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Chapter 4 

 

DISTANCE MATRIX OF SEMIGRAPHS AND ITS ENERGY 

 

 

4.1 Introduction 

Gopalapillai et al. [19] introduced the concept of distance matrix and energy on 

graphs in the year 2008, and the same will be defined as given below: 

 

In case of connected graph G with p vertices and q edges, the distance matrix 

or D-matrix 𝐷 = [𝑑] , is a square matrix of order p where, 𝑑 is the distance 

between the two vertices 𝑣 and 𝑣 .  

 

The D-Matrix 𝐷(𝐺) of 𝐺 is symmetric, and its eigenvalues 𝜇ଵ, 𝜇ଶ, 𝜇ଷ, . . . 𝜇 are 

all real, form D-spectrum of 𝐺. Then, distance energy or D-energy is defined as the 

sum of the absolute values of its D-eigenvalues, which is full analogy to the 

definition of graph energy introduced by Ivan Gutman [22] in the year 1978, for 

chemical graphs to approximate the total 𝜋-electron energy of a molecule.  

 

Further, in the year 2013 M. R. Rajesh Khanna et al. [29] investigated 

minimum covering distance matrix and energy of a graph, and defined as follows: 

 

Suppose  𝐺(𝑉, 𝑋) be a graph of order n and size m. Let C be a subset of the 

vertex set V, is the minimum covering set of a graph 𝐺. The minimum covering 

distance matrix of 𝐺 is the square matrix of order n defined as 𝐴ெ(𝐺) = [𝑑],  

where   𝑑 = ൜
1

𝑑(𝑣, 𝑣)
                 if 𝑖 = 𝑗 and 𝑣 ∈ 𝐶

otherwise.
 

 

The characteristic polynomial of 𝐴ெ(𝐺) is denoted by 𝑃(𝐺, 𝜆) =

𝑑𝑒𝑡[𝜆𝐼 − 𝐴ெ(𝐺)]. The minimum covering eigenvalues of the graph 𝐺 are the 

eigenvalues of 𝐴ெ(𝐺). Since 𝐴ெ(𝐺) is real and symmetric, its eigenvalues are all 
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real number and we label them in non-increasing order 𝜆ଵ ≥ 𝜆ଶ ≥. . . ≥ 𝜆. The 

minimum covering distance energy of 𝐺 is defined as 𝐸ெ(𝐺) = ∑ |𝜆|

ୀଵ .  

 

E. Sampathkumar [15] in the year 1994 generalized the definition of a graph to 

semigraph and introduce an adjacency matrix which determines a semigraph 

uniquely.  

 

In the year 2017, C. M. Deshpande, Y. S. Gaidhani and B.P. Athawale [65] 

defined adjacency matrix associated with a semigraph in another way as follows:  

 

Let 𝐺(𝑉, 𝑋) be a semigraph with vertex set 𝑉 = ൛𝑣ଵ, 𝑣ଶ, . . . , 𝑣ൟ and edge set                

𝑋 = ൛𝑒ଵ, 𝑒ଶ, . . . , 𝑒ൟ. The Adjacency matrix of 𝐺(𝑉, 𝑋) is a 𝑝 × 𝑝 matrix   𝐴 = ൣ𝑎൧ 

defined as follows:  

1. For every edge 𝑒 of X of cardinality, say k, let 𝑒 = (𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖) 

such that 𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖 are distinct vertices in 𝑉, for all  𝑖 ∈

𝑒 ; 𝑟 = 1,2, . . . , 𝑘 

           (𝑎)  𝑎భೝ
= 𝑟 − 1        (𝑏)𝑎ೖೝ

= 𝑘 − 𝑟   

2. All the remaining entries of A are zero.        

 

On the other hand, a 𝑝 × 𝑝 matrix 𝑀 is said to be semigraphical if there exists a 

semigraph 𝐺 on 𝑝 vertices with adjacency matrix equal to 𝑀. Again, Y. S. Gaidhani  

et al. [64] introduced energy of semigraph in the year 2019.   

  

Thus, motivated from the above-mentioned works, our studies focus on the 

distance energy and minimum covering distance energy of semigraphs in this 

chapter.   

 

4.2 Distance matrix and energy of semigraphs [51] 

In this section we are trying to obtain the energy of distance matrix of a 

semigraph and some of its properties. Suppose 𝐺(𝑉, 𝑋) be a connected semigraph 
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Figure 4.1   

with vertex set 𝑉 = ൛𝑣ଵ, 𝑣ଶ, . . . , 𝑣ൟ and edge set 𝑋 = ൛𝑒ଵ, 𝑒ଶ, . . . , 𝑒ൟ. Some 

definitions relating with this section are given follow: 

 

Definition 4.2.1 Shortest path distance in semigraph 

In a semigraph, shortest path distance between two vertices 𝑑(𝑢, 𝑣) is the 

number of edges in the shortest path between two vertices u and v. Clearly, distance 

between two distinct vertices on same edge is 1.  

 

Definition 4.2.2 Distance matrix of a semigraph 

If the shortest distance among all pairs of vertices in a connected semigraph 

𝐺(𝑉, 𝑋) with p vertices can be arranged in a square matrix of order p. Then the matrix 

𝐷 obtained is a symmetric matrix known as distance matrix of a semigraph and 

defined as 𝐷 = [𝑑]× 

where 𝑑(𝑣 , 𝑣)   =  The number of edges in the shortest path from vertices 𝑣 to 𝑣  

                                 in G. 

