thus, $[E_{mc}(G)]^2 = |C| (mod 2).$

6.2.2 Some bounds on minimum covering energy of semigraphs

Theorem 6.3 If G be a semigraph having n vertices and m edges,

$$\sqrt{2\sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2) + |C|} \le E_{mc}(G) \le \sqrt{n \left[2\sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2) + |C|\right]}$$

Proof: Let $\sigma_i, i = 1, 2, ..., n$ be the singular values of minimum covering matrix A_{mc} , and $\lambda_i, i = 1, 2, ..., n$ be the eigenvalues of $A_{mc}A'_{mc}$. By Cauchy- Schwarz's inequality on two vector $(\sigma_1, \sigma_2, ..., \sigma_n)$ and (1, 1, ..., 1), we have

$$(\sigma_{1} + \sigma_{2} + \dots + \sigma_{n})^{2} \le n \sum_{i=1}^{n} \sigma_{i}^{2} = n \sum_{i=1}^{n} \lambda_{i}$$

Thus,
$$[E_{mc}(G)]^{2} \le n \left[2 \sum_{e \in X} (1^{2} + 2^{2} + \dots + k_{e}^{2}) + |C| \right]$$

Again, we have

$$[E_{mc}(G)]^{2} = \left(\sum_{i=1}^{n} \sigma_{i}\right)^{2} \ge \sum_{i=1}^{n} \sigma_{i}^{2} = \sum_{i=1}^{n} \lambda_{i}$$

i.e.
$$[E_{mc}(G)]^{2} \ge 2\sum_{e \in X} (1^{2} + 2^{2} + \dots + k_{e}^{2}) + |C|$$

Hence

$$\sqrt{2\sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2) + |C|} \le E_{mc}(G) \le \sqrt{n \left[2\sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2) + |C|\right]}$$

Theorem 6.4. If G be a semigraph having n vertices and m edges, then

$$[E_{mc}(G)]^{2} \ge 2 \sum_{e \in X} (1^{2} + 2^{2} + \ldots + k_{e}^{2}) + |C| + n(n-1)\Delta^{1/n},$$

Where $\Delta = det(A_{mc}A'_{mc}).$

Proof: Let σ_i , i = 1, 2, ..., n be the singular values of A_{mc} , then we have,

$$[E_{mc}(G)]^2 = \left(\sum_{i=1}^n \sigma_i\right)^2 = \sum_{i=1}^n \sigma_i^2 + 2\sum_{i< j} \sigma_i \sigma_j = \sum_{i=1}^n \lambda_i + 2\sum_{i\neq j} \sigma_i \sigma_j$$

As σ_i , i = 1, 2, ..., n are non-negative, so n(n-1) nos. of $\sigma_i \sigma_j$ are also non-negative number.

Therefore, applying $AM \ge GM$ on n(n-1) nos. of non-negative numbers $\sigma_i \sigma_j$. We have

$$\begin{aligned} \frac{1}{n(n-1)} \sum_{i \neq j} \sigma_i \sigma_j \geq \left(\prod_{i \neq j} \sigma_i \sigma_j \right)^{\frac{1}{n(n-1)}} &= \left(\prod_{i=1}^n \sigma_i^{2(n-1)} \right)^{\frac{1}{n(n-1)}} \end{aligned}$$

$$i.e. \qquad \sum_{i \neq j} \sigma_i \sigma_j \geq n(n-1) \left(\prod_{i=1}^n \lambda_i^{n-1} \right)^{\frac{1}{n(n-1)}} &= n(n-1) \left(\prod_{i=1}^n \lambda_i \right)^{\frac{1}{n}} \end{aligned}$$

$$Thus \qquad \sum_{i \neq j} \sigma_i \sigma_j \geq n(n-1) \Delta^{\frac{1}{n}}$$

$$Where \qquad \Delta = \prod_{i=1}^n \lambda_i = det(A_{mc}A'_{mc})$$

Therefore, we get

$$[E_{mc}(G)]^2 \ge \sum_{i=1}^n \lambda_i + n(n-1)\Delta^{\frac{1}{n}}$$

by Lemma 6.1 we obtain

$$[E_{mc}(G)]^2 \ge 2\sum_{e \in X} \left(1^2 + 2^2 + \dots + k_e^2\right) + |C| + n(n-1)\Delta^{1/n}$$

