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Chapter 3 

 

SIGNED SEMIGRAPH AND ITS ADJACENCY MATRIX 

 

 

3.1 Introduction 

The concept of a signed graph was introduced by the author F. Heider’s [17]. A 

signed semigraph is the generalized form of a signed graph. An e-signed, v-signed 

and ve-signed semigraphs were introduced by P. R. Hampiholi, H. S. Ramane, 

Shailaja S. Shirkol, Meenal M. Kaliwal, and Saroja R. Hebbar in the year 2017 [43] 

and finding their balancing conditions. 

In this chapter, the adjacency matrix associated with e-signed, v-signed and           

ve-signed semigraphs has been studied and obtained some necessary and sufficient 

conditions for a matrix to be the adjacency matrix of an e-signed, v-signed, or        

ve-signed semigraph.  

 

3.2 Adjacency matrix of an e-signed semigraph [50] 

Definition 3.2.1  Adjacency matrix associated with an e-signed semigraph: 

Suppose 𝑆(𝑉, 𝐸) be a e-signed semigraph with vertex set 𝑉 = {𝑣ଵ, 𝑣ଶ, . . . , 𝑣} 

and edge set 𝐸 = 𝐸ା ∪ 𝐸ି, where 𝐸ା = {𝑃ଵ, 𝑃ଶ, 𝑃ଷ. . . . , 𝑃} is the set of all positive 

signed edges and 𝐸ି = {𝑁ଵ, 𝑁ଶ, 𝑁ଷ. . . . , 𝑁௦} is the set of all negative signed edges 

with 𝐸ା ∩ 𝐸ି = 𝜑 also where 𝑃 = (𝑎,ଵ,  𝑎,ଶ, . . ,  𝑎,ଶఓ),    𝑖 = 1, 2, 3, . . . , 𝑟 and   

𝑁 = (𝑏,ଵ, 𝑏,ଶ, . . . , 𝑏,ଶఒିଵ), 𝑗 = 1,2, . . , 𝑠
 
with all 𝑎, and 𝑏,௧ are distinct elements of 

𝑉. 

Adjacency Matrix 𝐶 of  𝑆(𝑉, 𝐸) is an   𝑚 × 𝑚  matrix whose entries are given by  

𝑐,= cardinality of  fp-edge൫𝑣 , 𝑣൯ − 1,   if 𝑣 , 𝑣  are adjacent in a positive signed     

        edge. 

     = −[cardinality of fp-edge൫𝑣 , 𝑣൯ − 1], if 𝑣 , 𝑣  are adjacent in a negative signed  

       edge. 

     = 0,          otherwise. 
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As every p-edge of cardinality greater than equal to 2 belongs to exactly one     

f-edge whether it may be either positive or negative signed edges of S, the above 

matrix is well defined.  

 

We label the rows and columns of C as 1, 2, 3,…, m; the same as vertex set of 

S. A row/column corresponding to an isolated vertex is a zero row/column. In this 

paper, without loss of generality, we consider e-signed semigraphs without isolated 

vertices. 

 

We discuss the definition with an example below and explain some important 

observations.  

 

Example 3.1   𝑆 = (𝑉, 𝐸) be a e-signed with vertex set 𝑉 = {1,2,3,4,5,6,7,8,9,10} 

and edge set 𝐸 = 𝐸ା ∪ 𝐸ି where 𝐸ା = {𝑒ଶ(3,4),  𝑒ହ(6,8,9,10)} and 𝐸ି =

{𝑒ଵ(1,2,3), 𝑒ଷ(4,5,7), 𝑒ସ(3,6,7)} are respectively positive and negative signed edges 

of 𝑆. Then adjacency matrix C of the e-signed semigraph 𝑆 is  

 

𝐶 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 −1 −2 0 0 0 0 0 0 0
−1 0 −1 0 0 0 0 0 0 0
−2 −1 0 1 0 −1 −2 0 0 0
0 0 1 0 −1 0 −2 0 0 0
0 0 0 −1 0 0 −1 0 0 0
0 0 −1 0 0 0 −1 1 2 3
0 0 −2 −2 −1 −1 0 0 0 0
0 0 0 0 0 1 0 0 1 2
0 0 0 0 0 2 0 1 0 1
0 0 0 0 0 3 0 2 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

                

 

           Figure 3.1 

We make some observations as follows:                      

i. C is a real valued symmetric matrix, and 𝑐, = 0   ∀𝑖. 

 

ii. 𝑐, ∈ {−(𝑝 − 1), . . . . , −3, −2, −1,0,1,2,3, . . . . . . . , 𝑝 − 1. } ∀𝑖, 𝑗 Where p is 

the number of vertices.  
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iii. If there is an entry 𝑝 − 1 or −(𝑝 − 1) then the row and column 

containing that entry of C must have all the entries from 1 to 𝑝 − 1 or −1 

to −(𝑝 − 1). In this case the semigraph will necessarily contain an edge 

of maximum length 𝑝. 

iv. The sub matrices of C corresponding to positive edges 𝑒ଶ, 𝑒ହ are 

respectively given by 

𝐶ଵ = ቂ
0 1
1 0

ቃ  and  𝐶ଶ = 

0 1
1 0

2 3
1 2

2 1
3 2

0 1
1 0

. 

And the sub matrices of C corresponding to negative edges 𝑒ଵ, 𝑒ଷ, 𝑒ସ are 

respectively given by  

𝐷ଵ = 𝐷ଶ = 𝐷ଷ = 
0 −1 −2

−1 0 −1
−2 −1 0

൩  

and all the remaining entries of C are 0. 