      = 1,    If vertices 𝑣 and 𝑣 
lies in same edge. 

      = 0,    If  𝑣 = 𝑣. 

 

Example 4.1 If 𝐺(𝑉, 𝑋) be a connected semigraph with vertex set 𝑉 =

{1,2,3,4,5,6,7,8} and edge set  𝑋 = {𝑒ଵ(1,2,3), 𝑒ଶ(3,4), 𝑒ଷ(4,5,6), 𝑒ସ(6,7,3), 𝑒ହ(7,8)} 

. Then adjacency matrix D of the semigraph 𝐺(𝑉, 𝑋) is   

 

 

   𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1
1 0

1 2
1 2

1 1
2 2

0 1
1 0

3 2
3 2

2 3
2 3

2 1
1 1

1 2
2 3

3 3
2 2

2 1
1 1

2 2
3 3

1 2
2 3

0 1
1 0

2 3
1 2

2 1
3 2

0 1
1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Definition 4.2.3 Eccentricity of a vertex 

The maximum entry for a given row/column of the distance matrix of a 

semigraph is known as the eccentricity e(v) of the vertex v 

 

Definition 4.2.4 Diameter of a semigraph 

The maximum eccentricity among the vertices is known as the diameter of a 

semigraph  

 

Definition 4.2.5 Distance spectrum of semigraph 

Distance matrix of a semigraph D  
is symmetric and all of its eigenvalues 

𝜇ଵ, 𝜇ଶ, . . . 𝜇 
are real, are said to be D-eigenvalues of G and can be ordered as 

𝜇ଵ ≥ 𝜇ଶ ≥. . . . ≥ 𝜇  to form the distance spectrum (D-spectrum) of G. 

 

Definition 4.2.6 Distance energy of semigraph 

The distance energy of semigraph G is defined as  𝛦(𝐺) = ∑ |𝜇|
ୀଵ

 
 

 

Which is coincide with the definition of distance energy of a graph [19]. For a 

symmetric matrix, its singular values are same as their eigenvalues. Therefore, the 

definition of 𝛦(𝐺) is also put forward in full analogy to the definition of the matrix 

energy of semigraphs [64] denoted by 𝐸(𝐺) and is defined as the summation of the 

singular values of adjacency matrix of G.  

 

4.2.1 Distance spectrum of some semigraphs and its properties: 

In this section, we obtained some properties of the distance spectrum, and 

distance energy of semigraphs of diameter 2, and establish some theorems.  

Semigraphs of diameter 2 and its distance matrix 

If 𝐺(𝑉, 𝑋) be a semigraph with vertex set 𝑉 = ൛𝑣ଵ, 𝑣ଶ, . . , 𝑣ൟ and edge set 𝑋 =

൛𝑒ଵ, 𝑒ଶ, . . . , 𝑒ൟ then adjacency matrix  𝐴 = ൫𝑎൯, of 𝐺(𝑉, 𝑋) is a 𝑝 × 𝑝 matrix whose 

entries are given by  

𝑎  = 1            ;   if 𝑣 , 𝑣  are adjacent  

 = 0 ;   otherwise. 



 

74 
 

1 2 3  

4  
5  

Figure 4.2 

 

Also, if 𝐴

 
be the adjacency matrix of 𝐺ሜ  (complement of G). 

and, distance matrix 𝐷 = ൫𝑑൯ of a semigraph of diameter 2 is defined as 

𝑑          = 0  ;   If  𝑣 = 𝑣. 

     = 1
 

;   If 𝑣 , 𝑣  are adjacent in G. 

       = 2 ;   if 𝑣 , 𝑣  are adjacent in 𝐺ሜ . 

Then, the distance matrix of semigraph G of diameter 2 is 𝐷 = 𝐴 + 2𝐴. 

 

Example 4.2 𝐺(𝑉, 𝑋) be a connected semigraph of diameter 2 with vertex set 

𝑉 = {1,2,3,4,5} and edge set  𝑋 = {𝑒ଵ(1,2,3), 𝑒ଶ(3,4,5), 𝑒ଷ(1,5)} . Then adjacency 

matrix D of the semigraph 𝐺(𝑉, 𝑋) is  

𝐷 =

⎣
⎢
⎢
⎢
⎡
0 1 1 2 1
1 0 1 2 2
1 1 0 1 1
2 2 1 0 1
1 2 1 1 0⎦

⎥
⎥
⎥
⎤

                                                

 

Lemma 4.1 If G be a semigraph of diameter 2 having order p and size q. Let 

𝜇ଵ, 𝜇ଶ, . . . , 𝜇 be D-eigenvalues of G then,   

 𝜇
ଶ



ୀଵ

= 2 2𝑝ଶ − 2𝑝 − 3  ቀ
|𝑒|

2
ቁ



ୀଵ

൩ 

Proof: In distance matrix D of semigraph G, there are ቂ𝟐 ∑ ቀ
|𝑒|

2
ቁ

𝒒
𝒊ୀ𝟏 ቃ entries equal to 

1 and ቂ𝑝(𝑝 − 1) − 2 ∑ ቀ
|𝑒|

2
ቁ


ୀଵ ቃ entries equal to 2.  