Lemma 6.2 [60] If $A = [a_{ij}]$ is any non-constant matrix and its norm defined as

$$||A||_2 = \sqrt{\sum_{ij} a_{ij}^2}$$

Suppose $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_n$ are singular values of *A*, then $E(A) \ge \sigma_1 + \frac{||A||_2^2 - \sigma_1^2}{\sigma_2}$.

Thus, evaluate a lower bound for $E_{mc}(G)$ as follows:

Theorem 6.5 For a semigraph G on n vertices, if σ_1 and σ_2 are respectively largest and second largest singular values of its minimum covering matrix $A_{mc}(G)$. Then we have

$$E_{mc}(G) \ge \sigma_1 + \frac{1}{\sigma_2} \left[2 \sum_{e \in X} \left(1^2 + 2^2 + \dots + k_e^2 \right) + |C| - \sigma_1^2 \right]$$

Proof: By Lemma 6.2, for the minimum covering matrix $A_{mc}(G)$ of G, we have

$$E_{mc}(G) \ge \sigma_1 + \frac{||A_{mc}||_2^2 - \sigma_1^2}{\sigma_2}$$

Clearly, form definition of norm of a matrix we have

$$||A_{mc}(G)||_{2}^{2} = trace(A_{mc}A'_{mc})$$

= $2\sum_{e \in X} (1^{2} + 2^{2} + ... + k_{e}^{2}) + |C|$

Hence, we get

$$E_{mc}(G) \ge \sigma_1 + \frac{1}{\sigma_2} \left[2 \sum_{e \in X} \left(1^2 + 2^2 + \dots + k_e^2 \right) + |C| - \sigma_1^2 \right]$$

Which give another lower bound of $E_{mc}(G)$.

6.2.3 Relation between energy and minimum covering energy of a semigraph

Theorem 6.6 Let G(V, X) be a semigraph of order *n*, size *m* then $E_{mc}(G) \ge \frac{E(G)}{\sqrt{n}}$, where E(G) is the energy of the semigraph *G*.

Proof: If G(V, X) be a semigraph of order *n*, size *m*, and if E(G) be the energy of the semigraph. Then by **Theorem 2.4.1** we have

$$\sqrt{2\sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2)} \le E(G) \le \sqrt{2n\sum_{e \in X} (1^2 + 2^2 + \dots + K_e^2)}$$

i.e.
$$2\sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2) \le [E(G)]^2 \le 2n\sum_{e \in X} (1^2 + 2^2 + \dots + k^2)$$

Thus
$$[E(G)]^2 \le 2n\sum_{e \in X} (1^2 + 2^2 + \dots + k^2)$$

Therefore
$$\frac{[E(G)]^2}{n} \le 2\sum_{e \in X} (1^2 + 2^2 + \dots + k^2)$$

If $E_{mc}(G)$ be the minimum covering energy of a semigraph G(V, X),

By Theorem 6.4, we get

$$[E_{mc}(G)]^{2} \ge 2 \sum_{e \in X} (1^{2} + 2^{2} + \dots + k_{e}^{2}) + |C| + n(n-1)\Delta^{1/n}$$

i.e.
$$[E_{mc}(G)]^{2} \ge 2 \sum_{e \in X} (1^{2} + 2^{2} + \dots + k_{e}^{2})$$

Thus

$$[E_{mc}(G)]^2 \ge \frac{[E(G)]^2}{n}$$
$$E(G)$$

 $E_{mc}(G) \ge \frac{E(G)}{\sqrt{n}}$ Hence

Theorem 6.7 For a semigraph G(V, X) of order *n*, size *m*, if σ_1 and σ_2 are respectively largest and second largest singular values of its minimum covering matrix $A_{mc}(G)$. Then we have

$$nE_{mc}(G) \ge \frac{[E(G)]^2 - n\sigma_1^2}{\sigma_2}$$

Where E(G) is the energy of the semigraph.

