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Chapter 2 

 

Preliminaries 

 

 

2.1 Introduction  

This chapter incorporates a number of definitions and results collected from 

standard textbooks and research publications on matrices, graphs, and semigraphs 

relevant to the works embodied in the subsequent chapters of the thesis. Mainly, the 

classic book on graph theory by F. Harary [17] has been consulted freely because, in 

spite of exponential growth in the number of publications of good books with every 

passing year, Harary seems unmatched even today. D. B. West [12], G. Chartrand 

and L. Lesniak [18] are also a few names consulted here and there. The very topic of 

the thesis viz. semigraph a generalization of the graph, being comparatively of recent 

origin, the bulk of the concepts, terminology and notations on it had to be borrowed 

from its originator E. Sampathkumar [15, 16]. Following Harary, the concept graph 

is used here to mean simple graphs only, i.e., graphs in which multigraphs and loops 

are prohibited. After recalling some matrix preliminaries in this chapter, the next few 

chapters outline the basic properties of some matrices associated with semigraph.  

 

2.2 Matrices [31, 44]  

In this section, we review certain basic concepts on matrices for real entries. 

Relevant concepts and results are given omitting their proofs. 

 

Basic definitions:  

An 𝑚 × 𝑛 matrix consists of mn real numbers arranged in m rows and n 

columns. The entry in ith row and jth column of the matrix A is denoted by 𝑎௜௝ . An 

𝑚 × 1 matrix is called a column vector of order m. Similarly, a 1 × 𝑛 matrix is a row 

vector of order n. An  𝑚 × 𝑛  matrix is called a square matrix if  𝑚 = 𝑛.  



 

14 
 

Operations of matrix addition, scalar multiplication and matrix multiplication 

are basic and will not be recalled here. The transpose of the 𝑚 × 𝑛  matrix A is 

denoted by 𝐴் of order 𝑛 × 𝑚 obtain by interchanging rows and columns of A. 

 

A diagonal matrix is a square matrix A such that 𝑎௜௝ = 0, 𝑖 ≠ 𝑗. We denoted the 

diagonal matrix by 𝐴 = 𝑑𝑖𝑎𝑔(𝜆ଵ, 𝜆ଶ, . . . , 𝜆௡). When 𝜆௜ = 1 for all i, this reduces to 

the identity matrix of order n, which we denote by 𝐼௡ or often simply by I. The 

matrix A is upper triangular or lower triangular according as 𝑎௜௝ = 0, 𝑖 > 𝑗 𝑜𝑟 𝑖 < 𝑗. 

The transpose of an upper triangular matrix is lower triangular. 

 

Trace and determinant: 

Let A be a square matrix of order n. The entries 𝑎ଵଵ, 𝑎ଶଶ, . . . , 𝑎௡௡ are said to 

constitute the (main) diagonal of A. The trace of A is defined as  

trace A = 𝑎ଵଵ + 𝑎ଶଶ+. . . +𝑎௡௡. 

It follows from this definition that if A and B are matrices such that both AB and BA 

are defined, then                              trace AB = trace BA 

 

The determinant of an 𝑛 × 𝑛 matrix A, denoted by det A, is defined as  

    det A = ∑ 𝑠𝑔𝑛(𝜎)𝑎ଵఙ(ଵ)ఙ . . . . 𝑎௡ఙ(௡), 

where the summation is over all permutations 𝜎(1), 𝜎(2), . . . , 𝜎(𝑛) of 1, 2,…, n, and 

𝑠𝑔𝑛(𝜎) is 1 or −1 according as 𝜎 is even or odd.  

 

Nonsingular matrices: 

A matrix A of order 𝑛 × 𝑛 is said to be nonsingular if 𝑟𝑎𝑛𝑘 𝐴 = 𝑛; otherwise 

the matrix is singular. If A is nonsingular, then there is a unique 𝑛 × 𝑛 matrix 𝐴ିଵ, 

called the inverse of A, such that 𝐴𝐴ିଵ = 𝐴ିଵ𝐴 = 𝐼. A matrix is nonsingular if and 

only if det A is nonzero. 

The cofactor of 𝑎௜௝ is defined as (−1)௜ା௝ det A(i| j). The adjoint of A is the 𝑛 × 𝑛  

matrix whose (𝑖, 𝑗)௧௛ entry is the cofactor of 𝑎௝௜. We recall that if A is nonsingular, 

then 𝐴ିଵ is given by 
ଵ

ௗ௘௧ ஺
 times the adjoint of A. 
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Orthogonality: 

Vector x, y in 𝑅௡ are said to be orthogonal, or perpendicular, if 𝑥𝑦́ = 0. A set 

of vectors {𝑥ଵ, 𝑥ଶ, . . . , 𝑥௠} in 𝑅௡ is said to form an orthonormal basis for the vector 

space S if the set is a basis for S, and furthermore 𝑥ప́ 𝑥௝  is 0 if 𝑖 ≠ 𝑗, and 1 if 𝑖 = 𝑗. The 

𝑛 × 𝑛 matrix P is said to be orthogonal if 𝑃𝑃் = 𝑃்𝑃 = 𝐼. It is also verified that if P 

is orthogonal then 𝑃் is orthogonal.  

 

Eigenvalue and singular value decomposition of matrices:  

An eigenvalue and eigenvector of a square matrix A are a scalar 𝜆 and a 

nonzero vector x so that  

 𝐴𝑥 = 𝜆𝑥. 

Thus eigenvalue-eigenvector equation for a square matrix can be written as  

    (𝐴 − 𝜆𝐼)𝑥 = 0, 𝑥 ≠ 0. 

This implies that 𝐴 − 𝜆𝐼  is singular and hence       𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0 . 

 

A singular value and pair of singular vectors of a square or rectangular matrix 

A are a nonnegative scalar 𝜎 and two nonzero vectors u and v so that 

 𝐴𝑢 = 𝜎𝑢  

     𝐴ு𝑣 = 𝜎𝑣 

The superscript on 𝐴ு stands for Hermitian transpose and denotes the complex 

conjugate transpose of a complex matrix.  

If the matrix is real, then    𝐴ு = 𝐴். 

The singular values and singular vector equations for a matrix are 

      𝐴𝑉 = 𝑈𝛴 

      𝐴ு𝑈 = 𝑉𝛴ு 

Here 𝛴 is a matrix the same size as A that is zero except possibly on its main 

diagonal. It turns out that singular vectors can always be chosen to be perpendicular 

to each other, so the matrices U and V, whose columns are the normalized singular 

vectors, satisfy 𝑈ு𝑈 = 𝐼 and 𝑉ு𝑉 = 𝐼. In other words, U and V are orthogonal if 

they are real, or unitary if they are complex. Consequently,  

𝐴 = 𝑈𝛴𝑉ு 
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with diagonal 𝛴 and orthogonal or unitary U and V. This is known as the singular 

value decomposition (SVD) of a matrix A.  

 

Characteristic polynomial:  

Let A be a 𝑛 × 𝑛 matrix. The determinant 𝑑𝑒𝑡(𝐴 − 𝜆𝐼) is a polynomial in the 

(complex) variable 𝜆 of degree n and is called the characteristic polynomial of A.   

The equation  𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = 0 

is called the characteristic equation of A. By the fundamental theorem of algebra, the 

equation has n complex roots and these roots are called the eigenvalues of A. 

The eigenvalues might not all be distinct. The number of times an eigenvalue 

occurs as a root of the characteristic equation is called the algebraic multiplicity of 

the eigenvalue.  

If we may factor the characteristic polynomial as 

𝑑𝑒𝑡(𝐴 − 𝜆𝐼) = (𝜆ଵ − 𝜆)(𝜆ଶ − 𝜆). . . (𝜆௡ − 𝜆).  

The geometric multiplicity of the eigenvalue 𝜆 of A is defined to be the dimension of 

the null space of 𝐴 − 𝜆𝐼. The geometric multiplicity of an eigenvalue does not 

exceed its algebraic multiplicity.  

 

Spectral theorem:  

A square matrix A is called symmetric if 𝐴 = 𝐴். The eigenvalues of a 

symmetric matrix are real. Furthermore, if A is a symmetric 𝑛 × 𝑛 matrix, then 

according to the spectral theorem there exists an orthogonal matrix P such that  

 

൮

𝝀𝟏 𝟎
𝟎  𝝀𝟐

⋯
⋯

𝟎
𝟎

⋮     ⋮ ⋱ ⋮
𝟎   𝟎 ⋯ 𝝀𝒏

൲ 

 

In the case of a symmetric matrix the algebraic and the geometric multiplicities 

of any eigenvalues coincide. Also, the rank of the matrix equals the number of 

nonzero eigenvalues, counting multiplicities. 
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Diagonalizing matrices:  

When 𝑣ଵ, 𝑣ଶ, . . . , 𝑣௥ are eigenvector associated with distinct eigenvalues 

𝜆ଵ, 𝜆ଶ, . . . , 𝜆௥ the set {𝑣ଵ, 𝑣ଶ, . . . , 𝑣௥} is linearly independent. Eigenvectors associated 

with the same eigenvalue 𝜆 may be linearly dependent or independent. If we can find 

a basis of eigenvectors, and if P is the matrix with these eigenvectors as columns, 

then 𝑃ିଵ𝐴𝑃 is a diagonal matrix. Conversely, if A is any square matrix and if we can 

find a matrix P for which 𝑃ିଵ𝐴𝑃 is a diagonal matrix, then there is a basis of 

eigenvectors, and these eigenvectors form the columns of P; in this case, we say that 

A is diagonalizable.  