Therefore,  

 𝝁𝒊
𝟐

𝒑

𝒊ୀ𝟏

= (𝑫𝟐)𝒊𝒊

𝒑

𝒊ୀ𝟏

 

                    =   𝒅𝒊𝒋

𝒑

𝒋ୀ𝟏

𝒑

𝒊ୀ𝟏

𝒅𝒋𝒊 

As D is a symmetric matrix 
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 𝝁𝒊
𝟐

𝒑

𝒊ୀ𝟏

 =   𝒅𝒊𝒋
𝟐

𝒑

𝒋ୀ𝟏

𝒑

𝒊ୀ𝟏

                                                                                       

                       = 2  ቀ
|𝑒|

2
ቁ



ିଵ

൩ 1ଶ + 𝑝(𝑝 − 1) − 2  ቀ
|𝑒|

2
ቁ



ୀଵ

൩ 2ଶ
 

= 2 2𝑝(𝑝 − 1) − 3  ቀ
|𝑒|

2
ቁ



ୀଵ

൩              

 

4.2.2  Bounds for the spectral radius and distance energy: 

Based on Lemma 4.1, and applying a technique analogous to what McClelland 

used for estimating graph energy [3], we arrive at the following two theorems.  

 

Theorem 4.1 Let G be a connected semigraph of order p and degree q and of 

diameter 2. If  ∆= |𝑑𝑒𝑡 𝐷(𝐺)| then  

𝐸 ≥ ඩ4𝑝ଶ − 4𝑝 − 6  ቀ
|𝑒𝑖|

2
ቁ



ିଵ

+ 𝑝(𝑝 − 1)𝛥
ଶ

ൗ  

With equality hold if and only if for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 , ห𝜇𝜇ห = 𝑐 for some fixed real 

number c. 

 

Proof:  In view of the definition of D-energy of semigraph and using Lemma 4.1    

                                        𝐸
ଶ = ቌ|𝜇|



ୀଵ

ቍ

ଶ

 

                                              =  𝜇
ଶ



ୀଵ

+ |𝜇|

ஷ

ห𝜇ห

 

  = 2 2𝑝(𝑝 − 1) − 3  ቀ
|𝑒𝑖|

2
ቁ



ୀଵ

 + ห𝜇𝜇ห

ஷ
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The right-hand side summation in the above expression goes over 𝑝(𝑝 − 1) 

summands. Thus, applying to it the inequality between the arithmetic and geometric means 

we have,   

1

𝑝(𝑝 − 1)
ห𝜇𝜇ห

ஷ

≥ ቌෑ|𝜇|ห𝜇ห

ஷ

ቍ

ଵ
(ିଵ)ൗ

 

                                              = ቌෑ|𝜇|ଶ(ିଵ)

ஷ

ቍ

ଵ
(ିଵ)ൗ

 

                         = ቌෑ|𝜇|

ஷ

ቍ

ଶ
ൗ

 

= 𝛥
ଶ

ൗ

 
                                                    |𝜇|

ஷ

ห𝜇ห ≥ 𝑝(𝑝 − 1)𝛥
ଶ

ൗ
 

Combining both the results we have,  

𝐸
ଶ ≥ 2 2𝑝(𝑝 − 1) − 3  ቀ

|𝑒𝑖|

2
ቁ



ୀଵ

 + 𝑝(𝑝 − 1)𝛥
ଶ

ൗ  

𝑖. 𝑒.                                   𝐸 ≥ ඩ4𝑝ଶ − 4𝑝 − 6  ቀ
|𝑒𝑖|

2
ቁ



ିଵ

+ 𝑝(𝑝 − 1)𝛥
ଶ

ൗ
 

 

Theorem 4.2 Let G be a connected semigraph of order p and degree q and of 

diameter 2. Then     

𝐸 ≤ ඩ2𝑝 ቌ2𝑝ଶ − 2𝑝 − 3  ቀ
|𝑒𝑖|

2
ቁ



ୀଵ

ቍ 

with equality hold if and only if for all 1 ≤ 𝑖 ≤ 𝑛, |𝜇| = 𝑐 for some fixed real 

number c. 

 

Proof:  Expanding the expression given below we have, 

 ൫|𝝁𝒊| − ห𝝁𝒋ห൯

𝒑

𝒋ୀ𝟏

𝒑

𝒊ୀ𝟏

𝟐

=   ቀ|𝜇|ଶ + ห𝜇ห
ଶ

− 2|𝜇|ห𝜇หቁ



ୀଵ



 ୀଵ
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= 𝑝 |𝜇|ଶ



ୀଵ

+ 𝑝 ห𝜇ห
ଶ



ୀଵ

− 2 ቌ|𝜇|



ୀଵ

ቍ ቌห𝜇ห



ୀଵ

ቍ 

= 2 ቌ𝑝  𝜇
ଶ



ୀଵ

− 𝐸
ଶቍ 

From the obvious relation      

 ൫|𝝁𝒊| − ห𝝁𝒋ห൯

𝒑

𝒋ୀ𝟏

𝒑

𝒊ୀ𝟏

𝟐

≥ 𝟎 

noting that equality holds if and only if all distance eigenvalues are mutually equal 

by absolute value.  