Proof: If G(V, X) be a semigraph of order *n*, size *m*, and if E(G) be the energy of the semigraph. Then by Theorem 2.4.1 we have

Then,
$$\sqrt{2\sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2)} \le E(G) \le \sqrt{2n\sum_{e \in X} (1^2 + 2^2 + \dots + K_e^2)}$$

Thus $[E(G)]^2 \le 2n\sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2)$

By Theorem 6.5 we have,

$$E_{mc}(G) \ge \sigma_1 + \frac{2\sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2) + |C| - \sigma_1^2}{\sigma_2}$$

Τŀ

hus
$$\sigma_2 E_{mc}(G) - \sigma_1 \sigma_2 + \sigma_1^2 \ge 2 \sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2) + |C|$$

i.e.
$$\sigma_2 E_{mc}(G) - \sigma_1 \sigma_2 + \sigma_1^2 \ge 2 \sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2)$$

i.e.
$$n(\sigma_2 E_{mc}(G) - \sigma_1 \sigma_2 + \sigma_1^2) \ge 2n \sum_{e \in X} (1^2 + 2^2 + \dots + k_e^2)$$

i.e.
$$n(\sigma_2 E_{mc}(G) - \sigma_1 \sigma_2 + \sigma_1^2) \ge [E(G)]^2$$

i.e.
$$nE_{mc}(G) \ge \frac{[E(G)]^2}{\sigma_2} - n\frac{\sigma_1^2}{\sigma_2} + n\sigma_1$$

i.e.
$$nE_{mc}(G) \ge \frac{[E(G)]^2}{\sigma_2} - n\frac{\sigma_1^2}{\sigma_2}$$

Hence
$$nE_{mc}(G) \ge \frac{[E(G)]^2 - n\sigma_1^2}{\sigma_2}$$

6.3 Minimum covering color matrix and color energy of semigraphs

In this section another type of matrix called minimum covering color matrix of a semigraph was introduced and obtained energy of the matrix, and established some bonds to realizing the mathematical aspects of the minimum covering color energy of a semigraph. The minimum covering color matrix of a semigraph is defined as follows:

Minimum covering color matrix and energy of semigraph: Suppose G(V, X) be a vertex-colored semigraph of order n and size m, and if $c(v_i)$ denote the color of the vertex v_i . Let $C \subseteq V$ be a minimum covering set, then the minimum covering color matrix of G is defined by the square matrix $A_{mc}^c(G) = (a_{ij})_{n \times n}$, and of which

$$a_{ij}(v_i, v_j) = 1$$
 if v_i and v_j are adjacent or if $i = j$ and $v_i \in C$,
= -1 if v_i and v_j are non-adjacent with $c(v_i) = c(v_j)$,
= 0, otherwise.

The minimum covering color matrix $A_{mc}^{c}(G)$ of a semigraph G is symmetric and hence its eigenvalues $\xi_1, \xi_2, \xi_3, \dots, \xi_n$ are all real, called minimum covering color eigenvalues of G. The minimum covering color energy of a semigraph G is denoted by $E_{mc}^{c}(G)$ and defined as $E_{mc}^{c}(G) = \sum_{i=1}^{n} |\xi_i|$.