Every symmetric matrix A has an orthonormal basis of eigenvectors, and so is 

diagonalizable. Moreover, the corresponding transition matrix P is then an 

orthogonal matrix (𝑃் = 𝑃ିଵ), the matrix 𝑃்𝐴𝑃 is diagonal, and the matrix A is 

called orthogonally diagonalizable. 

 

2.3 Graphs and its energy 

Graph energy was first introduced by Serbian chemist and mathematician Ivan 

Gutman [22] in 1978 to approximate the total 𝜋-electron energy of a conjugate 

hydrocarbon as calculated by the Huckel molecular orbital (HMO) [21] method in 

quantum chemistry. In chemical literature graphs are used to represent different 

chemical objects like molecules, reactions etc. It depicted a chemical system whose 

vertices are atoms, electrons, molecules, groups of atoms etc. and edges are bound 

between molecules, bounded and non-bonded interactions, elementary reaction steps 

etc. Molecular graphs are a special type of chemical graph in which vertices are 

considered as individual atoms and edges as chemical bonds between them. Recall 

some definitions relevant to the present work as follows. 

 

Definition 2.3.1 [22] Energy of a graph: If G is a simple connected graph of order p 

and size q. The adjacency matrix of G is the square matrix  𝐴 = [𝑎௜௝]  of order p 

whose entries 𝑎௜௝ are given by 𝑎௜௝ = 1 if 𝑣௜ and 𝑣௝  are adjacent, 𝑎௜௝ = 0 otherwise. 

The eigenvalues of A are the eigenvalues of G. The energy E(G) of a graph G is the 

sum of the absolute values of the eigenvalues of A. 
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Figure 2.1  

v1  v2  v3 v4  

1  
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4  

Figure 2.2  

 

Example 2.3.1 Consider the path 𝑃ସ as depicted in Figure 2.1, then its adjacency 

matrix is given by 

 

 𝐴(𝑃ସ) = ቌ

0 1
1 0

0 0
1 0

0 1
0 0

0 1
1 0

ቍ 

 

The eigenvalues of 𝐴(𝑃ସ), are −1.618034, 1.61803, −0.618034 and 0.618034  

Thus,  

 𝐸(𝑃ସ) = ∑ |𝜆௜|
ସ
௜ୀଵ  

              = |−1.618034| + |1.618034| + |−0.618034| + |0.618034| 

           = 4.472136 

Therefore, the energy of 𝑃ସ is 4.472136. 

 

Definition 2.3.2 [19] Distance energy of a graph: If G be a connected graph with p 

vertices and q edges, the distance matrix or D-matrix 𝐷 = [𝑑௜௝] , is a square matrix 

of order p where, 𝑑௜௝ is the distance between the two vertices 𝑣௜ and 𝑣௝ . The            

D-Matrix 𝐷(𝐺) of 𝐺 is symmetric, and all of its eigenvalues 𝜇ଵ, 𝜇ଶ, 𝜇ଷ, . . . 𝜇௣ are all 

real, form D-spectrum of 𝐺. Then, distance energy or D-energy is defined as the sum 

of the absolute values of its D-eigenvalues.  

 

Example 2.3.2 Consider the Graph G(V, X) as shown in the Figure 2.2, then 

Distance matrix of G is given by 

 

 

𝐴஽(𝐺) = ቌ

0 1
1 0

1 2
1 2

1 1
2 2

0 1
1 0

ቍ 

 

The characteristic equation of 𝐴஽(𝐺) is  −𝜆ସ + 12𝜆ଶ + 18𝜆 + 7 = 0. 
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P4 

Figure 2.3  

C1  C2  C1  C2 

Definition 2.3.3 [6] Color energy of a graph:  Let G be a vertex-colored graph of 

order n. Then the color matrix of G is the matrix 𝐴௖(𝐺) = (𝑎௜௝)௡×௡ for which 

 𝑎௜௝(𝑣௜ , 𝑣௝)   =  1      if 𝑣௜ and 𝑣௝  are adjacent, 

         = -1     if 𝑣௜ and 𝑣௝  are non-adjacent with 𝑐(𝑣௜) = 𝑐(𝑣௝), 

         =  0,     otherwise, 

Where  𝑐(𝑣௜) is the color of the vertex 𝑣௜ in G. Recall that, the vertices of the graph 

G are colored so that two adjacent vertices always have different color. 

The color energy of a graph G with respect to a given coloring is the sum of the 

absolute values of eigenvalues of the color matrix 𝐴௖(𝐺).  

 

Example 2.3.3 Consider the path 𝑃ସ as shown in Figure 2.3, which is a bipartite 

graph and so, its chromatic number  𝜒(𝑃ସ) =  2.    

 

 

The color matrix of  𝑃ସ is given by  

 𝐴௖(𝑃ସ) = ቌ

0    1
1    0

−1 0
 1 −1

−1 1
0 −1

0   1
1   0

ቍ 

 

Then eigenvalues of  𝐴௖(𝑃ସ), are -2.5615528, 1.5615528, 1 and 0. Therefore, the 

color energy of 𝑃ସ with minimum number of colors is 5.1231056. 

 

Definition 2.3.4 [5] Minimum covering energy of a graph: Suppose  𝐺(𝑉, 𝑋) be a 

graph of order n and size m, with vertex set V and edges set X. Let C subset of V be 

the minimum covering set of a graph G. The minimum covering matrix of G is the 

square matrix 𝐴௠௖(𝐺) = (𝑎௜௝) of order n, where  

  𝑎௜௝   = 1 if    𝑣௜𝑣௝ ∈ 𝐸 

        = 1 if  𝑖 = 𝑗 and 𝑣௜ ∈ 𝐶 

        = 0 otherwise. 

And the minimum covering energy of the graph G is defined as  𝐸௠௖(𝐺) = ∑ |𝜆௜|
௡
௜ୀଵ   

where 𝜆ଵ, 𝜆ଶ, . . . , 𝜆௡ are eigenvalues of the minimum covering matrix 𝐴௠௖(𝐺). 
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Example 2.3.4 Consider the path 𝑃ସ as depicted in the Figure 2.1, and let its 

minimum covering set be 𝐶 = {𝑣ଵ, 𝑣ଷ} then  

its adjacency matrix is given by  

 𝐴௠௖(𝑃ସ) = ቌ

1 1
1 0

0 0
1 0

0 1
0 0

1 1
1 0

ቍ 

 

Characteristic equation of 𝐴௠௖(𝑃ସ) is  𝜆ସ − 2𝜆ଷ − 2𝜆ଶ + 3𝜆 + 1 = 0. 

 

The minimum covering eigenvalues are 

 
ቀଵିඥ଻ାଶ√ହቁ

ଶ
,   

ቀଵାඥ଻ାଶ√ହቁ

ଶ
,  

ቀଵିඥ଻ିଶ√ହቁ

ଶ
 ,  

ቀଵାඥ଻ିଶ√ହቁ

ଶ
  

 

and therefore, the minimum covering energy is  

𝐸௠௖(𝑃ସ) = ඥ7 + 2√5 + ඥ7 − 2√5. 

 

Definition 2.3.5 [29] Minimum covering distance energy: Suppose  𝐺(𝑉, 𝑋) be a 

graph of order n and size m. Let C be a subset of the vertex set V, is the minimum 

covering set of a graph 𝐺. The minimum covering distance matrix of 𝐺 is the square 

matrix of order n defied as 𝐴ெ஽(𝐺) = [𝑑௜௝],  

where   𝑑௜௝ = ൜
1

𝑑(𝑣௜, 𝑣௝)
                 if 𝑖 = 𝑗 and 𝑣௜ ∈ 𝐶

otherwise.
 

 

The characteristic polynomial of 𝐴ெ஽(𝐺) is denoted by 𝑃௡(𝐺, 𝜆) = 𝑑𝑒𝑡[𝜆𝐼 −

𝐴ெ஽(𝐺)]. The minimum covering eigenvalues of the graph 𝐺 are the eigenvalues of 

𝐴ெ஽(𝐺). Since 𝐴ெ஽(𝐺) is real and symmetric, its eigenvalues are all real number 

and we label them in non-increasing order 𝜆ଵ ≥ 𝜆ଶ ≥. . . ≥ 𝜆௡. The minimum 

covering distance energy of 𝐺 is defined as 𝐸ெ஽(𝐺) = ∑ |𝜆௜|
௡
௜ୀଵ . 

 

Example 2.3.5 Consider the graph G as shown in Figure 2.4, then 𝐶 = {1, 2, 5} is 

one of the minimum covering set for the graph G.  
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1  2  3  

4  5  6  

Figure 2.4  

The minimum covering Distance matrix of  G 

is given by  

 𝐴ெ஼(𝐺) =

⎝

⎜⎜
⎛

1 1 2
1 1 1
2 1 0

1 1 2
2 1 2
2 1 2

1 2 2
1 1 1
2 2 2

0 1 2
1 1 1
2 1 0⎠

⎟⎟
⎞

 

  

Characteristic equation is  𝜆଺ − 3𝜆ହ − 33𝜆ସ − 50𝜆ଷ + 5𝜆ଶ + 21𝜆 − 5 = 0 

 

Minimum covering distance eigenvalues are approximately equal to −2.4142,

−2.2203, −1,  0.2837, 0.4142, 7.9366. 