We have                                    

𝑝  𝜇
ଶ



ୀଵ

− 𝐸
ଶ ≥ 0 

Using Lemma 4.1 yields  

𝐸
ଶ ≤ 2𝑝 2𝑝(𝑝 − 1) − 3  ቀ

|𝑒𝑖|

2
ቁ

𝑞

𝑖=1

 

𝑖. 𝑒.                                            𝐸 ≤ ඩ2𝑝 2𝑝ଶ − 2𝑝 − 3  ቀ
|𝑒𝑖|

2
ቁ



ୀଵ

 

Lemma 4.2 Let the distance eigenvalues of the semigraph G be labeled as 𝜇ଵ ≥ 𝜇ଶ ≥

𝜇ଷ ≥. . . ≥ 𝜇. If G is connected of diameter 2, then  

𝜇ଵ ≥
2

𝑝
𝑝(𝑝 − 1) −  ቀ

|𝑒|

2
ቁ



ୀଵ

൩ 

Proof: According to the Rayleigh-Ritz variational principle, if I is any p-dimensional 

row matrix, then 

𝝁𝟏 ≥
𝑰𝑫𝑰𝑻

𝑰𝑰𝑻
 

Setting 𝐼 = [1,1,1, . . . ,1] , we get 
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𝑰𝑫𝑰𝑻 =   𝑑



ୀଵ



ୀଵ

 

           = 𝟏 . 2  ቀ
|𝑒|

2
ቁ



ୀଵ

൩ + 2 . 𝑝ଶ − 𝑝 − 2  ቀ
|𝑒|

2
ቁ



ୀଵ

൩ 

since the distance matrix has 2 ∑ ቀ
|𝑒|

2
ቁ


ୀଵ  elements equal to 1 and 𝑝ଶ − 𝑝 −

2 ∑ ቀ
|𝑒|

2
ቁ


ୀଵ  elements equal to 2.  

In addition, 𝐼𝐼் = 𝑝. Hence, we get  

𝝁𝟏 ≥
𝟐

𝒑
𝑝(𝑝 − 1) −  ቀ

|𝑒|

2
ቁ

𝒒

𝒊ୀ𝟏

 

Using Lemma 4.2 and following a proof technique invented by Koolen and 

Moulton [23] we obtain another upper bound for the distance energy of connected 

semigraph of diameter 2. 

 

Theorem 4.3 Let G be a connected semigraph of order p and degree q and of 

diameter 2.  

 

𝑬𝑫 ≤

𝟏

𝒑
𝟐𝒑𝟐 − 𝟐𝒑 −

𝟐 ∑ ቀ
|𝑒|

2
ቁ +

𝒒
𝒊ୀ𝟏

 ඨ𝟐𝒑𝟐(𝒑 − 𝟏) ቂ𝟐𝒑(𝒑 − 𝟏) − 𝟑 ∑ ቀ
|𝑒|

2
ቁ

𝒒
𝒊ି𝟏 ቃ − 𝟒(𝒑 − 𝟏) ቂ𝒑(𝒑 − 𝟏) − ∑ ቀ

|𝑒|

2
ቁ

𝒒
𝒊ି𝟏 ቃ

𝟐
 

Proof: Applying the Cauchy-Schwarz inequality to the vectors (1,1,1, . . . . ,1) and 

(|𝜇ଶ|, |𝜇ଷ|, . . . , ห𝜇ห) we obtained  
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ቌ|𝝁𝒊|

𝒑

𝒊ୀ𝟐

ቍ

𝟐

≤ (𝒑 − 𝟏)  𝝁𝒊
𝟐

𝒑

𝒊ୀ𝟐

 

from which, recalling that  𝜇ଵ > 0, 

(𝑬𝑫 − 𝝁𝟏)𝟐 ≤ (𝒑 − 𝟏)  𝝁𝒊
𝟐

𝒑

𝒊ୀ𝟏

− 𝝁𝟏
𝟐 = (𝒑 − 𝟏) ቌ𝟒𝒑𝟐 − 𝟒𝒑 − 𝟔  ቀ

|𝑒|
2

ቁ

𝒒

𝒊ୀ𝟏

− 𝝁𝟏
𝟐ቍ 

𝒊. 𝒆.                       𝑬𝑫 ≤ 𝝁𝟏 + ඩ(𝒑 − 𝟏) ቌ𝟒𝒑𝟐 − 𝟒𝒑 − 𝟔  ቀ
|𝑒|

2
ቁ

𝒒

𝒊ୀ𝟏

− 𝝁𝟏
𝟐ቍ         (𝟒. 𝟏) 

Consider now the function 

𝒇(𝒙) = 𝒙 + ඩ(𝒑 − 𝟏) ቌ𝟒𝒑𝟐 − 𝟒𝒑 − 𝟔  ቀ
|𝑒|

2
ቁ

𝒒

𝒊ୀ𝟏

− 𝒙𝟐ቍ                                    (𝟒. 𝟐) 

Which is monotonically decreasing in the interval (a, b) where 

𝑎 =
2

𝑝
𝑝(𝑝 − 1) −  ቀ

|𝑒|

2
ቁ



ୀଵ

൩      𝑎𝑛𝑑      𝑏 = ඩ4𝑝ଶ − 4𝑝 − 6  ቀ
|𝑒|

2
ቁ



ୀଵ

 

as   𝑎 ≥ 1  for   𝑎 ≤ 𝑥ଶ
.  But    𝑎 ≤ 𝑥 ≤ 𝑥ଶ

  as  𝑥 ≥ 1.  

Therefore, inequality (4.1) remains valid if on the right-hand side of (4.2) the 

variable x is replaced by the lower bound for  𝜇ଵ from Lemma 2.  