Example 6.2 G(V, X) be a connected semigraph as shown in Figure 6.2 having vertex set $V = \{1,2,3,4,5,6,7,8\}$ with the minimum colors C1, C1, C2, C1, C2, C2, C1 and C2 respectively and edge set $X = \{(1,2,3), (3,4), (4,5,6), (6,7,3), (7,8)\}$. Let $C = \{3, 4, 7\}$ be the minimum covering set. Then,

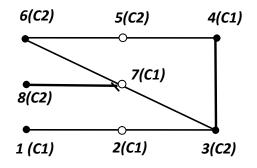


Figure 6.2

Then, the minimum covering color matrix $A_{mc}^{c}(G)$ of the semigraph G(V, X) is

6.3.1 Properties of minimum covering color energy of semigraphs

Suppose G(V,X) be a vertex-colored semigraph order *n* and size *m*, and if $c(v_i)$ denote the color of the vertex v_i and let *C* be the minimum covering set. Suppose $A_{mc}^c(G) = (a_{ij})_{n \times n}$ be the minimum covering color matrix of *G*. Suppose characteristic polynomial of $A_{mc}^c(G)$ be

$$P_{mc}^{c}(G,\xi) = det(\xi I - A_{mc}^{c}(G)) = a_0\xi^n + a_1\xi^{n-1} + a_2\xi^{n-2} + a_3\xi^{n-3} + \dots + a_n$$

Theorem 6.8 Using the notations given above, we have

(a)
$$a_0 = 1$$

(b) $a_1 = -|C|$
(c) $a_2 = {|C| \choose 2} - \sum_{i=1}^m {|e_i| \choose 2} - m'_c$

Where m'_c = number of pairs of non-adjacent vertices receiving the same color in G.

Proof: (a) From the definition of the characteristic polynomial $P_{mc}^{c}(G,\xi) = det(\xi I - A_{mc}^{c}(G))$ of $A_{mc}^{c}(G)$, it is clear that $a_{0} = 1$.

(b) $(-1)^1 a_1 =$ Sum of all first order principal minors of $A^c_{mc}(G) =$ Trace of $A^c_{mc}(G) = |C|$ Thus $a_1 = -|C|$

(c) $(-1)^2 a_2$ = Sum of all the 2 × 2 principal minors of $A_{mc}^c(G)$

$$= \sum_{1 \le i < j \le n} \begin{vmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{vmatrix} = \sum_{1 \le i < j \le n} (a_{ii}a_{jj} - a_{ij}a_{ji}) = \binom{|C|}{2} - \sum_{1 \le i < j \le n} a^{2}_{ij}$$

Thus, $a_{2} = \binom{|C|}{2} - \sum_{i=1}^{m} \binom{|e_{i}|}{2} - m'_{c}$

Where, m'_c = number of pairs of non-adjacent vertices receiving the same color in G.

Theorem 6.9 If $\xi_1, \xi_2, \xi_3, \dots, \xi_n$ are the eigenvalues of the minimum covering color matrix $A_{mc}^c(G)$ of a semigraph G(V, E) of order *n*, having *m* edges and if *C* be a minimum covering set of *G*, then

i.
$$\sum_{i=1}^{n} \xi_{i} = |C|$$

ii.
$$\sum_{i=1}^{n} \xi_{i}^{2} = 2 \left[\sum_{i=1}^{m} {\binom{|e_{i}|}{2}} + m_{c}' \right] + |C|$$

Where m'_c is the number of pairs of non-adjacent vertices receiving the same color and $|e_i|$ is the number of vertices in the edge $e_i \in E$.

Proof: i. Since, the sum of the eigenvalues of $A_{mc}^{c}(G)$ is equal to the trace of $A_{mc}^{c}(G)$

Hence
$$\sum_{i=1}^{n} \xi_i = \sum_{i=1}^{n} a_{ii} = |C|$$

ii. Consider

$$\sum_{i=1}^{n} \xi_{i}^{2} = \sum_{i=1}^{n} ((A_{mc}^{c})^{2})_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} a_{ji}$$

As $A_{mc}^{c}(G)$ is a symmetric matrix,

$$\sum_{i=1}^{n} \xi_{i}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{2}$$
$$= 2 \sum_{i < j} (a_{ij})^{2} + \sum_{i=1}^{n} (a_{ii})^{2}$$
$$= 2 \left[\sum_{i=1}^{m} {\binom{|e_{i}|}{2}} + m_{c}^{\prime} \right] + |C| \qquad Since, \quad \sum_{i=1}^{n} (a_{ii})^{2} = |C|$$

Where, m'_c is the number of pairs of non-adjacent vertices receiving the same color.