Thus,  

      𝐸ெ஼(𝐺) = ∑ |𝜆௜|
଺
௜ୀଵ     

                ≈ |−2.4142| + |−2.2203| + |−1| + |0.2837| + |0.4142| + |7.9366|   

    ≈ 14.2691 

Therefore, the Minimum covering distance energy of G is 14.2691. 

 

Definition 2.3.6 [30] Minimum covering color energy of a graph: Let 𝐺 be a 

vertex-colored graph of order n. Let C subset of V be the minimum covering set of a 

graph G. Then the minimum covering color matrix of 𝐺 is the matrix 𝐴௠௖
௖ (𝐺) =

(𝑎௜௝)௡×௡ of which,   

             𝑎௜௝(𝑣௜ , 𝑣௝)   =  1      if 𝑣௜ and 𝑣௝  are adjacent or if 𝑖 = 𝑗 and 𝑣௜ ∈ 𝐶 

        = -1      if 𝑣௜  and 𝑣௝  are non-adjacent with 𝑐(𝑣௜) = 𝑐(𝑣௝), 

        =  0      otherwise.   

where 𝑐(𝑣௜) is the color of the vertex 𝑣௜ in 𝐺. The minimum covering color energy 

𝐸௠௖
௖  of a graph 𝐺  with respect to a given coloring is the sum of the absolute value of 

eigenvalues of the minimum covering color matrix 𝐴௠௖
௖ (𝐺).  

  

Example 2.3.6 Consider the graph G with vertex set V = {1, 2, 3, 4} with the 

minimum colors C1, C2, C3 and C2 respectively as shown in Figure 2.5. And let  

𝐶 = {1, 2}  be the minimum covering set for the graph G.  
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3 (C3)  

2 (C2)  1 (C1)  4 (C2) 

Then the minimum covering color matrix  

of G is given by  

 

𝐴௠௖
௖ (𝑃ସ) = ቌ

 1      1
 1      1

  1    1
  1 −1

 1      1
 1   −1

  0   0
  0   0

ቍ 

       Figure 2.5 

 

Characteristic equation is  𝜆ସ − 2𝜆ଷ − 4𝜆ଶ + 4𝜆 + 4 = 0 

Minimum covering color eigenvalues are approximately equal to 1.41421,

−1.41421,   2.73205, −0.73205. 

 

Therefore, the Minimum covering color energy of G is 𝐸௠௖
௖ (𝐺) ≈ 6.29253. 

 

2.4 Semigraphs:  

Definition 2.4.1 [15] A semigraph is a pair 𝐺(𝑉, 𝑋) where 𝑉 is a non-empty set 

of elements called vertices and 𝑋 is a set of n-tuples called edgs of distinct vertices 

for various 𝑛 ≥ 2 satisfying the conditions: 

i. Any two edges have at most one vertex in common. 

ii. Two edges 𝐸ଵ = (𝑢ଵ, 𝑢ଶ, . . . . , 𝑢௣) and 𝐸ଶ = (𝑣ଵ, 𝑣ଶ, . . . . , 𝑣௤) are 

considered to be equal if and only if  𝑝 = 𝑞 and either 𝑢௜ = 𝑣௜ or 𝑢௜ =

𝑣௣ି௜ାଵ for      1 ≤ 𝑖 ≤ 𝑝. In other words, the edge (𝑢ଵ, 𝑢ଶ, . . . . 𝑢௣ିଵ, 𝑢௣) is 

the same as the edge (𝑢௣, 𝑢௣ିଵ, . . , 𝑢ଶ, 𝑢ଵ).  

 

In the edge 𝐸 = (𝑢ଵ, 𝑢ଶ, . . . . , 𝑢௣) of a semigraph 𝐺 = (𝑉, 𝑋), the vertices 𝑢ଵ 

and 𝑢௣ are called the end vertices and all vertices in between 𝑢ଵ and 𝑢௣ are called the 

middle vertices (m-vertices) of 𝐸. If any one of the vertices 𝑢௜  , 2 ≤ 𝑖 ≤ 𝑝 − 1 is 

also an end vertex of another edge then this vertex is called the middle-end vertex           

(me-vertex) of the semigraph. 
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A 
 

B C  D  

E  F  

G  H  K  

L M 

I 

Figure 2.6  

In the context of semigraph all vertices belonging to a particular edge are 

considered as adjacent to one another. Regarding pictorial representations in 

semigraphs, particular notational convention as followed by Sampathkumar is in 

order. 

 

An edge 𝐸 is represented by a simple open Jordan curve which may be drawn 

as a straight line as far as possible with its end points as end vertices of 𝐸. 

 

An m-vertex of an edge E of a semigraph G which is not an end vertex of 

another edge is denoted by a small circle placed on the curve in between the end 

vertices of E. An end vertex of an edge which is not an m-vertex of another edge is 

represented by a thick dot. When an m-vertex of an edge E is also an end vertex of 

another edge 𝐸ത, we draw a small tangent to the circle at the end of the edge 𝐸ത. 

 

In partial substantiation of the ideas involved in the preceding lines few 

examples are cited below. 

 

Example 2.4.1 Family relationship [15]: 

The relationship among the members of a number of families can be 

represented by a semigraph, where the end vertices of the edges represent the parents 

and the m-vertices of edges represent their children, and the parents are treated with 

equal status in respect of their relationship with their children. 
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Suppose  

A and B are the parents of C, D 

C and E are the parents of L, 

D and F are the parents of a newly born baby M, 

L is married to K whose parents are G, H and   

K has an unmarried sister I. 

This situation is represented by the semigraph in Figure 2.6 Even, the sex and the 

age of the members can be represented in such a semigraph by assigning suitably the 

signs +, -, and integers to the vertices.    

 

Example 2.4.2 Chemical semigraph 

Chemical semigraph is the generalisation of chemical graph. Chemical 

semigraphs are useful for depicted chemical compounds in which we consider atoms 

as vertices and edges are some groups of atoms (i.e. carbon chain, hydroxyl group, 

ketone group, aldehyde group, carbonyl group, carboxyl group, amino group etc.) 

and bonds between them. We observed that chemical semigraph is more suitable for 

represent a chemical compound than by a chemical graph. Molecular structures and 

corresponding chemical semigraph of some carbon compound and bio chemicals are 

shown as follows. 

1. Structure of Amino Acid:  

Name: Cysteine (C3H7NO2S) 

 

Molecular structure: 

       -NH2           Amino Group 

H                     H                  O   -COOH      Carboxylic Acid Group 

       N              C             C    -SH       Sulfhydryl Group 

H H       C     H           O     H   C-C-C       Carbon-Carbon bond  

                        S      H    -H       Hydrogen Atom 

 

 



 

 

Molecular semigraph 

                             

2. Structure of Acetamide:

Name: Ethanamide (C

Molecular structure

 

         H          O                 H

H      N          C          N

         H                             

Molecular semigraph 

                                                       

 

Example 2.4.3 [15] A graph 

from H such that each edge of 

adjacent if and only if the corresponding blocks in 

Figure 2.9, every edge in 

25 

emigraph model of Cysteine (C3H7NO2S)                        

                                           

Figure 2.7 

 

Structure of Acetamide: 

Name: Ethanamide (C2H5NO) 

Molecular structure: 

H          O                 H   -CO            Carbonyl Group

N          C          N    -CH3       Methyl Group

                            H   -NH2       Amino Group

emigraph model of Ethanamide (C2H5NO)                    

                                          

Figure 2.8  

A graph H is considered. A semigraph G may be constructed 

such that each edge of G represents a block of H and two edges of 

adjacent if and only if the corresponding blocks in H have a vertex in common. In    

, every edge in G represents a block of H. 

S)                                                                                     

Carbonyl Group 

Methyl Group 

Amino Group 

                     

may be constructed 

and two edges of G are 

have a vertex in common. In     
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Figure 2.9  

 

 

 

 

 

 

 

 

 

 

 

 

   

     

 

                                                          

Definition of semigraph provided by Sampathkumar was so rich in structure 

and form that it gave rise to lots of new concepts parallel to every aspects of graph 

theory. However, definitions and results relevant only to the present thesis are 

borrowed from [15, 16, 54] and presented in the following.  

 

Definition 2.4.2  In a semigraph G = (V, X), different types of degrees are defined 

for a vertex as follows: 

(a) Degree (or End Degree): 𝑑𝑒𝑔 𝑣 is the number of edges having v as an 

end vertex. 

(b) Edge degree: 𝑑𝑒𝑔௘ 𝑣 is the number of edges containing v. 

(c) Adjacent degree: 𝑑𝑒𝑔௔ 𝑣 is the number of vertices adjacent to v. 
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(d) Consecutive adjacent degree: 𝑑𝑒𝑔௖௔ 𝑣 is the number of vertices 
consecutively adjacent to v.  

 
These are illustrated in Figure 2.10. 

 
 

 

           
 

 
Figure 2.10 

 
 
Clearly, for any vertex v,  𝑑𝑒𝑔 𝑣 ≤ 𝑑𝑒𝑔௘ 𝑣 ≤ 𝑑𝑒𝑔௔ 𝑣 ≤ 𝑑𝑒𝑔௖௔ 𝑣 . Equality holds 

for usual graph.  
 