Hence, we have 

 

𝑬𝑫 ≤

𝟏

𝒑
𝟐𝒑𝟐 − 𝟐𝒑 −
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𝟐 ∑ ቀ
|𝑒|

2
ቁ +

𝒒
𝒊ୀ𝟏

 ඨ𝟐𝒑𝟐(𝒑 − 𝟏) ቂ𝟐𝒑(𝒑 − 𝟏) − 𝟑 ∑ ቀ
|𝑒|

2
ቁ

𝒒
𝒊ି𝟏 ቃ − 𝟒(𝒑 − 𝟏) ቂ𝒑(𝒑 − 𝟏) − ∑ ቀ

|𝑒|

2
ቁ

𝒒
𝒊ି𝟏 ቃ

𝟐
 

 

4.3 On minimum covering distance matrix and energy of 

semigraphs: 

Definition 4.3.1 Suppose 𝐺(𝑉, 𝑋) be a connected semigraph of order n and size m 

with vertex set 𝑉 = {𝑣ଵ, 𝑣ଶ, . . . . . . . . , 𝑣} and edge set 𝑋 = {𝑒ଵ, 𝑒ଶ, . . . . . , 𝑒}.  Let 𝐶 ⊆ 𝑉 

be the minimum covering set. The minimum covering distance matrix of 𝐺 is the 

square matrix  𝐷(𝐺) = [𝑑] of order n, whose (𝑖, 𝑗)-element,   

    𝑑 = ൜
1

𝑑(𝑣 , 𝑣)   
𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑣 ∈ 𝐶

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

where 𝑑(𝑣 , 𝑣) is the distance between two vertices 𝑣 and 𝑣 in 𝐺. 

 

Example 4.3 𝐺(𝑉, 𝑋) be a connected semigraph as shown in Figure 4.1 with 

vertex set  𝑉 = {1,2,3,4,5,6,7,8}  and edge set  

𝑋 = {𝑒ଵ(1,2,3), 𝑒ଶ(3,4), 𝑒ଷ(4,5,6), 𝑒ସ(6,7,3), 𝑒ହ(7,8)}.  

Let 𝐶 = {3, 4, 7} be the minimum covering set. Then,  

 

Minimum covering distance matrix 𝐷(𝐺) of the semigraph 𝐺(𝑉, 𝑋) is     

 

𝐷(𝐺) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 1 2 3 2 2 3
1 0 1 2 3 2 2 3
1 1 1 1 2 1 1 2
2 2 1 1 1 1 2 3
3 3 2 1 0 1 2 3
2 2 1 1 1 0 1 2
2 2 1 2 2 1 1 1
3 3 2 3 3 2 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

    

 

Definition 4.3.2 The minimum covering distance matrix 𝐷(𝐺) of a semigraph 𝐺 is 

symmetric and hence its eigenvalues 𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . . , 𝜉 are all real, called minimum 



 

81 
 

covering distance eigenvalues of 𝐺. The minimum covering distance energy of a 

semigraph 𝐺 is denoted by 𝐸
 (𝐺) and defined as 𝐸

 (𝐺) = ∑ ห𝜉
𝑖
ห𝑛

𝑖=1  .    

 

In this section, we are interested in realizing the mathematical aspects of the 

minimum covering distance energy of semigraphs. Some properties and bounds for 

minimum covering distance matrix and energy for a semigraph of diameter 2 are 

investigated as follows: 

 

4.3.1 Properties of minimum covering distance energy of 

semigraphs: 

 

Suppose 𝐺(𝑉, 𝑋) be a semigraph of diameter 2 having order n and size m, and 

let 𝐶 ⊆ 𝑉 be the minimum covering set. Suppose  𝐷(𝐺) = (𝑑)× be the 

minimum covering distance matrix of 𝐺. Suppose characteristic polynomial of 

𝐷(𝐺) be   

  𝑃
 (𝐺, 𝜉) = 𝑑𝑒𝑡൫𝜉𝐼 − 𝐷(𝐺)൯ = 𝑎𝜉 + 𝑎ଵ𝜉ିଵ + 𝑎ଶ𝜉ିଶ + 𝑎ଷ𝜉ିଷ+. . . . . +𝑎 

 

Lemma 4.3. [45] If A is a real or complex square matrix of order n with eigenvalues 

𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . , 𝜉, then for each 𝑘 ∈ {1,2,3. . . . , 𝑛}, the number  𝑆 = (−1)𝑎 =  the sum 

of the 𝑘 × 𝑘 principal minors of A, where 𝑎’s are the coefficients of the 

characteristic polynomial of A, and 𝑆 the kth symmetric function of 𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . , 𝜉, is 

the sum of the products of  the eigenvalues taken k at a time.  

 

Theorem 4.4 Using the notations given above, we have 

(𝑎)   𝑎 = 1 

(𝑏)   𝑎ଵ = −|𝐶| 

(𝑐)   𝑎ଶ = ቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3  ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

 

where |𝑒|
 
is the number of vertices in the edge  𝑒 ∈ 𝑋.  