 

v. If 𝐴 = [𝑎,] be a symmetric matrix of order m obtain by taking it 

(𝑖, 𝑗)௧ℎelement 𝑎, = ห𝑐,ห where 𝑐, is the (𝑖, 𝑗)௧ℎ element of 𝐶 =

[𝑐,]×, whether 𝐴 = [𝑎,] is the adjacency matrix of a semigraph 

corresponding to the e-signed semigraph 𝑆 = (𝑉, 𝐸). 

 

Definition 3.2.2   e-Signed semigraphical matrix: 

A matrix 𝑀 of order 𝑝 × 𝑝 is said to be e-signed semigraphical if there exists 

an e-signed semigraph 𝑆 on 𝑝 vertices having adjacency matrix as 𝑀. 

 

Theorem 3.1 (Necessary and sufficient conditions for a matrix to be e-signed 

semigraph): 

A 𝑚 × 𝑚 matrix 𝐶 = ൫𝑐,൯ is the adjacency matrix of an e-signed semigraph 

iff it satisfies the following conditions: 

i. 𝐶 = ൫𝑐,൯ is a real valued symmetric matrix of order m, with its diagonal 

elements 0. 
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ii. 𝑐, ∈ {−(𝑚 − 1), . . . . , −3, −2, −1,0,1,2,3, . . . . . . . , 𝑚 − 1. }  ∀𝑖, 𝑗 

 

iii. 𝑉 = {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, . . . . . . , 𝑣} can be expressed as a union of subsets 

𝑃ଵ, 𝑃ଶ, . . . , 𝑃 with even cardinality such that |𝑃| ≥ 2, ห𝑃 ∩ 𝑃ห ≤ 1  ∀ 𝑖 ≠ 𝑗 

and 𝑁ଵ, 𝑁ଶ, . . . , 𝑁௧ with odd cardinality such that |𝑁| ≥ 3, ห𝑁 ∩ 𝑁ห ≤

1 ∀ 𝑖 ≠ 𝑗. 

 

iv. If 𝑃 is a (2𝑟)-subset containing {𝑥ଵ, 𝑥ଶ, 𝑥ଷ, . . . 𝑥ଶ} ⊆ 𝑉, then 𝑃 is a positive 

signed edge and 𝐶, the square sub matrix of 𝐶 associated with 𝑃 of order 2𝑟, 

obtained by considering 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, . . . 𝑥ଶ
௧ℎ row and column entries of 𝐶 is 

given by  

𝐶 =

⎣
⎢
⎢
⎢
⎡

0 1 2 . . . 2𝑟 − 1
1 0 1 . . . 2𝑟 − 2
2 1 0 . . . 2𝑟 − 3
. . . . . . . . . . . . . . .

2𝑟 − 1 2𝑟 − 2 2𝑟 − 3 . . . 0 ⎦
⎥
⎥
⎥
⎤

  

 

v. And if 𝑁 is a (2𝑟 + 1)-subset containing {𝑦ଵ, 𝑦ଶ, 𝑦ଷ, . . . . . 𝑦ଶାଵ} ⊆ 𝑉, then 𝑁 
is a negative signed edge and 𝐷, the square sub matrix of 𝐶 associated with 

𝑁 of order 2𝑟 + 1, obtained by considering 𝑦ଵ, 𝑦ଶ, 𝑦ଷ, . . . . . 𝑦ଶାଵ
௧ℎ row and 

column entries of 𝐶 is given by  

𝐷 =

⎣
⎢
⎢
⎢
⎡

0 −1 −2 . . . −2𝑟
−1 0 −1 . . . −(2𝑟 − 1)

−2 −1 0 . . . −(2𝑟 − 2)
. . . . . . . . . . . . . . .

−2𝑟 −(2𝑟 − 1) −(2𝑟 − 2) . . . 0 ⎦
⎥
⎥
⎥
⎤

  

and all the remaining entries, if any, of 𝐶 are 0. 

Proof: Suppose 𝑆 is an e-signed semigraph on m vertices {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, . . . . . . , 𝑣} and 

with positive edges 𝑃ଵ, 𝑃ଶ, . . . . , 𝑃 and negative edges 𝑁ଵ, 𝑁ଶ, . . . . , 𝑁௧ and having 

adjacency matrix 𝐶 = ൫𝑐,൯. By definition (i), (ii) and (iii) are satisfied. If 

{𝑥ଵ, 𝑥ଶ, 𝑥ଷ, . . . 𝑥ଶ} is a positive edge of 𝑆 then 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, . . . 𝑥ଶ
௧ℎ row and column 

entries, by definition of adjacency matrix 𝐶, are as given in 𝐶 . Again if 

{𝑦ଵ, 𝑦ଶ, 𝑦ଷ, . . . 𝑦ଶାଵ} is a negative edge of S  then 𝑦ଵ, 𝑦ଶ, 𝑦ଷ, . . . 𝑦ଶାଵ
௧ℎ row and 
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column entries, by definition of 𝐶 are also given in 𝐷. Hence (iv) and (v) are 

satisfied. 

 

Conversely if (i), (ii), (iii), (iv) and (v) are satisfied then we uniquely define an 

e-signed semigraph  𝑆 with vertex set and with positive and negative edges as 

𝑃ଵ, 𝑃ଶ, . . . , 𝑃 and  𝑁ଵ, 𝑁ଶ, . . . , 𝑁௧  respectively. 