Proposition 2.4.1  

Let G = (V, X) be a semigraph of order p and size q where, 𝑉 = ൫𝑣ଵ, 𝑣ଶ, . . . , 𝑣௣൯ 

and 𝑋 = ൫𝐸ଵ, 𝐸ଶ, . . . , 𝐸௤൯. Then, 

(i) ∑ 𝑑𝑒𝑔𝑣௜
௣
௜ୀଵ = 2𝑞  

(ii) ∑ 𝑑𝑒𝑔௘ 𝑣௜
௤
௜ୀଵ = ∑ |𝐸௜|

௤
௜ୀଵ  

(iii) ∑ (𝑑𝑒𝑔௔ 𝑣௜ + 𝑑𝑒𝑔௘ 𝑣௜) = ∑ |𝐸௜|
ଶ௤

௜ୀଵ
௣
௜ୀଵ  

(iv) ∑ 𝑑𝑒𝑔௖௔ 𝑣௜
௣
௜ୀଵ = 2 ∑ (|𝐸௜| − 1)௤

௜ୀଵ  
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Figure 2.11  

Definition 2.4.3  Let G = (V, X) be a semigraph. Following three graphs 

associated with G, have the same vertex set V: 

(a) End vertex graph (e-Graph) 𝐺௘: Two vertices are adjacent if and only if 

they are end vertices of an edge in G. 

 

(b) Adjacency graph (a-Graph) 𝐺௔: Two vertices are adjacent if and only if 

they are adjacent in G. 

 

(c) Consecutive adjacency graph (ca-Graph) 𝑮𝒄𝒂: Two vertices are 

adjacent if and only if they are consecutively adjacent in G. 

 

The edge in a semigraph naturally gives rise to the idea of subedges and partial 

edges which are absent in graph theory.  

 

Definition 2.4.4    A subedge (fs-edge) of an edge E=(𝑣ଵ, 𝑣ଶ, . . . , 𝑣௡) is a k-tuple 

𝐸/ = ൫𝑣௜భ
, 𝑣௜మ

, . . . , 𝑣௜ೖ
൯ where 1 ≤ 𝑖ଵ < 𝑖ଶ <. . . < 𝑖௞ ≤ 𝑛 or 1 ≤ 𝑖௞ < 𝑖௞ିଵ <. . . <

𝑖ଵ ≤ 𝑛 .   

 

Definition 2.4.5    A partial edge (fp-edge) of an edge E=(𝑣ଵ, 𝑣ଶ, . . . , 𝑣௡) is a                

(j-i+n)-tuple 𝐸// = ൫𝑣௜ , 𝑣௜ିଵ, . . . , 𝑣௝൯
,
 where 1≤ i ≤ n. 

 

Example 2.4.4  In the semigraph as shown in the Figure 2.11 (𝑣ଵ, 𝑣ଷ) is a subedge 

of the edge (𝑣ଵ, 𝑣ଶ, 𝑣ଷ) whereas, (𝑣ହ, 𝑣଺) is a partial edge of the edge (𝑣ହ, 𝑣଺, 𝑣଻). 
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From the above definitions it is clear that an edge is a subedge (or a partial 

edge) of itself but a proper subedge (or a proper partial edge) is not an edge. For, 

otherwise it would contradict the condition that two edges should have at most one 

vertex in common. Also, a subedge of an edge is a partial edge if and only if any two 

consecutive vertices in the subedge are also consecutive vertices in the edge. 

 

Definition 2.4.6   A semigraph 𝐺/ = (𝑉/, 𝐸/) is a subsemigraph of a semigraph   

𝐺 = (𝑉, 𝐸) if 𝑉/ ⊆ 𝑉 and the edges in 𝐺/ are subedges of G. A partial 

subsemigraph of a semigraph G = (V, X) is a semigraph whose vertex set is a subset 

of V and edges are the partial edges of G. 

A semigraph 𝐺/ = (𝑉/, 𝐸/) is said to be an induced subsemigraph of a 

semigraph G = (V, X), if the edges 𝐺/of are subedges of G induced by the vertices in 

𝑉/ ⊆ 𝑉.  

A subsemigraph 𝐺/ = (𝑉/, 𝐸/) of a semigraph G is a spanning subsemigraph 

if 𝐺/
 contains all the vertices of G. 

Using each of the concepts of fs-edge and fp-edge the definition of walk, trail, 

path and cycle can be introduced differently for semigraphs. 

 

Definition 2.4.7  A w-walk (weak walk) in a semigraph G is an alternating 

sequence of vertices and fs-edges 𝑣଴𝐸ଵ𝑣ଵ𝐸ଶ. . . 𝑣௡ିଵ𝐸௡𝑣௡ beginning and ending with 

vertices, such that 𝑣௜ିଵ and 𝑣௜ are the end vertices of the fs-edge 𝐸௜, 1 ≤ i ≤ n. In such 

a case, it is called a 𝑣଴ − 𝑣௡    w-walk. It is closed if 𝑣଴ = 𝑣௡. This walk is called s-

walk (strong walk) if all its fs-edges are fp-edges. A w-walk is a w-trail if any two 

fs-edges in it are distinct. Similarly, s-trail can be defined. 

A w-path (respectively, s-path) is a w-trail (respectively, s-trail) in which all 

vertices are distinct. A w-path is simply referred to as a path.  

A w-cycle (respectively, s-cycle) is a closed w-path (respectively, s-path).      

There is an alternate definition for the s-path. A path P is an s-path where any two 

consecutive vertices are also consecutive vertices of an edge.  
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Figure 2.12  

Example 2.4.5  Let us consider the 𝑣ଵ − 𝑣ଽ s-path 𝑣ଵ𝐸ଵ𝑣ଷ𝐸ଷ𝑣଺𝐸ଽ𝑣ଵ଴𝐸଻𝑣ଽ in         

Figure 2.12, where 𝐸ଵ = (𝑣ଵ,  𝑣ଶ,  𝑣ଷ), 𝐸ଷ = (𝑣ଷ,  𝑣ସ,  𝑣ହ, 𝑣଺), 𝐸ଽ = (𝑣଺,  𝑣ଵ଴) and 

𝐸଻ = (𝑣ଵ଴, 𝑣ଽ). This path can be written as 𝑣ଵ𝑣ଶ𝑣ଷ𝑣ସ𝑣ହ𝑣଺𝑣ଵ଴𝑣ଽ. But the path 

𝑣ଵ𝑣ଷ𝑣ସ𝑣଺𝑣ଵ଴𝑣ଽ is 𝑣ଵ − 𝑣ଽ w-path as because it has the subedges (𝑣ଵ, 𝑣ଷ) 

and(𝑣ଷ, 𝑣ସ, 𝑣଺). 

 

 

 
 

 

 

 

 

 

 

To define the length of a path as well as a cycle the following definitions 

become necessary. 

 

Let 𝐸 = (𝑣ଵ, 𝑣ଶ, . . . , 𝑣௠) be an edge and 𝑃 : 𝑢଴ 𝐸ଵ 𝑢ଵ. . . 𝑢௡ିଵ𝐸௡𝑢௡ be a 𝑢଴ − 𝑢௡ 

path in a semigraph G. Let us suppose 𝐸௜ = (𝑣௜భ
, 𝑣௜మ

, . . . , 𝑣௜ೖ
) to be a subedge of E 

appearing in P. We say that P traverses 𝐸௜ in r-direction if 𝑖ଵ < 𝑖ଶ <. . . < 𝑖௞and P 

traverses 𝐸௜ in l-direction if 𝑖ଵ > 𝑖ଶ >. . . > 𝑖௞. Also, in the travesty of P from 𝑢଴ to 

𝑢௡, we say that P traverses two subedges 𝐸ଵ and 𝐸ଶ of E in the same direction if P 

traverses both 𝐸ଵ and 𝐸ଶ in either r-direction or l-direction. 

 

The length of a path 𝑃 : 𝑢଴ 𝐸ଵ 𝑢ଵ. . . 𝑢௡ିଵ𝐸௡𝑢௡ is the number of ordered pairs 

(𝐸௜ିଵ, 𝐸௜), 2 ≤ i ≤ n  such that 𝐸௜ିଵ and 𝐸௜ are not subedges of the same edge 

traversed in the same direction. Similarly, the length of a cycle is defined. 

 

The s-distance between two vertices u and v in a semigraph G is the length of a 

shortest s-path between u and v. Similarly, the w-distance between u and v is 
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defined. It is observed that the s-distance between u and v is the same as the w-

distance between them. Thus, by distance between u and v one should mean the s-

distance or w-distance and it is denoted by d(u, v). 

In general, there may be exists a w-path of length k between any two vertices of 

a same edge, but it is not possible in case of an s-path. For example, if 𝐸 =

(𝑣ଵ, 𝑣ଶ, 𝑣ଷ, 𝑣ସ, 𝑣ହ, 𝑣଺, 𝑣଻) is an edge, then 𝑣ଵ𝑣ଷ𝑣ହ𝑣଻𝑣ସ𝑣ଶ  is a w-path of length of two 

from 𝑣ଵ to 𝑣ଶ, but there is no s-path of length two between them. 

 

The distance d(u, v ) between the vertices u and v in a semigraph G is the same 

as the distance between them in the adjacency graph 𝐺௔ of G. However, the length of 

an   s-path or w-path P in G is not the same as the length of P in the adjacency graph 

𝐺௔. 

 

Definition 2.4.8   A set S of vertices in a semigraph G is weakly connected or 

strongly connected according as there exists a weak path or a strong path between 

any two vertices in S. Clearly, if S is strongly connected then it is weakly connected, 

but not conversely. A semigraph G = (V,X ) is connected if V is connected. 