6.3.2 Some bounds for minimum covering color energy of Semigraphs

Theorem 6.10 Let G(V, E) be the minimum covering colored semigraph having *n* vertices and *m* edges with a minimum covering set *C*. Then

$$E_{mc}^{c}(G) \leq \sqrt{2n\left[\sum_{i=1}^{m} \binom{|e_i|}{2} + m_c'\right] + n|C|}$$

Where, m'_c is the number of pairs of non-adjacent vertices in G receiving the same color.

Proof: The minimum covering color matrix of a semigraph, $A_{mc}^{c}(G)$ is symmetric and hence its eigenvalues are real and can be ordered as $\xi_1 \ge \xi_2 \ge \xi_3 \ge \ldots \ge \xi_n$.

Appling the Cauchy-Schwarz inequality, we have

$$\left(\sum_{i=1}^{n} u_i v_i\right)^2 \le \left(\sum_{i=1}^{n} u_i^2\right) \left(\sum_{i=1}^{n} v_i^2\right)$$

Substituting $u_i = 1$, $v_i = |\xi_i|$ in the above inequality and by **Theorem 6.9** we have

$$\begin{split} [E_{mc}^{c}(G)]^{2} &= \left(\sum_{i=1}^{n} |\xi_{i}|\right)^{2} \leq n \left(\sum_{i=1}^{n} |\xi_{i}|^{2}\right) \\ &= n \sum_{i=1}^{n} \xi_{i}^{2} \\ &= n \left[2 \left\{\sum_{i=1}^{m} {\binom{|e_{i}|}{2}} + m_{c}'\right\} + |C|\right] \\ Hence, \qquad E_{mc}^{c}(G) \leq \sqrt{2n \left[\sum_{i=1}^{m} {\binom{|e_{i}|}{2}} + m_{c}'\right] + n|C|} \end{split}$$

Theorem 6.11 Let G(V, E) be a minimum covering colored semigraph having *n* vertices and *m* edges with a minimum covering set *C*. Let m'_c be the number of pairs of non-adjacent vertices receiving the same color in *G*. If $\Delta = |det A^c_{mc}(G)|$ then

r

$$\boldsymbol{E_{mc}^{c}}(\boldsymbol{G}) \geq \sqrt{2\left(\sum_{i=1}^{m} \binom{|\boldsymbol{e}_{i}|}{2} + m_{c}^{\prime}\right) + |\boldsymbol{C}| + n(n-1)\Delta^{2/n}}$$

Proof: We have,

$$[E_{mc}^{c}(G)]^{2} = \left(\sum_{i=1}^{n} |\xi_{i}|\right)^{2}$$
$$= \sum_{i=1}^{n} \xi_{i}^{2} + \sum_{i\neq j} |\xi_{i}| |\xi_{j}|$$

By applying $AM \ge GM$, we have

$$\frac{1}{n(n-1)} \sum_{i \neq j} |\xi_i| |\xi_j| \ge \left(\prod_{i \neq j} |\xi_i| |\xi_j| \right)^{1/n(n-1)}$$
$$= \left(\prod_{i \neq j} |\xi_i|^{2(n-1)} \right)^{1/n(n-1)}$$
$$= \left| \prod_{i \neq j} |\xi_i|^{2/n}$$
$$= \Delta^{2/n}$$
$$\sum_{i \neq j} |\xi_i| |\xi_j| \ge n(n-1)\Delta^{2/n}$$

us
$$[E_{mc}^{c}(G)]^{2} \ge \sum_{i=1}^{n} \xi_{i}^{2} + n(n-1)\Delta^{2/n}$$

Thus

By Theorem 6.9 we get

$$[E_{mc}^{c}(G)]^{2} \ge 2\left(\sum_{i=1}^{m} {\binom{|e_{i}|}{2}} + m_{c}'\right) + |C| + n(n-1)\Delta^{2/n}$$

Hence the result.