 

3.3 Adjacency matrix of a v-signed semigraph [50] 

 

Definition 3.3.1  Adjacency matrix associated with a v-signed semigraph: 

A Semigraph 𝑆(𝑉, 𝐸) is called v-signed semigraph if every end-vertex of 𝑆 is 

assigned either positive or negative sign. Suppose 𝑆(𝑉, 𝐸) be a v-signed semigraph 

with vertex set  𝑉 = {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, . . . , 𝑣} and edge set 𝐸 = {𝐸ଵ, 𝐸ଶ, 𝐸ଷ, . . . , 𝐸}, then 

every end-vertices with even consecutive adjacent degrees is assigned positive sign, 

and end-vertices with odd consecutive adjacent degrees is assigned negative sign. 

Suppose   𝑉ା = {𝑝ଵ, 𝑝ଶ, 𝑝ଷ. . . , 𝑝} is the set of all positive signed end vertex and                       

𝑉ି = {𝑛ଵ, 𝑛ଶ, 𝑛ଷ. . . , 𝑛௦} is the set of all negative signed end vertices then 𝑉ା ∩ 𝑉ି =

𝜑 and 𝑉ା ∪ 𝑉ି ⊆ 𝑉.  

Adjacency matrix 𝐷 of 𝑆(𝑉, 𝐸) is a 𝑚 × 𝑚 matrix whose (𝑖, 𝑗)௧ℎentries are given by  

𝑑,= i [cardinality of fp-edge (𝑣, 𝑣) -1], if 𝑣 , 𝑣  are adjacent with same sign end  

     vertices. 

     = -i [cardinality of fp-edge (𝑣, 𝑣) -1], if 𝑣 , 𝑣  are adjacent with opposite sign end  

     vertices. 

     = cardinality of fp-edge (𝑣, 𝑣) -1, if 𝑣 , 𝑣  are adjacent with at least one is a m- 

    vertex.  

     = 0,   otherwise. 

Where  𝑖 = √−1 

As every p-edge of cardinality greater than equal to 2 belongs to exactly one      

f-edge of S, the above matrix is well defined.  
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Here also we labelled the rows and columns of D as 1, 2, 3, …, m; the same as 

vertex set of S. A row/column corresponding to an isolated vertex is a zero 

row/column. In this paper, without loss of generality, we consider v-signed 

semigraphs without isolated vertices. 

 

We discuss the definition with an example below and introduce some 

important observations. 

 

Example 3.2  𝑆 = (𝑉, 𝐸) be a v-signed with vertex set 𝑉 = {1,2,3,4,5,6,7,8,9,10} 

and edge set 𝐸 = {𝑒ଵ(1,2,3), 𝑒ଶ(3,4), 𝑒ଷ(4,5,7), 𝑒ସ(3,6,7), 𝑒ହ(6,8,9,10)} where 

𝑉 = {4,7} and 𝑉ே = {1,3,6,10} are positive and negative signed end vertices. Then 

adjacency matrix D of the v-signed semigraph S is  

 

 𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 1 2𝑖 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2𝑖 1 0 −𝑖 0 𝑖 −2𝑖 0 0 0
0 0 −𝑖 0 1 0 2𝑖 0 0 0
0 0 0 1 0 0 1 0 0 0
0 0 𝑖 0 0 0 −𝑖 1 2 3𝑖
0 0 −2𝑖 2𝑖 1 −𝑖 0 0 0 0
0 0 0 0 0 1 0 0 1 2
0 0 0 0 0 2 0 1 0 1
0 0 0 0 0 3𝑖 0 2 1 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   

              Figure 3.2 

 

And we make the following important observations: 

 

i. 𝐷 = ൫𝑑,൯
×

 is a complex valued symmetric matrix, and 𝑑 = 0   ∀𝑖. 

 

ii. 𝑑, = 0,   𝑖𝑓  𝑖 = 𝑗  

𝑑, = 𝑐,, 𝑜𝑟  ± 𝑖𝑐, , 𝑖 ≠ 𝑗  

Where 𝑐, ∈ {0,1,2,3, . . . . . . . , (𝑝 − 2), (𝑝 − 1). } and p is the number of 

vertices.  
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iii. The sub matrices corresponding to edges 𝑒ଵ, 𝑒ଶ, 𝑒ଷ, 𝑒ସ, 𝑒ହ are respectively 

given by 

𝐴ଵ = 
0 1 2𝑖
1 0 1
2𝑖 1 0

൩, 𝐴ଶ = ቂ
0 −𝑖

−𝑖 0
ቃ, 𝐴ଷ = 

0 1 2𝑖
1 0 1
2𝑖 1 0

൩,        

𝐴ସ = 
0 𝑖 −2𝑖
𝑖 0 −𝑖

−2𝑖 −𝑖 0
൩,  and 𝐴ହ = 

0 1
1 0

2 3𝑖
1 2

2 1
3𝑖 2

0 1
1 0

    . 

and all the remaining entries of  D  are  0. 

 

iv. Rows (or columns) free from imaginary numbers are the middle vertex 

which are not the end vertex of any other edges.   

v. If 𝐴 = [𝑎,] be a symmetric matrix of order m obtain by taking it 

(𝑖, 𝑗)௧ℎelement 𝑎, = ห𝑑,ห where 𝑑, is the (𝑖, 𝑗)௧ℎ element of                  

𝐷 = [𝑑,]×, whether 𝐴 = [𝑎,] is the adjacency matrix of a semigraph 

corresponding to the v-signed semigraph 𝑆 = (𝑉, 𝐸). 