 

The removal of a vertex 𝑣௜,  1 ≤ i ≤ n (3 ≤ n) from an edge 𝐸 = (𝑣ଵ, 𝑣ଶ, . . . , 𝑣௡) 

results in a subedge 𝐸′ = (𝑣ଵ, 𝑣ଶ, . . . , 𝑣௜ିଵ, 𝑣௜ାଵ, . . . , 𝑣௡) of E .   

Let G = (V, X) be a semigraph with 𝑣 ∈ 𝑉 and 𝐸 ∈ 𝑋. The removal of v from G 

results in a semigraph 𝐺 − 𝑣 = (𝑉ᇱ, 𝑋ᇱ), where 𝑉ᇱ = 𝑉 − {𝑣} and the edges in 𝑋′are 

defined as follows: 

If  𝐸 ∈ 𝑋 and 𝑣 ∉ 𝐸 then 𝐸 ∈ 𝑋′. 

If  𝐸 ∈ 𝑋 and 𝑣 ∈ 𝐸 then 𝐸 − 𝑣 ∈ 𝑋ᇱ if and only if |E|≥3. The removal of an 

edge E from G results in a semigraph 𝐺ᇳ = (𝑉ᇳ, 𝑋ᇳ), where 𝑉 = 𝑉ᇳ and 𝑋″ = 𝑋 −

{𝐸}.  

 

Definition 2.4.9   A cut vertex in a semigraph G is one whose removal increases 

the components of G and a bridge is such an edge. A non-separable semigraph is 

one that is connected, nontrivial and having no cut vertices. 
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Example 2.4.6   In the semigraph shown in Figure 2.13 below, the vertices 𝑣ଵ is a 

cut vertex, whereas 𝑣ଶ is not a cut vertex. The edge 𝐸ଵ = (𝑣ଵ, 𝑣ଶ, 𝑣ଷ) is a bridge but 

𝐸ଶ = (𝑣ଶ, 𝑣ସ, 𝑣ହ) is not a bridge. 

 

 

 

 

 

 

 

 

 

Proposition 2.4.2   

In a semigraph G the following conditions hold. 

(i) If u is a vertex in G then (𝐺 − 𝑢)௔ = 𝐺௔ − 𝑢 

(ii) If E is an edge in G with end vertices u and v then 

(𝐺 − 𝐸)௘ = 𝐺௘ − 𝑢𝑣. 

 

Proposition 2.4.3  (Characterization of a block)  

Let G be a connected semigraph with at least three vertices. The following 

statements are equivalent. 

i. G is a block. 

ii. Every two vertices in G lie on a w-cycle.  

iii. Every vertex and a subedge of cardinality two lie on a w-cycle. 

iv. Every two subedge of G of cardinality two lie on a w-cycle. 

v. Given two vertices and a subedge of G of cardinality two, there is a w-

path joining the vertices which contain the subedge. 

vi. For every three distinct vertices of G there is a w-path joining any two of 

them which contains the third. 
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vii. For any three distinct vertices of G, there is a w-path joining any two of 

them which does not contain the third. 

 

In case of semigraph, there are two types of complete semigraphs one of which 

is complete and the other is strongly complete. 

 

Definition 2.4.10 A semigraph G is complete if any two vertices are adjacent. 

Further, G is strongly complete if 

(i) G is complete and 

(ii) Every vertex in G appears as an end vertex of an edge.  

Some examples of complete semigraphs and strongly complete semigraphs are 

mentioned below. In Figure 2.14, the semigraphs 𝐺ଵand 𝐸଺
௖ are complete, whereas 

the semigraphs 𝐺ଶ and 𝑇ହ
ଵ are strongly complete. E. Sampathkumar [15] denoted the 

complete semigraph containing only one edge of cardinality n ≥ 3 by 𝐸௡
௖. He also 

denoted the strongly complete semigraph of n vertices with one edge of cardinality   

n - 1 and all other edges of cardinality two by 𝑇௡ିଵ
ଵ . 

 

  

 

 

 

 

 

 

 

 

 

 

 

1G
2G
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1
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Figure 2.14  
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Clearly, any strongly complete semigraph is complete, but not conversely.  
 

E. Sampathkumar [15] introduced the concept of bipartition of graphs into 
semigraphs and defined three types of independent sets and bipartite semigraphs. He 
also introduced a new concept called edge bipartite semigraph, which is missing in 
graph theory.  

 

Definition 2.4.11 A set S of vertices in a semigraph G = (V, X ) is independent if 

no edge is a subset of S and S is e-independent if no two end vertices of an edge 

belong to S. The set S is strongly independent if no two adjacent vertices belong to 

S. In graphs all these concepts coincide.  

 

Let G = (V, X) be a semigraph. Then G is called a bipartite semigraph if its 

vertex set V can be partitioned into two sets such that they are independent and it is 

called e-bipartite if the vertex set V can be partitioned into two sets such that they 

are e-independent. The semigraph G is strongly bipartite if the vertex set V can 

partitioned into two sets which are strongly independent.  

 

Proposition 2.4.4  

A semigraph G is e-bipartite if and only if, its end vertex graph (e-graph) 𝐺௘ is 

bipartite. 

 

Proposition 2.4.5  

Let G be a semigraph having a cycle at least one edge of which has cardinality 

three. Then G is bipartite. 

 

Definition 2.4.12 A semigraph G is edge bipartite if G has no odd cycle. An 

edge bipartite semigraph is bipartite, but the converse may not be true. 
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Figure 2.15 

Proposition 2.4.6 

If a semigraph G is edge bipartite, then it is bipartite. However, the converse is 

not true. 

 

All these concepts coincide for graphs. It is clear that the only semigraphs 

which are strongly bipartite are bipartite graphs. Also, every e-bipartite semigraph is 

bipartite, but not conversely. 

 

E. Sampathkumar generalized of the concept of trees of graph theory into 

semigraph and named it as “dendroids”. 

 

Definition 2.4.13   A dendroid is a connected semigraph without s-cycles (strong 

cycles) and a forest is a semigraph in which every component is a dendroid. The       

Figure 2.15 is an example of a dendroid.  

 

 

 

 

 

 

 

A result due to E. Sampathkumar on dendroids is as follows. 

 

Proposition 2.4.7   

Let G be a semigraph with p vertices, q edges 𝐸௜, 1≤ i ≤q and k components. 

Then G contains no cycles if and only if, 

    𝑝 + 𝑞 = ∑ |𝐸௜|
௤
௜ୀଵ + 𝑘 
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Corollary 2.4.1 A connected semigraph G with p vertices and q edges 𝐸௜,           

1≤ i ≤q is a dendroid if and only if, 

   𝑝 + 𝑞 = ∑ |𝐸௜|
௤
௜ୀଵ + 1 

 

The concept of “Covering” of graph was also successfully accommodated into 

the semigraph setting and some results were derived in this direction. As has been the 

case with any other concept in semigraph, two different types of covering numbers 

emerged, one relating to vertex and another to edge as follows. 

 

Definition 2.4.14   In a semigraph G a vertex v and an edge E are incident to each 

other if 𝑣 ∈ 𝐸 and in that case, v and E are said to cover each other. A set S of 

vertices that cover all the edges of a semigraph G is a vertex cover for G, and S is an 

e-vertex cover for G if S has only the end vertices of edges.  

A set L of edges covering all the vertices of G is said to be an edge cover of G 

and if the edges of L cover all the end vertices of G then it is said to be an e-edge 

cover of G.   

The vertex covering number 𝛼଴ = 𝛼଴(𝐺) of a semigraph G is the minimum 

cardinality of a vertex cover. Similarly, the e-vertex covering number 𝛼௘ = 𝛼௘(𝐺) 

of G is defined.  

The edge covering number 𝛼ଵ = 𝛼ଵ(𝐺) of G is the minimum cardinality of an 

edge cover and e-edge covering number of G is defined similarly. 

 

There are three different types of independence number for a semigraph which 

are as defined below.  

 

Definition 2.4.15   The independence number 𝛽଴ = 𝛽଴(𝐺) of G is the maximum 

cardinality of an independent set of vertices of G and the e-independence number 

𝛽௘ = 𝛽௘(𝐺) as well as the strong independence number 𝜷𝒔 = 𝜷𝒔(𝑮) of G is 

similarly defined. 

A set L of edges is independent if no two edges of L are adjacent and the set L 

is e-independent if no two edges of L have a common end vertex. The edge 

independence number 𝜷𝟏 = 𝜷𝟏(𝑮) of G is the maximum cardinality of an 
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independent set of edges, while the e-independence number 𝛽ଵ௘ = 𝛽ଵ௘(𝐺) is the 

maximum cardinality of an e-independent set of edges of G. 

 

The following relations can be deduced immediately from the above 

definitions. 

𝛼௘  =  𝛼௘(𝐺) =  𝛼଴(𝐺௘), 𝛼ଵ௘ =   𝛼ଵ௘(𝐺)   = 𝛼ଵ(𝐺௘), 𝛽௘  =  𝛽௘(𝐺) =  𝛽଴(𝐺௘) and             

𝛽ଵ௘ = 𝛽ଵ௘(𝐺) = 𝛽ଵ(𝐺௘), where 𝛼଴(𝐺௘), 𝛼ଵ(𝐺௘), 𝛽଴(𝐺௘) and 𝛽ଵ(𝐺௘) are respectively 

the vertex covering number, edge covering number, vertex independence number and 

edge independence number of the e-graph 𝐺௘ associated with the semigraph G. Also, 

we have,𝛽௦ = 𝛽௦(𝐺) = 𝛽଴(𝐺௔), where 𝛽଴(𝐺௔) denote the vertex independence 

number of the a-graph 𝐺௔ associated with the semigraph G. 