 

Proof: (a) From the definition of the characteristic polynomial 𝑃
 (𝐺, 𝜉) =

𝑑𝑒𝑡൫𝜉𝐼 − 𝐷(𝐺)൯   of   𝐷(𝐺), it is clear that  𝑎 = 1.   
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(b) (−1)ଵ𝑎1 = Sum of all first order principal minors of 𝐷(𝐺)  

                       = Trace of  𝐷(𝐺) = |𝐶| 

        Thus  𝑎ଵ = −|𝐶| 

 

(c) (−1)ଶ𝑎ଶ = Sum of all the 2 × 2 principal minors of 𝐷(𝐺)  

   =  ቤ
𝑑 𝑑

𝑑 𝑑
ቤ

ଵஸழஸ

=  ൫𝑑𝑑 − 𝑑𝑑൯

ଵஸழஸ

= ቀ
|𝐶|
2

ቁ −  𝑑ଶ


ழ

 

Since, G is a semigraph of diameter 2, then in its minimum covering distance 

matrix 𝐷(𝐺), there are |𝐶| diagonal elements equal to 1 and other diagonal 

elements are 0. 

Also, in 𝐷(𝐺) there are 2 ∑ ቀ
|𝑒|

2
ቁ

ୀଵ  non-diagonal entries are equal to 1 and 

other 𝑛ଶ − 𝑛 − 2 ∑ ቀ
|𝑒|

2
ቁ

ୀଵ  non-diagonal elements are equal to 2.  

Thus, we have  

2  𝑑2
𝑖𝑗

𝑖<𝑗

= 12 2  ቀ
|𝑒|

2
ቁ



ୀଵ

൩ + 22 𝑛(𝑛 − 1) − 2  ቀ
|𝑒|

2
ቁ



ୀଵ

൩ 

                        ⇒  𝑑ଶ


ழ

= 𝑛(𝑛 − 1) − 3  ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

 

𝐻𝑒𝑛𝑐𝑒,                           𝑎ଶ = ቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3  ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

 

 

Theorem 4.5  If  𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . . , 𝜉 are the eigenvalues of the minimum covering 

distance matrix 𝐷(𝐺) of a semigraph 𝐺(𝑉, 𝑋) of order n, having m edges of 

diameter 2, and if C be the minimum covering set of 𝐺, then  

𝑖.   𝜉



ୀଵ

= |𝐶| 

𝑖𝑖.   𝜉
ଶ



ୀଵ

= 2 2𝑛(𝑛 − 1) − 3  ቀ
|𝑒|

2
ቁ



ୀଵ

൩ + |𝐶| 

where |𝑒|
 
is the number of vertices in the edge  𝑒 ∈ 𝑋.  
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Proof:  i. Since, the sum of the eigenvalues of 𝐷(𝐺) = The trace of  𝐷(𝐺) 

Hence, 

 𝜉



ୀଵ

=  𝑑



ୀଵ

= |𝐶| 

 

ii. Consider    

 𝝃𝒊
𝟐

𝒏

𝒊ୀ𝟏

= ൫(𝐷𝑚𝑐)2൯
𝒊𝒊

𝒏

𝒊ୀ𝟏

=   𝑑



ୀଵ



ୀଵ

𝑑 

As 𝐷(𝐺) is a symmetric matrix 

 𝝃𝒊
𝟐

𝒏

𝒊ୀ𝟏

=   𝑑
ଶ



ୀଵ



ୀଵ

= 2 ൫𝑑൯
ଶ

ழ

+ (𝑑)
ଶ



ୀଵ

 

      = 2 2𝑛(𝑛 − 1) − 3  ቀ
|𝑒|

2
ቁ



ୀଵ

൩ + |𝐶| 

 

4.3.2 Bounds for minimum covering distance energy of semigraphs: 

 

Using Theorem 4.5, and applying technique adopted by McClelland used for 

estimating graph energy [3], we obtain the following two theorems. 

 

Theorem 4.6  If 𝐺(𝑉, 𝑋) be a semigraph having n vertices and m edges of diameter 2. 

Let C be the minimum covering set 𝐺, then    

𝐸
 (𝐺) ≤ ඩ2𝑛 2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|

2
ቁ



ୀଵ

൩ + 𝑛|𝐶| 

Proof: The minimum covering distance matrix 𝐷(𝐺)  of a semigraph 𝐺 is 

symmetric and hence its eigenvalues are real and can be ordered as 𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥

. . . . ≥ 𝜉.  

Appling the Cauchy-Schwarz inequality, we have   

൭ 𝑢𝑣



ୀଵ

൱

ଶ

≤ ൭ 𝑢
ଶ



ୀଵ

൱ ൭ 𝑣
ଶ



ୀଵ

൱ 
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Substituting 𝑢 = 1 , 𝑣 = |𝜉| in the above inequality and by Theorem 4.5 we have  

൭|𝜉|



ୀଵ

൱

ଶ

≤ 𝑛 ൭|𝜉|
ଶ



ୀଵ

൱ = 𝑛  𝜉
ଶ



ୀଵ

 

𝑖. 𝑒.                     [𝐸
 (𝐺)]ଶ = 𝑛 2 ൝2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|

2
ቁ



ୀଵ

ൡ + |𝐶|൩ 

𝐻𝑒𝑛𝑐𝑒,               𝐸
 (𝐺) ≤ ඩ2𝑛 2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|

2
ቁ



ୀଵ

൩ + 𝑛|𝐶| 

 

Theorem 4.7  Let 𝐺(𝑉, 𝑋) be a semigraph having n vertices and m edges of diameter 