 

Definition 3.3.2  v-Signed semigraphical matrix: 

A matrix 𝑀 of order 𝑝 × 𝑝 is said to be v-signed semigraphical if there exists a 

v-signed semigraph 𝑆(𝑉, 𝐸) on 𝑝 vertices having adjacency matrix as 𝑀. 

 

Theorem 3.2 (Necessary and sufficient conditions for a matrix to be v-signed 

semigraph): 

A 𝑚 × 𝑚 matrix 𝐷 = [𝑑]
 
is the adjacency matrix of a v-signed semigraph 

𝑆(𝑉, 𝐸) iff it satisfies the following conditions: 

 

i. 𝐷 is a complex valued symmetric matrix of order m, with its diagonal 

elements 0.  

ii. 𝑑, ∈ {𝑥/𝑥 ∈ 𝑍, −(𝑚 − 1) ≤ 𝑥 ≤ (𝑚 − 1)} ∪ ൛𝑖𝑥/𝑥 ∈ 𝑍, −(𝑚 − 1) ≤

𝑥 ≤ (𝑚 − 1), 𝑖 = √−1ൟ   ∀𝑖, 𝑗 
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iii. The vertex set  𝑉 = {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, . . . . . . , 𝑣} can be expressed as a union of 

subsets 𝐸ଵ, 𝐸ଶ, . . . . , 𝐸 such that |𝐸| ≥ 2, ห𝐸 ∩ 𝐸ห ≤ 1  ∀𝑖 ≠ 𝑗  and if 𝐸 
is a (𝑟 + 1)-subset containing {𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥} ⊆ 𝑉 then, the square 

sub matrix of D of order (𝑟 + 1), obtained by considering 

𝑥, 𝑥ଵ, 𝑥ଶ, . . . 𝑥
௧ℎrow and column entries of D is given by 𝐶 and 

represented as  

 

Case 1. If both the end-vertices 𝑥 and 𝑥 of the edges 𝐸 are in the same 

signed and middle vertices which are not end vertices of any other edges: 

 

𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 2 . . . 𝑟 − 1 𝑖𝑟
1 0 1 . . . 𝑟 − 2 𝑟 − 1
2 1 0 . . . 𝑟 − 3 𝑟 − 2
. . . . . . . . . . . . . . . . . .

𝑟 − 1 𝑟 − 2 𝑟 − 3 . . . 0 1
𝑖𝑟 𝑟 − 1 𝑟 − 2 . . . 1 0 ⎦

⎥
⎥
⎥
⎥
⎤

  

Case 2. If both the end-vertices 𝑥 and 𝑥 of the edges 𝐸 are in opposite 

sign and middle vertices which are not end vertices of any other edges: 

 

𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 2 . . . 𝑟 − 1 −𝑖𝑟
1 0 1 . . . 𝑟 − 2 𝑟 − 1
2 1 0 . . . 𝑟 − 3 𝑟 − 2
. . . . . . . . . . . . . . . . . .

𝑟 − 1 𝑟 − 2 𝑟 − 3 . . . 0 1
−𝑖𝑟 𝑟 − 1 𝑟 − 2 . . . 1 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

Case 3. If some middle vertices of an edge 𝐸 are end-vertex of any other 

edge 𝐸: 

𝐶 = [𝑐,](ାଵ)(ାଵ)  

where 𝑐, is defined as  

𝑐, = 𝑖𝑏, or −𝑖𝑏, , if the starting end-vertex of the edge and 

the middle vertex which is an end vertex of another edge have 

same or opposite signed;  
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𝑐, = 𝑖𝑏, or −𝑖𝑏, , if the starting end-vertex of the edge and 

another end vertex of the edge have same or opposite signed;  

𝑐, = 𝑏,    Otherwise 

where 𝑏, ∈ 𝐵, ∀𝑖 ≠ 𝑗 and 𝐵 is a symmetric matrix of order 

(𝑟 + 1) and defined as   

 

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 2 . . . 𝑟 − 1 𝑟
1 0 1 . . . 𝑟 − 2 𝑟 − 1
2 1 0 . . . 𝑟 − 3 𝑟 − 2
. . . . . . . . . . . . . . . . . .

𝑟 − 1 𝑟 − 2 𝑟 − 3 . . . 0 1
𝑟 𝑟 − 1 𝑟 − 2 . . . 1 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

and all the remaining entries, if any, of D are 0.  

 

Proof: Suppose 𝑆(𝑉, 𝐸) is a v-signed semigraph on m vertex set 𝑉 = {𝑣ଵ, 𝑣ଶ, . . . , 𝑣} 

and edge set 𝐸 = {𝐸ଵ, 𝐸ଶ, . . . , 𝐸} where 𝑉ା = {𝑝ଵ, 𝑝ଶ, . . . , 𝑝௦} and 𝑉ି =

{𝑛ଵ, 𝑛ଶ, . . . , 𝑛௧} are the set of all positive and negative signed end-vertex respectively, 

having adjacency matrix 𝐷 = [𝑑,].  

 

By definition of the matrix (i) and (ii) are satisfied.  

 

If 𝐸 = {𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥} is an edge of  order (𝑟 + 1) of 𝑆(𝑉, 𝐸) where both 

the end-vertices of the edges are in same signed and middle vertices which are not 

end vertices of any other edges then, 𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥
௧ row and column entries of D 

as given in 𝐶 Case.1 of (iii). 