 

Proposition 2.4.8  

For any semigraph G,  𝛼଴ ≤ 𝛼௘ and 𝛽௦ ≤ 𝛽௘ ≤ 𝛽଴. 

 

Proposition 2.4.9  

Let G = (V, X) be a semigraph with p vertices and q edges 𝐸௜, 1 ≤ 𝑖 ≤ 𝑞. Then 

(i) 𝛼଴ + 𝛽଴ = 𝑝 

(ii) For a semigraph G with no vertex of degree zero,  

𝛼௘ + 𝛽௘ = 𝑝. 

A similar result is believed to be true for edge bipartite semigraph and has been 

presented as a conjecture by Sampathkumar as given below. 

 

Conjecture 2.4.1    Let G = (V, X) be an edge bipartite semigraph. Then, 

𝛼௘(𝐺) = 𝛽ଵ௘(𝐺) 

Proposition 2.4.10  

If G is a semigraph of order p having no vertices of degree zero, then  

𝛼ଵ௘ + 𝛽ଵ௘ = 𝑝 

In [15] we also come across planarity of semigraph and find Euler’s Polyhedral 

formula for planar semigraphs. 
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Definition 2.4.16 A semigraph is said to be embedded in a surface when it is 

drawn on it so that no two edges intersect at a point not representing a vertex of the 

semigraph on the surface. 

 

A planar semigraph is one which can be embedded in a plane. In the       

Figure 2.16, the semigraph G is planar, but the semigraph 𝐺 ′ is not planar. 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The regions defined by a planar embedding semigraph are called its faces. The 

unbounded region is called the exterior face of the embedding.  

 

G 

𝑮ሖ  

Figure 2.16 
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 Coloring is another important aspect of graph theory that has been studied by 

Sampathkumar in the semigraph setting. Three types of vertex coloring and two 

types of edge coloring are introduced and corresponding vertex coloring numbers 

and edge coloring numbers are defined.  

 

Definition 2.4.17 A coloring of a semigraph G is an assignment of colors to its 

vertices such that not all vertices in a same edge colored the same.  

A strong coloring (an e-coloring) of G is a coloring of vertices so that no two 

adjacent vertices (end vertices of an edge) are colored the same. As n-coloring            

(n-strong coloring, n-e-coloring) uses n colors and partitions the vertex set of G 

into n respective color classes, each class consisting of vertices of the same color. 

 

The chromatic number 𝝌 = 𝝌(𝑮) of G is the minimum number of colors 

needed in any coloring of G. Similarly, we define the strong chromatic number 

𝝌𝒔 = 𝝌𝒔(𝑮) and the e-chromatic number 𝝌𝒆 = 𝝌𝒆(𝑮) of G. Clearly a strong 

coloring is an e-coloring and an e-coloring is a coloring. 

 

Proposition 2.4.11  

For any semigraph of order p, 

𝜒 ≤ 𝜒௘ ≤ 𝜒௦ ≤ 𝑝. 

Proposition 2.4.12  

For any semigraph G, 𝜒௦(𝐺) ≤ 𝜒௘(𝐺) + 𝑚, where m is the number of middle 

vertices of G. 

Proposition 2.4.13   

Let G be a semigraph with at least one edge. Then G is 

(i) Bipartite if and only if, 𝜒(𝐺) = 2 

(ii) e-bipartite if and only if, 𝜒௘(𝐺) = 2and 

(iii) strongly bipartite if and only if, 𝜒௦(𝐺) = 2 
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Definition 2.4.18   Let G = (V, X) be a semigraph with 𝜒(𝐺) = 𝑛. A                

𝜒(𝐺)-partition of G is a partition {𝑉ଵ, 𝑉ଶ, . . . , 𝑉௡} of V into independent sets. 

Similarly, a 𝝌𝒆(𝑮)-partition and a 𝝌𝒔(𝑮) -partition of G are defined. 

 

Definition 2.4.19 A partition {𝑉ଵ, 𝑉ଶ, . . . , 𝑉௡} of V is complete if for any 𝑉௜ and 𝑉௝,    

𝑖 ≠ 𝑗, 𝑉௜ ∪ 𝑉௝ contains an edge. 

 

Proposition 2.4.14   

The partitions 𝝌(𝑮),  𝝌𝒆(𝑮) and 𝝌𝒔(𝑮) of G are all complete. 

Proposition 2.4.15   

If G is a planar semigraph then, 𝝌(𝑮) ≤ 𝝌𝒆(𝑮) ≤ 𝟓. 

Proposition 2.4.16 

For any semigraph G of order p, 

(i) 
𝒑

𝜷𝟎
≤ 𝝌𝒆(𝑮) ≤ 𝒑 − 𝜷𝟎 + 𝟏, 

(ii) 
𝒑

𝜷𝒆
≤ 𝝌𝒆(𝑮) ≤ 𝒑 − 𝜷𝒆 + 𝟏 and 

(iii) 
𝒑

𝜷𝒔
≤ 𝝌𝒔(𝑮) ≤ 𝒑 − 𝜷𝒔 + 𝟏 

Proposition 2.4.17 

For any semigraph G, 

𝝌(𝑮) ≤ 𝒎𝒂𝒙𝜹𝒆( 𝑮′) + 𝟏, 

where, the maximum is taken over all edge induced subsemigraphs 𝑮ᇱ of G and 

𝜹𝒆(𝑮ᇱ) denotes the minimum edge degree of a vertex v in 𝑮′. 

 

Corollary 2.4.2    For any semigraph G, 

𝝌(𝑮) ≤ 𝜟𝒆(𝑮) + 𝟏,  

where, 𝜟𝒆(𝑮) denotes the maximum edge degree of a vertex v in G. 

 

Corollary 2.4.3    For any semigraph G of order p, 

𝜷𝟎(𝑮) ≤ 𝒑/𝜟𝒆(𝑮) + 𝟏 
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Corollary 2.4.4    If 𝛼଴(𝐺) is the point covering number of G, then 

𝜶𝟎(𝑮) ≤
𝒑𝜟𝒆(𝑮)

𝜟𝒆(𝑮)
+ 𝟏 

Proposition 2.4.18   

For any semigraph G, 

𝝌𝒆(𝑮) ≤ 𝒎𝒂𝒙 𝜹 (𝑮′
𝒆) + 𝟏, 

where, the maximum is taken over all edge induced subsemigraphs 𝑮ᇱ
𝒆 of 𝑮𝒆.  

 

Corollary 2.4.5    For any semigraph G, 

𝝌𝒆(𝑮) ≤ 𝜟(𝑮) + 𝟏 

 

Proposition 2.4.19  

For any semigraph G, 

𝝌𝒔(𝑮) ≤ 𝒎𝒂𝒙𝜹𝒂( 𝑮′) + 𝟏 

Where the maximum is taken over all the edge induced subsemigraphs 𝑮ᇱ of G and 

𝜹𝒂(𝑮ᇱ) denotes the minimum adjacent degree of a vertex v in 𝑮′. 

 

Definition 2.4.20    An edge coloring of a semigraph G is an assignment of colors 

to its edges so that no two edges with a common vertex are colored the same.  

 

An e-edge coloring of a semigraph G is an assignment of colors to its edges so 

that no two edges with a common end vertex are colored the same. An n-edge 

coloring of G uses n colors. 

 

The edge chromatic number (or chromatic index) 𝜒ᇱ(𝐺) of a semigraph G is 

the minimum number n for which G has an n-edge coloring. An e-edge chromatic 

number 𝝌𝒆
ᇱ(𝑮) of G is the minimum number of colors needed in an e-edge coloring 

of G. Clearly, 𝜒ᇱ
௘

(𝐺) ≤ 𝜒ᇱ(𝐺) for any semigraph G and 𝜒ᇱ
௘

(𝐺) = 𝜒ᇱ(𝐺௘) where  

𝜒ᇱ(𝐺௘) is the edge chromatic number of the e-graph  corresponding to the 

semigraph G. If G is a graph then, 𝜒′
௘

(𝐺) = 𝜒′(𝐺). 

 

eG
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Definition 2.4.21     A set S of edge in a semigraph G is said to form an edge 

clique if any two edge in S are adjacent. The edge clique number 𝝎𝒆(𝑮) of G is the 

maximum cardinality of an edge clique in G. 

If G is a graph, we observe that 𝜔௘(𝐺) = 𝛥(𝐺), the maximum degree of G. 

 

Proposition 2.4.20  

If G is an edge bipartite semigraph, then 𝜔௘(𝐺) = 𝛥௘(𝐺) where, 𝛥௘(𝐺) 

denotes the maximum edge degree of G. 

 

Proposition 2.4.21  

If G is an edge bipartite semigraph, then 

(i) 𝜒′(𝐺) = 𝜔௘(𝐺) = 𝛥௘(𝐺) 

(ii) 𝜒′
௘

(𝐺) = 𝛥(𝐺) 

 

Corollary 2.4.6    For any dendroid G, 𝜒′(𝐺) = 𝛥௘(𝐺). 

 

Proposition 2.4.22   (Vizing-Type Theorem for e-edge Chromatic Number)      

For any semigraph G, 

𝛥(𝐺) ≤ 𝜒′
௘

(𝐺) ≤ 𝛥(𝐺) − 1. 

Proposition 2.4.23   

For every semigraph G,  𝜒′(𝐺) ≥ 𝜔௘(𝐺). 