2, with the minimum covering set C. If  𝛥 = |𝑑𝑒𝑡 𝐷(𝐺)| then   

𝐸
 (𝐺) ≥ ඩ2 ൭2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|

2
ቁ



ୀଵ

൱ + |𝐶| + 𝑛(𝑛 − 1)𝛥
ଶ

ൗ
 

Proof:   We have,   

[𝐸
 (𝐺)]ଶ = ൭|𝜉|



ୀଵ

൱

ଶ

=  𝜉
ଶ



ୀଵ

+ |𝜉|

ஷ

ห𝜉ห 

By applying  𝐴𝑀 ≥ 𝐺𝑀, we have 

1

𝑛(𝑛 − 1)
|𝜉|

ஷ

ห𝜉ห ≥ ቌෑ|𝜉|ห𝜉ห

ஷ

ቍ

ଵ
(ିଵ)ൗ

 

  = ቌෑ|𝜉|
ଶ(ିଵ)

ஷ

ቍ

ଵ
(ିଵ)ൗ

 

  = ቮෑ 𝜉

ஷ

ቮ

ଶ
ൗ

                          

= 𝛥
ଶ

ൗ        

𝑖. 𝑒.    |𝜉|

ஷ

ห𝜉ห ≥ 𝑛(𝑛 − 1)𝛥
ଶ

ൗ                                                   



 

85 
 

𝑇ℎ𝑢𝑠,                       [𝐸
 (𝐺)]ଶ ≥  𝜉

ଶ



ୀଵ

+ 𝑛(𝑛 − 1)𝛥
ଶ

ൗ  

Now using Theorem 4.5 

[𝐸
 (𝐺)]ଶ ≥ 2 2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|

2
ቁ



ୀଵ

൩ + |𝐶| + 𝑛(𝑛 − 1)𝛥
ଶ

ൗ
 

Hence the result.  

 

4.3.3 Some other bounds for minimum covering distance energy of 

semigraphs: 

 

Theorem 4.8     Let 𝐺(𝑉, 𝑋) be semigraph of diameter 2 having order n, size m and if 

C be the minimum covering set.  Then  

𝐸
 (𝐺) ≥ ඩ2 2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|
2

ቁ



ୀଵ

+ อቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3  ቀ
|𝑒|
2

ቁ



ୀଵ

อ൩ + |𝐶| 

Proof:    Consider          

[𝐸
 (𝐺)]ଶ  = ൭|𝜉|



ୀଵ

൱

ଶ

 

= |𝜉|
ଶ



ୀଵ

+ |𝜉|

ஷ

ห𝜉ห

 

                                                 = ∑ 𝜉
ଶ

ୀଵ + 2 ∑ |𝜉|ழ ห𝜉ห                                      (4.3)  

𝑊𝑒 ℎ𝑎𝑣𝑒,                                     𝜉𝜉

ଵஸழஸ

=  ቤ
𝑑 𝑑

𝑑 𝑑
ቤ

ଵஸழஸ  

                                   =  ൫𝑑𝑑 − 𝑑𝑑൯

ଵஸழஸ
 

The minimum covering distance matrix  𝐷(𝐺) is symmetric, thus 𝑑 = 𝑑,  

Therefore we have, 

 𝜉𝜉 =  𝑑𝑑

ଵஸழஸ

−  𝑑𝑑

ଵஸழஸଵஸழஸ

 

                        =  𝑑𝑑

ଵஸழஸ

−  ൫𝑑൯
ଶ

ଵஸழஸ  
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                                = ቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3  ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

 

𝑊𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡,                         |𝜉|

ழ

|𝜉| ≥ |  𝜉𝜉

ழ

| 

𝑻𝒉𝒖𝒔                       |𝝃𝒊|

𝒊ழ

|𝝃𝒋| ≥ อቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3  ቀ
|𝑒|

2
ቁ



ୀଵ

อ                     (4.4) 

Using inequation (4.3) and (4.4) and Theorem 4.5, we obtain 

[𝑬𝒎𝒄
𝑫 (𝑮)]𝟐 ≥ 2 2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|
2

ቁ



ୀଵ

+ อቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3  ቀ
|𝑒|
2

ቁ



ୀଵ

อ൩ + |𝐶|

 
Taking positive square-root, we get

                                            

𝑬𝒎𝒄
𝑫 (𝑮) ≥ ඩ2 2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|
2

ቁ



ୀଵ

+ อቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3  ቀ
|𝑒|
2

ቁ



ୀଵ

อ൩ + |𝐶|

 

Hence the result.   

 

Theorem 4.9     Let 𝐺(𝑉, 𝑋) be a semigraph of order n, size m and having C be the 

minimum covering set, of diameter 2.  Then  

𝐸
 (𝐺) ≤ 𝟐 2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|

2
ቁ



ୀଵ

൩ + |𝐶| 

Proof:  Clearly,   

𝑛 ≤ 2 2𝑛(𝑛 − 1) − 3  ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

൩ + |𝐶| 

Thus,  

𝒏 2 2𝑛(𝑛 − 1) − 3  ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

൩ + |𝐶|൩ ≤ 𝟐 2𝑛(𝑛 − 1) − 3  ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

൩ + |𝐶|൩

𝟐

 

Taking positive square-root, we get
                                              

ඩ2𝑛 2𝑛(𝑛 − 1) − 3  ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

൩ + 𝑛|𝐶| ≤ 𝟐 2𝑛(𝑛 − 1) − 3  ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

൩ + |𝐶| 

 

Thus, by using Theorem 4.6 
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𝐸
 (𝐺) ≤ 𝟐 2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|