 

If 𝐸 = {𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥} is an edge of  order (𝑟 + 1) of 𝑆(𝑉, 𝐸) where both 

the end-vertices of the edge are opposite signed and middle vertices which are not 

end vertices of any other edges then, 𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥
௧ row and column entries of D 

as given in 𝐶 Case.2 of (iii). 
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If 𝐸 = {𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥} is an edge of  order (𝑟 + 1) of 𝑆(𝑉, 𝐸) where both 

the end-vertices of an edge is either in the same or opposite signed and some middle 

vertices are end-vertex of any other edges then, 𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥
௧ row and column 

entries of D as given in 𝐶 Case.3 of (iii). 

Hence (iii) is satisfied. 

 

Conversely if (i), (ii) and (iii) are satisfied then we define a semigraph 𝑆 with 

vertex set 𝑉 = {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, . . . . . . , 𝑣} and edges 𝐸ଵ, 𝐸ଶ, 𝐸ଷ, . . . . . . , 𝐸 obtain from 

adjacent matrix 𝐴 = [𝑎,]× where  𝑎, = ห𝑑,ห,  𝑑, ∈ 𝐷   ∀𝑖, 𝑗 .  

 

If 𝐶 be a square sub-matrix of 𝐷 of order(𝑟 + 1), obtained by considering 

𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥
௧row and column entries of 𝐷 as in Case 1 or Case 2 of (iii), then 

we get an edge 𝐸 = {𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥} with end-vertices are of same sign or 

opposite sign and whose middle vertices are not an end vertex of any other edges. 

 

Also if we have a square sub-matrix 𝐶  of 𝐷 of order (𝑟 + 1), obtained by 

considering 𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥
௧row and column entries of 𝐷 as in Case 3 of (iii), then 

we obtained an edge 𝐸 = {𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥} with end-vertices are of same sign or 

opposite sign and whose middle vertices are an end vertex of any other edges.   

 

The sign of each end-vertex of an edge is found positive or negative according 

as even or odd numbers of square sub matrix 𝐶 of 𝐷 as in the case 1, 2 and 3 of (iii) 

associate with that vertex. 

 

Thus, we get two subsets of 𝑉 denoted by 𝑉ା = {𝑝ଵ, 𝑝ଶ, . . . , 𝑝௦} and 𝑉ି =

{𝑛ଵ, 𝑛ଶ, . . . , 𝑛௧} of positive and negative signed end-vertex of 𝑆 respectively. Hence 

𝑆(𝑉, 𝐸)  is a v-signed semigraph.  
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3.4 Adjacency matrix of an ve-signed semigraph 

 

Definition 3.4.1  Adjacency matrix associated with an ve-signed semigraph: 

 

Suppose 𝑆(𝑉, 𝐸) be an ve-signed semigraph having m vertices and n edges, 

where V is the vertex set of S and where every end-vertices with even consecutive 

adjacent degrees is assigned positive sign, and end-vertices with odd consecutive 

adjacent degrees is assigned negative sign. Suppose 𝑉ା = {𝑝ଵ, 𝑝ଶ, 𝑝ଷ. . . . , 𝑝} is the 

set of all positive signed end vertex and 𝑉ି = {𝑛ଵ, 𝑛ଶ, 𝑛ଷ. . . . , 𝑛௦} is the set of all 

negative signed end vertices then 𝑉ା ∩ 𝑉ି = 𝜑 and 𝑉ା ∪ 𝑉ି ⊆ 𝑉. And the edge set 

𝐸 = 𝐸ା ∪ 𝐸ି, where 𝐸ା = {𝑃ଵ, 𝑃ଶ, 𝑃ଷ. . . . , 𝑃ఊ} is the set of all positive signed edges 

and 𝐸ି = {𝑁ଵ,  𝑁ଶ, 𝑁ଷ. . . . ,  𝑁ఎ} is the set of all negative signed edges with 𝐸ା ∩

𝐸ି = 𝜑 also where 𝑃 = (𝑎,ଵ, 𝑎,ଶ, . . ., 𝑎,ଶఓ), 𝑖 = 1,2, . . . , 𝛾
 

and 

𝑁 = (𝑏,ଵ, 𝑏,ଶ, . . . , 𝑏,ଶఒିଵ),    𝑗 = 1,2, . . , 𝜂
 

, with all 𝑎, and 𝑏,௧ are distinct 

elements of V. 

  

Adjacency matrix 𝑋 of 𝑆(𝑉, 𝐸) is of order m square matrix whose (𝑖, 𝑗)௧ℎentries 

are given by  

𝑥, = 𝜇(1 + 𝑖), if 𝑣 and 𝑣  are adjacent with same sign end vertices of a positive  

      signed edge. 

= 𝜇(−1 + 𝑖), if 𝑣 and 𝑣  are adjacent with same sign end vertices of a negative 

signed edge. 

= 𝜇(1 − 𝑖), if 𝑣 and 𝑣  are adjacent with opposite sign end vertices of a positive 

signed edge. 

= 𝜇(−1 − 𝑖), if 𝑣 and 𝑣  are adjacent with opposite sign end vertices of a 

negative signed edge. 

      = 𝜇, if 𝑣 and 𝑣  are adjacent with at least one is a m-vertex of a positive signed  

     edge.  

      = −𝜇, if 𝑣 and 𝑣  are adjacent with at least one is a m-vertex of a negative signed  

     edge.  

      = 0, otherwise. 
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Where,  𝜇 = [cardinality of fp-edge(𝑣, 𝑣) -1], and  𝑖 = √−1 

As every fp-edge(𝑣 , 𝑣) of cardinality greater than equal to 2 belongs to 

exactly one f-edge(𝑣, 𝑣) whether it may be either positive or negative signed edges 

of S, the above matrix is well defined.  