 

Conjecture 2.4.2   For any semigraph G,  𝜒′(𝐺) ≤ 𝜔௘(𝐺) + 1. 

 

 The semigraphs like graphs can be classified into two classes. A semigraph G 

is said to belong to Class I if 𝜒ᇱ(𝐺) = 𝜔௘(𝐺), and to Class II if 𝜒ᇱ(𝐺) = 𝜔௘(𝐺). 

Again, a semigraph G belongs to Class 𝐼௘, if 𝜒ᇱ
௘

(𝐺) = 𝛥(𝐺) while G belongs to 

Class 𝐼𝐼௘ if  𝜒′
௘

(𝐺) = 𝛥(𝐺) + 1.  
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7 6 4  5  

3 1 2 

Domination is one of the important areas Graph Theory introduced by C. Berge 

in 1985 and called as external stability. The concept of domination in semigraph 

provides a lot of scope for theoretical development and applications. There are 

various types of domination in semigraph like a-domination, ca-domination, ev-

domination, etc.  

 

Definition 2.4.22   a-Domination [16]: Let 𝑆 = (𝑉, 𝑋) be a semigraph. A 

subset D of V is called a-dominating set of S if for all 𝑣 ∈ 𝑉 − 𝐷 there exist 𝑢 ∈ 𝐷 

such that u and v are adjacent. 

 

The minimum cardinality of a-dominating set of S is called the a-domination 

number of S and is denoted by  𝛾௔. 

 

Example 2.4.7 If 𝑆 = (𝑉, 𝑋) be a semigraph with vertex set 𝑉 = {1, 2, 3, 4, 5, 6, 7} 

and edge set  𝑋 = {(1,2,3), (3,4), (2,6), (4,5,6,7)} as shown in Figure 2.17. Then 

𝐷 = {3, 4} is a-dominating set of S. It is also a minimum a-dominating set of S. 

Therefore  𝛾௔(𝑆) = 2. 

 

 

 

 

 

 

 

 

Figure: 2.17 

 

Definition 2.4.23   ca-Domination [16]: A subset D of V(S) is called an                

ca-dominating set if for every 𝑣 ∈ 𝑉 − 𝐷, there exist a 𝑢 ∈ 𝐷 such that u and v are 

consecutive vertices of an edge. 
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The minimum cardinality of a ca-dominating set is denoted by  𝛾௖௔(𝑆), and 

called the ca-domination number of S. 

 

Example 2.4.8  If 𝑆 = (𝑉, 𝑋) be a semigraph with vertex set 𝑉 = {1, 2, 3, 4, 5, 6} 

and edge set  𝑋 = {(1,2,3,4), (4,6), (2,5,6)} as in Figure 2.18. Then 𝐷 = {2, 6} is 

the ca-dominating set of S with minimum cardinality. Therefore  𝛾௖௔(𝑆) = 2. 

 

 

 

 

 

 

 

Figure: 2.18 

 

Definition 2.4.24   ev-Domination [16]: A subset D of V(S) is called an                 

end vertex dominating set if for every 𝑢 ∈ 𝑉 − 𝐷, there exist a 𝑣 ∈ 𝐷 such that v is 

an end vertex of an edge containing u. 

The minimum cardinality of an ev-dominating set of S is denoted by  𝛾௘௩(𝑆). 

 

Example 2.4.9 If 𝑆 = (𝑉, 𝑋) be a semigraph with vertex set 𝑉 = {1, 2, 3, 4, 5, 6} 

and edge set  𝑋 = {(1,2,3,4), (4,6), (2,5,6)} as shown in Figure 2.18. Then 𝐷ଵ =

{2, 4} or 𝐷ଶ = {4, 6} are the ev-dominating set of S with minimum cardinality. 

Therefore  𝛾௘௩(𝑆) = 2. 

 

Definition 2.4.25   Signed semigraph [43]: 

 

e-Signed semigraph: Suppose 𝑆(𝑉, 𝐸) be a signed semigraph. In S, the edge with 

odd number of middle vertices (or 𝑚-vertices) is assigned negative sign and the edge 

with even number of m-vertices or without 𝑚-vertices is assigned positive sign. Then 

S is called an e-signed semigraph. 
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v-Signed semigraph: A semigraph 𝑆(𝑉, 𝐸) is called v-signed, if sign of every end 

vertex of S is assigned either positive or negative sign according as consecutive 

adjacent degree of the end vertex is even or odd. 

 

ve-Signed semigraph: A semigraph 𝑆(𝑉, 𝐸) is called ve-signed, if every end vertex 

and every edge of S is assigned either positive or negative sign.  

 

Matrix representations of semigraphs is one of the most important concepts 

introduced by Sampathkumar in his book. The adjacency matrix, the incidence 

matrix, the consecutive adjacency matrix and the 3-matrix of semigraph are defined. 

The incidence matrix, together with the consecutive adjacency matrix determine a 

semigraph uniquely. Also, the 3-matrix of a semigraph G determines G uniquely. 

 

 

Definition 2.4.26  The adjacency matrix [15]:   

Let 𝐺 = (𝑉, 𝑋) be a semigraph with 𝑉 = ൛𝑣ଵ, 𝑣ଶ, . . . , 𝑣௣ൟ and 𝑋 =

൛𝑒ଵ, 𝑒ଶ, . . . , 𝑒௤ൟ then, the adjacency matrix 𝐴 = 𝐴(𝐺) = ൣ𝑎௜௝൧ of G is the 𝑝 × 𝑝 matrix 

in which 𝑎௜௝ = 1 if 𝑣௜ is adjacent to 𝑣௝  and 𝑎௜௝ = 0 otherwise. 

Clearly, 𝐴(𝐺) = 𝐴(𝐺௔), i.e., the adjacency matrix of G is the same as that of its 

adjacency matrix of a semigraph. 

 

Proposition 2.4.24 The i, j entry in the matrix 𝐴௡ is the number of walks of 

length n from 𝑣௜ to 𝑣௝  in G. 

 

Corollary 2.4.7 If 𝑣௜ and 𝑣௝  are non-adjacent, then the i, j entry in 𝐴ଶ is the 

number of paths of length two from 𝑣௜ to 𝑣௝  and the i, j entry in 𝐴ଶ is the adjacent 

degree  𝑑𝑒𝑔௔𝑣௜  of  𝑣௜. 

 

Corollary 2.4.8 If G is connected, the distance between 𝑣௜ and 𝑣௝ , 𝑖 ≠ 𝑗, is the 

least integer n for which the i, j entry 𝐴௡ is not zero. 
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Note that the adjacency matrix A determines the adjacency graph 𝐺௔ of G 

uniquely, but it does not determine G uniquely. 

 

Definition 2.4.27  The incidence matrix [15]:  

The incidence matrix 𝐵 = ൣ𝑏௜௝൧ of G is the 𝑝 × 𝑝 matrix where 𝑏௜௝ = 1 if 𝑣௜ 

and 𝑒௝ are incident and 𝑏௜௝ = 0 otherwise. Clearly, the sum of the entries in the ith 

column gives the dimension of the edge 𝑒௜ i.e., the number of vertices in 𝑒௜. The 

incidence matrix also does not determine the semigraph uniquely. 

 

The following proposition characterizes the incidence matrix of a semigraph. 

Proposition 2.4.25  A 𝑝 × 𝑝 matrix 𝐵 = ൣ𝑏௜௝൧ is the incidence matrix of a 

semigraph G if and only if,  

 

i. 𝑞 ≤ ቀ
𝑝
2

ቁ 

ii. the sum of entries in each column is at least two and 

iii. for any  𝑖, 𝑗,   𝑖 ≠ 𝑗, 1 ≤ 𝑖,   𝑗 ≤ 𝑞  and for at most one 𝑟,  𝑏௥௜ = 𝑏௥௝ = 1 

where 1 ≤ 𝑟 ≤ 𝑝. 

 

Definition 2.4.28  The consecutive adjacency matrix [15]:  

The consecutive adjacency matrix 𝐴௖௔ = ൣ𝑐௜௝൧ of a semigraph G is the 𝑝 × 𝑝 

matrix where 𝑐௜௝ = 1 if 𝑣௜ and 𝑣௝  are consecutive adjacent vertices in G and 𝑐௜௝ = 0 

otherwise.  

Clearly, 𝐴௖௔ is the adjacency matrix of the consecutive adjacency graph 𝐺௖௔ of 

G. The matrix 𝐴௖௔ also does not determine the semigraph uniquely. The consecutive 

adjacency matrix 𝐴௖௔ together with the incidence matrix B of a semigraph G 

determines G uniquely. While the incidence matrix gives the vertices in each edge, 

the consecutive adjacency matrix determines the order of the vertices in each edge. 

Thus, we can associate with each semigraph, a pair of (0, 1)-matrices uniquely and 

conversely, with some specified pair of (0, 1)-matrices, we can associate a semigraph 

uniquely.  
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Proposition 2.4.26 Let 𝐴 = ൣ𝑎௜௝൧ and 𝐵 = ൣ𝑏௜௝൧ be two (0, 1)-matrices of orders 

𝑝 × 𝑝 and 𝑝 × 𝑞 respectively. Then they determine a (p, q)-semigraph G uniquely if 

and only if, the following conditions hold. 