Theorem 6.12 Let G(V, E) be a minimum covering colored semigraph of order *n*, size *m* and having *C* be a minimum covering set. Then $\alpha \leq E_{mc}^{c}(G) \leq \beta$,

Where,
$$\alpha = \sqrt{2\left[\sum_{i=1}^{m} \binom{|e_i|}{2} + m'_c + \left|\binom{|C|}{2} - \sum_{i=1}^{m} \binom{|e_i|}{2} - m'_c\right|\right] + |C|}$$

and $\beta = 2\left[\sum_{i=1}^{m} \binom{|e_i|}{2} + m'_c\right] + |C|$

Where, m'_c be the number of pairs of non-adjacent vertices in G receiving the same color.

Proof: Consider

$$[E_{mc}^{c}(G)]^{2} = \left(\sum_{i=1}^{n} |\xi_{i}|\right)^{2}$$
$$= \sum_{i=1}^{n} |\xi_{i}|^{2} + \sum_{i\neq j} |\xi_{i}| |\xi_{j}|$$
$$= \sum_{i=1}^{n} |\xi_{i}|^{2} + 2\sum_{i< j} |\xi_{i}| |\xi_{j}|$$
(6.1)

We have,

$$\sum_{1 \le i < j \le n} \xi_i \xi_j = \sum_{1 \le i < j \le n} \begin{vmatrix} a_{ii} & a_{ij} \\ a_{ji} & a_{jj} \end{vmatrix}$$
$$= \sum_{1 \le i < j \le n} (a_{ii}a_{jj} - a_{ij}a_{ji})$$

For minimum covering color matrix $A_{mc}^{c}(G)$ is symmetric, $a_{ij} = a_{ji}$ Thus,

$$\sum_{1 \le i < j \le n} \xi_i \xi_j = \sum_{1 \le i < j \le n} a_{ii} a_{jj} - \sum_{1 \le i < j \le n} a_{ij} a_{ji}$$
$$= \sum_{1 \le i < j \le n} a_{ii} a_{jj} - \sum_{1 \le i < j \le n} (a_{ij})^2$$
$$= \binom{|C|}{2} - \sum_{i=1}^m \binom{|e_i|}{2} - m'_c$$

We know that,

$$\sum_{i < j} |\xi_i| \, |\xi_j| \ge |\sum_{i < j} \xi_i \xi_j|$$
$$\sum_{i < j} |\xi_i| \, |\xi_j| \ge \left| \binom{|C|}{2} - \sum_{i=1}^m \binom{|e_i|}{2} - m'_c \right|$$
(6.2)

Thus

Using inequation (6.1) and (6.2) and Theorem 6.9, we get

$$[E_{mc}^{c}(G)]^{2} \geq 2\left[\sum_{i=1}^{m} {\binom{|e_{i}|}{2}} + m_{c}' + \left| {\binom{|C|}{2}} - \sum_{i=1}^{m} {\binom{|e_{i}|}{2}} - m_{c}' \right| \right] + |C|$$

Taking positive square-root, we get

$$E_{mc}^{c}(G) \geq \sqrt{2\left[\sum_{i=1}^{m} {\binom{|e_{i}|}{2}} + m_{c}' + \left| {\binom{|C|}{2}} - \sum_{i=1}^{m} {\binom{|e_{i}|}{2}} - m_{c}' \right| \right] + |C|}$$

Again, we obtain

$$\boldsymbol{n} \leq \mathbf{2} \sum_{i=1}^{m} {\binom{|e_i|}{2}} \leq \mathbf{2} \left[\sum_{i=1}^{m} {\binom{|e_i|}{2}} + m'_c \right] + |C|$$

hus
$$\boldsymbol{n} \left[2 \left[\sum_{i=1}^{m} {\binom{|e_i|}{2}} + m'_c \right] + |C| \right] \leq \left[\mathbf{2} \left[\sum_{i=1}^{m} {\binom{|e_i|}{2}} + m'_c \right] + |C| \right]^2$$

Τł

Taking positive square-root, we get

$$\sqrt{2n\left[\sum_{i=1}^{m} \binom{|e_i|}{2} + m'_c\right] + n|C|} \le 2\left[\sum_{i=1}^{m} \binom{|e_i|}{2} + m'_c\right] + |C|$$

Thus, by using Theorem 6.10

$$E_{mc}^{c}(G) \leq 2\left[\sum_{i=1}^{m} {\binom{|e_i|}{2}} + m_c'\right] + |C|$$

Hence the result.