 

Here also we labelled the rows and columns of X as 1, 2, 3,…, m; the same as 

vertex set of S. A row/column corresponding to an isolated vertex is a zero 

row/column. In this paper, without loss of generality, we consider ve-signed 

semigraphs without isolated vertices. 

 

We discuss the definition with an example given below and obtain some 

important observations. 

 

Example 3.3 If 𝑆 = (𝑉, 𝐸) be a ve-signed with vertex set 𝑉 = 𝑉ା ∪ 𝑉ି
 where 

𝑉ା = {4, 7} and 𝑉ି = {1, 3, 6, 10} are the sets with positive and negative signed end 

vertices, and edge set 𝐸 = 𝐸ା ∪ 𝐸ିwhere 𝐸ା = {𝑒ଶ(3,4), 𝑒ହ(6,8,9,10)} and 

𝐸ି = {𝑒ଵ(1,2,3), 𝑒ଷ(4,5,7), 𝑒ସ(3,6,7)} are sets of positive and negative signed edges. 

Then Adjacency matrix X of the ve-signed semigraph S is 

 

 

 

  

 

 

Figure 3.3 
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𝑋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0 −1 −2 + 2𝑖 0 0 0 0 0 0 0
−1 0 −1 0 0 0 0 0 0 0

−2 + 2𝑖 −1 0 1 − 𝑖 0 −1 + 𝑖 −2 − 2𝑖 0 0 0
0 0 1 − 𝑖 0 −1 0 −2 + 2𝑖 0 0 0
0 0 0 −1 0 0 −1 0 0 0
0 0 −1 + 𝑖 0 0 0 −1 − 𝑖 1 2 3 + 3𝑖
0 0 −2 − 2𝑖 −2 + 2𝑖 −1 −1 − 𝑖 0 0 0 0
0 0 0 0 0 1 0 0 1 2
0 0 0 0 0 2 0 1 0 1
0 0 0 0 0 3 + 3𝑖 0 2 1 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

   

 

And we make the following important observations: 

 

i. 𝑋 = ൫𝑥,൯
×

 is a complex valued symmetric matrix, and  𝑥, = 0    ∀ 𝑖. 

ii. 𝑥, = 0,   𝑖𝑓 𝑖 = 𝑗  

𝑥, = ±𝑐, 𝑜𝑟 ± (1 + 𝑖)𝑐, , 𝑖 ≠ 𝑗 where 𝑐, ∈ {0,1,2, . . . , (𝑝 − 2),

(𝑝 − 1)}. 

iii. The sub matrices corresponding to edges 𝑒ଵ, 𝑒ଶ, 𝑒ଷ, 𝑒ସ, 𝑒ହ are respectively 

given by 

𝐴ଵ = 
0 −1 −2 + 2𝑖

−1 0 1
−2 + 2𝑖 1 0

൩, 𝐴ଶ = ቂ
0 1 − 𝑖

1 − 𝑖 0
ቃ, 

 

𝐴ଷ = 
0 −1 −2 + 2𝑖

−1 0 −1
−2 + 2𝑖 −1 0

൩,  𝐴ସ = 
0 −1 + 𝑖 −2 − 2𝑖

−1 + 𝑖 0 −1 − 𝑖
−2 − 2𝑖 −1 − 𝑖 0

൩,      

   

𝐴ହ = 

0
1
2

3 + 3𝑖

1
0
1
2

     

2
1
0
1

3 + 3𝑖
2
1
0

     

and all the remaining entries of X are 0.  

 

iv. Rows (or columns) with real number, entries are the middle vertex which 

are not the end vertex of any other edges.    

 

v. If 𝐴 = [𝑎,] be a symmetric matrix of order m obtain by taking it (𝑖, 𝑗)௧ℎ 

element 𝑎, = 𝑅𝑒(𝑥,) where 𝑥, is the (𝑖, 𝑗)௧ℎ element of 𝑋 = [𝑥,]× 
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then,  𝐴  is the adjacency matrix of the semigraph  𝑆(𝑉, 𝐸) due to sign of 

their edges. 

 

vi. If 𝐵 = [𝑏,] be a symmetric matrix of order m obtain by taking it (𝑖, 𝑗)௧ℎ 

element 𝑏, = 𝑥, 𝑜𝑟 𝐼𝑚(𝑥,) where 𝑥, is the (𝑖, 𝑗)௧ℎ element of 

𝑋 = [𝑥,]× according as one of them is not an end vertex of any other 

edge or both of them are end vertex of any other edges of 𝑆(𝑉, 𝐸). Then B 

is the adjacency matrix of the semigraph  𝑆(𝑉, 𝐸) due to sign of their end 

vertices. 

 

Definition 3.4.2   ve-Signed semigraphical matrix 

A matrix 𝑀 of order 𝑚 × 𝑚 is said to be ve-signed semigraphical if there exists 

a ve-signed semigraph 𝑆(𝑉, 𝐸) on m vertices having adjacency matrix as 𝑀. 