2
ቁ



ୀଵ

൩ + |𝐶| 

Theorem 4.10   Let 𝐺(𝑉, 𝑋)  be a semigraph having order n and size m of diameter 2, 

with the minimum covering set C. Let minimum covering distance eigenvalues of the 

matrix 𝐷(𝐺) be  𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥. . . ≥ 𝜉.  Then  

𝐸
 (𝐺) ≤ |𝜉ଵ| + ඩ(𝑛 − 1) 2 2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|

2
ቁ



ୀଵ

൩ + |𝐶| − 𝜉ଵ
ଶ൩ 

Proof: Let  𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥. . . . . . . . ≥ 𝜉  be the minimum covering distance 

eigenvalues of   𝐷(𝐺). Appling the Cauchy-Schwarz inequality on to vectors 

(|𝜉ଶ|, |𝜉ଷ|, . . . , |𝜉|) and  (1,1, . . . ,1)  with  𝑛 − 1 entries,   

൭|𝜉|



ୀଶ

൱

ଶ

≤ (𝑛 − 1) ൭|𝜉|
ଶ



ୀଶ

൱

 

𝑖. 𝑒.                                                |𝜉|



ୀଶ

≤ ඩ(𝑛 − 1) ൭|𝜉|
ଶ



ୀଶ

൱

 

𝑖. 𝑒.                                    |𝜉|



ୀଵ

− |𝜉ଵ| ≤ ඩ(𝑛 − 1) ൭ 𝜉
ଶ



ୀଵ

− 𝜉ଵ
ଶ൱

 

By using Theorem 4.5, we have  
 

𝐸
 (𝐺) ≤ |𝜉ଵ| + ඩ(𝑛 − 1) 2 2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|

2
ቁ



ୀଵ

൩ + |𝐶| − 𝜉ଵ
ଶ൩ 

 

Theorem 4.11     Let 𝐺(𝑉, 𝑋) be a semigraph having order n and size m of diameter 2 

with the minimum covering set C. Let 𝜉௫ be the largest absolute value of minimum 

covering distance eigenvalue. Then  

𝐸
 (𝐺) ≥

1

𝜉௫
2 ൝2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|

2
ቁ



ୀଵ

ൡ + |𝐶|൩ 

Proof:  Let 𝜉௫ be the largest absolute value of the minimum covering distance 

eigenvalue of  𝐷(𝐺). Then                      
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 𝜉௫|𝜉| ≥ 𝜉
ଶ          

𝑇ℎ𝑢𝑠,                                        𝜉௫



ୀଵ

|𝜉| ≥  𝜉
ଶ



ୀଵ

 

By Theorem 4.5, we have               

𝜉௫ |𝜉|



ୀଵ

≥ 𝟐 2𝑛(𝑛 − 1) − 3  ቀ
|𝑒|

2
ቁ



ୀଵ

൩ + |𝑪| 

𝐻𝑒𝑛𝑐𝑒,                    𝐸
 (𝐺) ≥

1

𝜉௫
2 ൝2𝑛(𝑛 − 1) − 3  ቀ

|𝑒|

2
ቁ



ୀଵ

ൡ + |𝐶|൩ 

 

Theorem 4.12    If 𝐺(𝑉, 𝑋) is a semigraph having order n and size m of diameter 2, 

and C be the minimum covering set of G. Let 𝜉ଵ be the greatest minimum covering 

distance eigenvalue of  𝐷𝑚𝑐(𝐺), then     

𝜉ଵ ≥
𝟏

𝒏
2𝑛2 − 2𝑛 − 2  ቀ

|𝑒𝑖|

2
ቁ + |𝐶|

𝑚

𝑖=1

൩ 

Proof: According to the Rayleigh-Ritz variational principle, if 𝐼 = [1, 1, . . . . ,1]் is a 

n-dimensional column vector. Then      𝜉ଵ ≥
𝐼𝑇 (ீ) 𝐼

𝐼𝑇𝐼
  

Since in the minimum covering distance matrix 𝐷(𝐺), there are |𝐶| diagonal 

elements equal to 1 and other diagonal elements are 0. Also, there are 2 ∑ ቀ
|𝑒|

2
ቁ

ୀଵ  

non-diagonal entries are equal to 1 and other 𝑛ଶ − 𝑛 − 2 ∑ ቀ
|𝑒|

2
ቁ

ୀଵ  non-diagonal 

elements are equal to 2. In addition, 𝐼்𝐼 = 𝑛 we have  

1

𝐼்𝐼
[𝐼் 𝐷𝑚𝑐(𝐺) 𝐼] =

1

𝑛
  𝑑



ୀଵ



ୀଵ

 

𝑖. 𝑒.          
1

𝐼்𝐼
[𝐼் 𝐷𝑚𝑐(𝐺) 𝐼] =

1

𝑛
1 ൝2  ቀ

|𝑒|

2
ቁ



ୀଵ

+ |𝐶|ൡ + 2 ൝𝑛ଶ − 𝑛 − 2  ቀ
|𝑒|

2
ቁ



ୀଵ

ൡ൩ 

𝐓𝐡𝐮𝐬,                          𝜉
1

≥
𝟏

𝒏
|𝐶| + 2𝑛ଶ − 2𝑛 − 2  ቀ

|𝑒|

2
ቁ



ୀଵ

൩ 

 

 



 

89 
 

***** 