 

i. B is the incidence matrix of a semigraph G 

ii. A is a symmetric matrix. 

iii. For each edge e of cardinality k corresponding to a column in B, the 

vertices of e can be labelled as say, 𝑣ଵ, 𝑣ଶ, . . . , 𝑣௞  such that there are 

2(𝑘 − 1) entries of 1 in A given by 𝑎௝௝ାଵ = 𝑎௝ିଵ௝ = 1, 1 ≤ 𝑗 ≤ 𝑘 − 1  . 

iv. All other entries in A are zero. 

 

 

Definition 2.4.29 3-Matrix representation of a semigraph [15]:  

 

Given a semigraph 𝐺 = (𝑉, 𝑋) on p vertices and with q edges, we can represent 

it uniquely by a 𝑝 × 𝑝 matrix 𝐶(𝐺) = (𝑐௠௡) as follows: 

Each 𝑐௠௡ is a 3-tuple of non-negative integers (𝑘: 𝑖, 𝑗) where 0 ≤ 𝑘 ≤ 𝑞, 0 ≤ 𝑖 ≤ 𝑟,

0 ≤ 𝑗 ≤ 𝑟 and r is the maximum cardinality of an edge in G. 

Let  𝑉 = (𝑣ଵ, 𝑣ଶ, . . . , 𝑣௣) and 𝑋 = (𝑒ଵ, 𝑒ଶ, . . . , 𝑒௤).Then the entries 𝑐௠௡ of the matrix 

𝐶(𝐺) are defined as follows: 

𝑐௠௡ = (0: 0, 0)   if either 𝑚 = 𝑛, or 𝑣௠ and 𝑣௡ are non-adjacent. 

𝑐௠௡ = (𝑘: 𝑖, 𝑗)  if 𝑣௠ and 𝑣௡ lie on the edge 𝑒௞, 𝑖 < 𝑗 and 𝑣௠ lies in the ith position 

and 𝑣௡ lies in the jth position in the edge 𝑒௞. A characteristic of the 3-matrix of a 

semigraph is given below. 

 

Proposition 2.4.27    A 𝑝 × 𝑝 matrix 𝐶 = (𝑐௠௡) where each 𝑐௠௡ is a 3-tuple 

(𝑘: 𝑖, 𝑗) of non-negative integers 𝑘, 𝑖, 𝑗 with 1 ≤ 𝑘 ≤ ቀ
𝑝
2

ቁ and 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑝 is the          

3-matrix of a (𝑝, 𝑞)-semigraph G if and only if, the following hold: 

i. All the diagonal entries are (0: 0, 0). 

ii. Each 3-tuple either contains all zeros or all non-zero entries. 
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iii. Let 𝑆ଵ = {1,2, . . . , 𝑞} and 𝑆ଶ = {2,3, . . . , 𝑝}. Then for each k in 𝑆ଵ there 

exists a 𝑗௞ in 𝑆ଶ satisfying the following:  

a.  ∑ ቀ
𝑗௞

2
ቁ ≤

௣(௣ିଵ)

ଶ
 

b.  The upper diagonal entries include all the ቀ
𝑗௞

2
ቁ integers (𝑘: 𝑖, 𝑗),   

     1 ≤ 𝑖 < 𝑗 ≤ 𝑗௞ for each k. 

      iv.       If  𝑐௠௡ = (𝑘: 𝑖, 𝑗), then 𝑐௡௠ = (𝑘:  𝑗௞ − 𝑗 + 1, 𝑗௞ − 𝑖 + 1). 

 

Adjacency matrix associated with a semigraph defined by the authors C. M. 

Deshpande and Y. S. Gaidhani [10] as follows: 

 

Definition 2.4.30  Adjacency matrix associated with a semigraph:   

 

If 𝐺(𝑉, 𝑋) be a semigraph with vertex set 𝑉 = {1,2,3, . . . . , 𝑚} and edge set                

𝑋 = {𝑒ଵ, 𝑒ଶ, 𝑒ଷ, . . . , 𝑒௡}
 

where 𝑒௝ = ൫𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖௞௝൯, 𝑗 = 1, 2, 3, . . . , 𝑛 and 

𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖௞௝ are distinct elements of 𝑉. Adjacency matrix, 𝐴, of 𝐺(𝑉, 𝑋) is a 

𝑚 × 𝑚 matrix whose entries are given by  

𝑎௜,௝ = cardinality of fp-edge൫𝑣௜ , 𝑣௝൯ − 1
 

;   if 𝑣௜ , 𝑣௝are adjacent  

              = 0     ;   otherwise. 

 

As every p-edge of cardinality ≥ 2 belongs to exactly one f-edge of 𝐺, the 

above matrix is well defined. We label the rows and columns of 𝐴 as 1,2,3, . . . . , 𝑚 ; 

the same as vertex set of 𝐺. 

 

Also, a 𝑚 × 𝑚 matrix 𝐴 is said to be semigraphical if there exists a semigraph 

G on m  vertices having adjacency matrix as 𝐴. 

 

Again, in the year 2017, Y. S. Gaidhani, C. M. Deshpande and B.P. Athawale 

[65] defined adjacency matrix associated with a semigraph in another way as 

follows:  
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Definition 2.4.31  Adjacency matrix associated with a semigraph:  

 

Let 𝐺(𝑉, 𝑋) be a semigraph with vertex set 𝑉 = ൛𝑣ଵ, 𝑣ଶ, . . . , 𝑣௣ൟ and edge set  

𝑋 = ൛𝑒ଵ, 𝑒ଶ, . . . , 𝑒௤ൟ. The Adjacency matrix of 𝐺(𝑉, 𝑋) is a 𝑝 × 𝑝 matrix   𝐴 = ൣ𝑎௜௝൧ 

defined as follows:  

 

1. For every edge 𝑒௜ of X of cardinality, say k, let 𝑒௜ = (𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖௞) such 

that 𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖௞ are distinct vertices in 𝑉, for all  𝑖௥ ∈ 𝑒௜ ; 𝑟 = 1,2, . . . , 𝑘 

        (𝑎)  𝑎௜భ௜ೝ
= 𝑟 − 1        (𝑏)𝑎௜ೖ௜ೝ

= 𝑘 − 𝑟   

 

2. All the remaining entries of A are zero.        

 

On the other hand, a 𝑝 × 𝑝 matrix 𝑀 is said to be semigraphical if there exists a 

semigraph 𝐺 on 𝑝 vertices with adjacency matrix equal to 𝑀. 

 

Example 2.4.10 Consider a semigraph G = (V, X ), in Figure 2.19  where   

V = {1, 2, 3, 4, 5, 6, 7, 8, 9} and 

𝑋 = {(1, 2, 3, 4), (4, 5), (1, 6, 5), (4, 6, 7), (5, 7), (2, 6), (5, 9)}.  

Here vertices 1, 4, 5, 6, 7 and 9 are the end vertices, 3 is a middle vertex, 2 and 6 are 

the middle-end vertices and 8 is an isolated vertex.  

 

 

 

 

 

 

 

 

 

 

Figure: 2.19 
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The adjacency matrix of G is  

 

      𝐴(𝐺) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 2
0 0 0
0 0 0

3 2 1
0 0 1
0 0 0

0 0 0
0 0 0
0 0 0

3 2 1
2 0 0
0 1 0

0 1 1
1 0 1
0 0 0

2 0 0
1 0 0
0 0 0

0 0 0
0 0 0
0 0 0

2 1 1
0 0 0
0 1 0

0 0 0
0 0 0
0 0 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

 

V. Nikiforov [60] defined the energy of a general matrix (any size) as the 

summation of the singular values of that matrix. Analogy with this definition, Y. S. 

Gaidhani et al. [64] introduced energy of semigraph as follows. 

 

Definition 2.4.32  Energy of a semigraph:  

 

Let 𝐺(𝑉, 𝑋) be a semigraph having order p and size q. If A be the adjacency 

matrix of G which is defined by Y. S. Gaidhani, et. al. [65]. Then, energy of a 

semigraph G is defined as the summation of the singular values of A. 

 

Lemma 2.4.1   If A(G) is the adjacency matrix of a semigraph G on p vertices and 

are the eigenvalues of  𝐴𝐴், then  ∑ 𝜇௜ =
௣
௜ୀଵ  2 ∑ ( 1ଶ + 2ଶ + 3ଶ+. . . + 𝑘௘

ଶ )௘∈௑ . 

 

Theorem 2.4.1   For a semigraph G on p vertices  

ඨ2 ෍( 1ଶ + 2ଶ + 3ଶ+. . . + 𝑘௘
ଶ )

௘∈௑

≤ 𝐸(𝐺) ≤ ඨ2𝑝 ෍( 1ଶ + 2ଶ + 3ଶ+. . . + 𝑘௘
ଶ )

௘∈௑

 

 

Theorem 2.4.2   For a semigraph G on p vertices  

𝐸(𝐺)ଶ ≥ 2 ෍( 1ଶ + 2ଶ + 3ଶ+. . . + 𝑘௘
ଶ )

௘∈௑

+ 𝑝(𝑝 − 1)Δ
ଵ

௣ൗ  

where Δ = det(𝐴𝐴்). 
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Theorem 2.4.3   If G is a Semigraph on p vertices having largest singular value 𝜎ଵ 

and second largest singular value 𝜎ଶ, then 

𝐸(𝐺) ≥ 𝜎ଵ +
2𝑝 ∑ ( 1ଶ + 2ଶ + 3ଶ+. . . + 𝑘௘

ଶ )௘∈௑ − 𝜎ଵ
ଶ

𝜎ଶ
 

 

Theorem 2.4.4   The energy 𝐸(𝐺) of semigraph G is never the square root of an 

odd integer.  
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