 

Theorem 3.3 (Necessary and sufficient conditions for a matrix to be ve-signed 

semigraph): 

A square matrix 𝑋 = [𝑥,]
 
of order m is the adjacency matrix of an ve-signed 

semigraph 𝑆(𝑉, 𝐸) iff it satisfies the following conditions: 

i. 𝑋 is a complex valued symmetric matrix of order m, with its diagonal 

elements 0.  

ii. 𝑥, ∈ ൛𝑥ଵ + 𝑖𝑥ଶ/𝑥ଵ, 𝑥ଶ ∈ 𝑍; −(𝑚 − 1) ≤ 𝑥 ≤ (𝑚 − 1), 𝑘 =

1,2  𝑎𝑛𝑑  𝑖 = √−1ൟ   ∀ 𝑖, 𝑗 

iii. The vertex set  𝑉 = {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, . . . , 𝑣} can be expressed as a union of 

subsets 𝐸ଵ, 𝐸ଶ, . . . . , 𝐸 such that |𝐸| ≥ 2, ห𝐸 ∩ 𝐸ห ≤ 1  ∀𝑖 ≠ 𝑗  and if 𝐸 
is a (𝑟 + 1)-subset containing {𝑥, 𝑥ଵ, 𝑥ଶ, . . . 𝑥} ⊆ 𝑉 then, the square 

submatrix of X of order (𝑟 + 1), obtained by considering 

𝑥, 𝑥ଵ, 𝑥ଶ, . . . . 𝑥
௧ℎ row and column entries of  X  is given by 𝐶 and 

represented as  

 



 

66 
 

Case 1. If both the end-vertices 𝑥 and 𝑥 of the positive signed edges 𝐸 

are in the same signed and middle vertices which are not end vertices of 

any other edges: 

  𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 2 . . . 𝑟 − 1 𝑟(1 + 𝑖)
1 0 1 . . . 𝑟 − 2 𝑟 − 1
2 1 0 . . . 𝑟 − 3 𝑟 − 2
. . . . . . . . . . . . . . . . . .

𝑟 − 1 𝑟 − 2 𝑟 − 3 . . . 0 1
𝑟(1 + 𝑖) 𝑟 − 1 𝑟 − 2 . . . 1 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

Case 2. If both the end-vertices 𝑥 and 𝑥 of the negative signed edges 𝐸 

are in the same signed and middle vertices which are not end vertices of 

any other edges:  

 

𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡

0 −1 −2 . . . −(𝑟 − 1) −𝑟(1 − 𝑖)

−1 0 −1 . . . −(𝑟 − 2) −(𝑟 − 1)

−2 −1 0 . . . −(𝑟 − 3) −(𝑟 − 2)
. . . . . . . . . . . . . . . . . .

−(𝑟 − 1) −(𝑟 − 2) −(𝑟 − 3) . . . 0 −1
−𝑟(1 − 𝑖) −(𝑟 − 1) −(𝑟 − 2) . . . −1 0 ⎦

⎥
⎥
⎥
⎥
⎤

  

Case 3. If both the end-vertices 𝑥 and 𝑥 of the positive signed edges 𝐸 

are in opposite sign and middle vertices which are not end vertices of any 

other edges: 

 

𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 2 . . . 𝑟 − 1 𝑟(1 − 𝑖)
1 0 1 . . . 𝑟 − 2 𝑟 − 1
2 1 0 . . . 𝑟 − 3 𝑟 − 2
. . . . . . . . . . . . . . . . . .

𝑟 − 1 𝑟 − 2 𝑟 − 3 . . . 0 1
𝑟(1 − 𝑖) 𝑟 − 1 𝑟 − 2 . . . 1 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

Case 4. If both the end-vertices 𝑥 and 𝑥of the negative signed edges 𝐸 

are in opposite sign and middle vertices which are not end vertices of any 

other edges: 
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  𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡

0 −1 −2 . . . −(𝑟 − 1) −𝑟(1 + 𝑖)

−1 0 −1 . . . −(𝑟 − 2) −(𝑟 − 1)

−2 −1 0 . . . −(𝑟 − 3) −(𝑟 − 2)
. . . . . . . . . . . . . . . . . .

−(𝑟 − 1) −(𝑟 − 2) −(𝑟 − 3) . . . 0 −1

−𝑟(1 + 𝑖) −(𝑟 − 1) −(𝑟 − 2) . . . −1 0 ⎦
⎥
⎥
⎥
⎥
⎤

 

 

Case 5. If some middle vertices of a positive signed edge 𝐸, are end-

vertex of any other edge 𝐸: 

𝐶 = [𝑐,](ାଵ)(ାଵ)  

where 𝑐, is defined as   

𝑐, =  (1 + 𝑖)𝑏, or (1 − 𝑖)𝑏,, if the starting end-vertex (𝑥) 

of the edge and the middle vertex (𝑥), 𝑘 < 𝑟 which is an end 

vertex of any another edge, have same or opposite signed. 

𝑐, = (1 + 𝑖)𝑏, or (1 − 𝑖)𝑏, , if the starting end-vertex (𝑥) 

of the edge and another end vertex (𝑥) of the edge have same 

or opposite signed. 

𝑐, = 𝑏,    Otherwise 

 

Case 6. If some middle vertices of a negative signed edge 𝐸, are end-

vertex of any other edge 𝐸: 

𝐶 = [𝑐,](ାଵ)(ାଵ)  

where 𝑐, is defined as  

𝑐, =  (−1 + 𝑖)𝑏, or (−1 − 𝑖)𝑏,, if the starting end-vertex 

(𝑥) of the edge and the middle vertex (𝑥), 𝑘 < 𝑟  which is an 

end vertex of another edge, have same or opposite signed. 

𝑐, = (−1 + 𝑖)𝑏, or (−1 − 𝑖)𝑏, , if the starting end-vertex 

(𝑥) of the edge and another end vertex (𝑥) of the edge have 

same or opposite signed. 

𝑐, = −𝑏,    Otherwise. 