Theorem 6.13 Let G(V, E) be a minimum covering colored semigraph of order n and size m, with minimum covering set C. Let minimum covering color eigenvalues $\xi_1 \ge \xi_2 \ge \xi_3 \ge \ldots \ge \xi_n$. Then of $A_{mc}^{c}(G)$ be

$$E_{mc}^{c}(G) \le |\xi_{1}| + \sqrt{(n-1)\left[2\left[\sum_{i=1}^{m} {|e_{i}| \choose 2} + m_{c}'\right] + |C| - \xi_{1}^{2}\right]}$$

Where, m'_c is the number of pairs of non-adjacent vertices in G receiving the same color.

Proof: Let $\xi_1 \ge \xi_2 \ge \xi_3 \ge \dots \ge \xi_n$ be the minimum covering color eigenvalues of $A_{mc}^c(G)$. Appling the Cauchy-Schwarz inequality on to vectors $(|\xi_2|, |\xi_3|, \dots, |\xi_n|)$ and $(1, 1, \dots, 1)$ with n - 1 entries,

$$\left(\sum_{i=2}^{n} |\xi_{i}|\right)^{2} \leq (n-1) \left(\sum_{i=2}^{n} |\xi_{i}|^{2}\right)$$

i.e.
$$\left(\sum_{i=2}^{n} |\xi_{i}|\right) \leq \sqrt{(n-1) \left(\sum_{i=2}^{n} |\xi_{i}|^{2}\right)}$$

i.e.
$$\sum_{i=1}^{n} |\xi_{i}| - |\xi_{1}| \leq \sqrt{(n-1) \left(\sum_{i=1}^{n} |\xi_{i}|^{2} - |\xi_{1}|^{2}\right)}$$

By using **Theorem 6.9**, we have

$$E_{mc}^{c}(G) \le |\xi_{1}| + \sqrt{(n-1)\left[2\left[\sum_{i=1}^{m} {|e_{i}| \choose 2} + m_{c}'\right] + |C| - \xi_{1}^{2}\right]}$$

Theorem 6.14 Let G(V, E) be a minimum covering colored semigraph of order *n* and size *m* with minimum covering set *C*. Let ξ_{max} be the largest absolute value of minimum covering color eigenvalue. Then

$$E_{mc}^{c}(G) \geq \frac{2\left[\sum_{i=1}^{m} \binom{|e_{i}|}{2} + m_{c}^{\prime}\right] + |C|}{\xi_{max}}$$

Where, m'_c is the number of pairs of non-adjacent vertices in G receiving the same color.

Proof: Let ξ_{max} be the largest absolute value of the minimum covering color eigenvalue of $A_{mc}^{c}(G)$. Then

Thus
$$\begin{aligned} \xi_{max}|\xi_i| \geq \xi_i^2\\ \sum_{i=1}^n \xi_{max} |\xi_i| \geq \sum_{i=1}^n \xi_i^2 \end{aligned}$$

By Theorem 6.9, we have

$$\begin{aligned} \xi_{max} \sum_{i=1}^{n} |\xi_i| &\geq 2 \left[\sum_{i=1}^{m} \binom{|e_i|}{2} + m'_c \right] + |C| \\ E_{mc}^c(G) &\geq \frac{2 \left[\sum_{i=1}^{m} \binom{|e_i|}{2} + m'_c \right] + |C|}{\xi_{max}} \end{aligned}$$

Hence