    Where, 𝑏, ∈ 𝐵, ∀𝑖 ≠ 𝑗 and  𝐵 is a symmetric matrix of order (𝑟 + 1) 

and defined as   
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𝐵 =

⎣
⎢
⎢
⎢
⎢
⎡

0 1 2 . . . 𝑟 − 1 𝑟
1 0 1 . . . 𝑟 − 2 𝑟 − 1
2 1 0 . . . 𝑟 − 3 𝑟 − 2
. . . . . . . . . . . . . . . . . .

𝑟 − 1 𝑟 − 2 𝑟 − 3 . . . 0 1
𝑟 𝑟 − 1 𝑟 − 2 . . . 1 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

iv. The remaining entries, if any, of X are all 0.  

 

Proof: Suppose 𝑋 = [𝑥,] be the adjacency matrix of ve-signed semigraph 𝑆(𝑉, 𝐸) 

with vertex set 𝑉 = {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, . . . . , 𝑣} and edge set 𝐸 = {𝐸ଵ, 𝐸ଶ, 𝐸ଷ, . . . . , 𝐸} where                

𝑉ା = {𝑝ଵ, 𝑝ଶ, . . . . . , 𝑝} and 𝑉ି = {𝑛ଵ, 𝑛ଶ, . . . . . , 𝑛௦} are the set of all positive and 

negative signed end-vertex set, and having positive signed edges 𝑃ଵ, 𝑃ଶ, . . . , 𝑃 and 

negative signed edges 𝑁ଵ, 𝑁ଶ, . . . , 𝑁௧. Then, by definition of the matrix, (i) and (ii) are 

satisfied.  

 

If 𝐸 = {𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥} is an edge of  order (𝑟 + 1) of 𝑆(𝑉, 𝐸) where both 

the end-vertices of the edges are in same signed and middle vertices which are not 

end vertices of any other edges then, 𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥
௧ row and column entries of X 

as given in 𝐶 of Case 1 or Case 2 in (iii) according as 𝐸 is positive or negative 

signed edges. 

 

If 𝐸 = {𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥} is an edge of  order (𝑟 + 1) of 𝑆(𝑉, 𝐸) where both 

the end-vertices of the edge are opposite signed and middle vertices which are not 

end vertices of any other edges then, 𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥
௧ row and column entries of X 

as given in 𝐶 of Case 3 or Case 4 in (iii) according as 𝐸 is positive or negative 

signed edges. 

 

If 𝐸 = {𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥} is an edge of  order (𝑟 + 1) of 𝑆(𝑉, 𝐸) where both 

the end-vertices of an edge is either in the same or opposite signed and some middle 

vertices are end-vertex of any other edges then, 𝑥, 𝑥ଵ, 𝑥ଶ, . . . . . 𝑥
௧ row and column 

entries of X as given in 𝐶 of Case 5 or Case 6 in (iii) according as 𝐸 is positive or 

negative signed edges. 
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Hence (iii) is satisfied. And by definition (iv) is also satisfied. 

 

Conversely, if (i), (ii) (iii) and (iv) are satisfied then we uniquely defined an e-

signed semigraph S with vertex set 𝑉 = {𝑣ଵ, 𝑣ଶ, 𝑣ଷ, . . . , 𝑣} obtain from adjacent 

matrix 𝐴 = [𝑎,]×, where 𝑎, = ห𝑅𝑒(𝑥,)ห, 𝑥, ∈ 𝑋   ∀𝑖, 𝑗 with n positive or 

negative signed edges  𝐸ଵ, 𝐸ଶ, . . . . , 𝐸 according as |𝐸| is even or odd. 

 

If 𝐶 is (𝑟 + 1)-order square sub-matrix of X, obtained by considering 

𝑥, 𝑥ଵ, 𝑥ଶ, . . . 𝑥
௧ row and column entries of X as in Case 1 or Case 2 of (iii), then we 

get an edge 𝐸 = {𝑥, 𝑥ଵ, 𝑥ଶ, . . . 𝑥} with end-vertices are in same sign and whose 

middle vertices are not an end vertex of any other edges. 

 

If 𝐶 be a square sub-matrix of X of order (𝑟 + 1), obtained by considering 

𝑥, 𝑥ଵ, 𝑥ଶ, . . . 𝑥
௧ row and column entries of X as in Case 3 or Case 4 of (iii), then we 

get an edge 𝐸 = {𝑥, 𝑥ଵ, 𝑥ଶ, . . . 𝑥} with end-vertices are in opposite sign and whose 

middle vertices are not an end vertex of any other edges. 

 

Also if we have a square sub-matrix 𝐶  of X of order (𝑟 + 1), obtained by 

considering 𝑥, 𝑥ଵ, 𝑥ଶ, . . . 𝑥
௧row and column entries of  X  as in Case 5 or Case 6 of 

(iii), then we obtained an edge 𝐸 = {𝑥, 𝑥ଵ, 𝑥ଶ, . . . 𝑥} with end-vertices are of same 

sign or opposite sign and whose middle vertices are an end vertex of any other edges. 

   

The sign of each end-vertex of an edge is found positive or negative according 

as even or odd numbers of square sub matrix 𝐶 of X as in the Case 1, 2, 3, 4, 5 and 6 

of (iii) associate with that vertex. 

 

Thus, we get two subsets of 𝑉 denoted by 𝑉ା = {𝑝ଵ, 𝑝ଶ, . . . , 𝑝௦} and              

𝑉ି = {𝑛ଵ, 𝑛ଶ, . . . , 𝑛௧} of positive and negative signed end-vertex of S  respectively.  

 

Hence 𝑆(𝑉, 𝐸) is ve-signed semigraph. 
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