Chapter 4

DISTANCE MATRIX OF SEMIGRAPHS AND ITS ENERGY

4.1 Introduction
Gopalapillai et al. [19] introduced the concept of distance matrix and energy on

graphs in the year 2008, and the same will be defined as given below:

In case of connected graph G with p vertices and ¢ edges, the distance matrix

or D-matrix D = [d;j], is a square matrix of order p where, d;; is the distance

between the two vertices v; and v;.

The D-Matrix D(G) of G is symmetric, and its eigenvalues uy, iy, 43, ... i are
all real, form D-spectrum of G. Then, distance energy or D-energy is defined as the
sum of the absolute values of its D-eigenvalues, which is full analogy to the
definition of graph energy introduced by Ivan Gutman [22] in the year 1978, for

chemical graphs to approximate the total m-electron energy of a molecule.

Further, in the year 2013 M. R. Rajesh Khanna et al. [29] investigated

minimum covering distance matrix and energy of a graph, and defined as follows:

Suppose G (V,X) be a graph of order n and size m. Let C be a subset of the
vertex set V, is the minimum covering set of a graph G. The minimum covering

distance matrix of G is the square matrix of order n defined as Ay (G) = [d;;],

1 ifi=jandv; €C
h d = { l
where d;; d(vi, vj) otherwise.

The characteristic polynomial of App(G) is denoted by P, (G,A) =

det[Al — Ayp(G)]. The minimum covering eigenvalues of the graph G are the

eigenvalues of Ayp(G). Since Ayp(G) is real and symmetric, its eigenvalues are all
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real number and we label them in non-increasing order A; > 1, >...> A,,. The

minimum covering distance energy of G is defined as Eyp (G) = XAl

E. Sampathkumar [15] in the year 1994 generalized the definition of a graph to
semigraph and introduce an adjacency matrix which determines a semigraph

uniquely.

In the year 2017, C. M. Deshpande, Y. S. Gaidhani and B.P. Athawale [65]

defined adjacency matrix associated with a semigraph in another way as follows:

Let G(V,X) be a semigraph with vertex set V = {vy, v,,. ..,vp} and edge set
X ={ey e, ..,eq}. The Adjacency matrix of G(V,X) is a p X p matrix A = [al-j]
defined as follows:

1.  For every edge e; of X of cardinality, say k, let e; = (i, i,,13,...,1x)
such that i;,i,,13,...,i; are distinct vertices in V, for all i, €
e;r=12,....k
(@) a;;, =r—1 b)a;,;, =k—r1

2. All the remaining entries of A are zero.

On the other hand, a p X p matrix M is said to be semigraphical if there exists a
semigraph G on p vertices with adjacency matrix equal to M. Again, Y. S. Gaidhani

et al. [64] introduced energy of semigraph in the year 2019.

Thus, motivated from the above-mentioned works, our studies focus on the
distance energy and minimum covering distance energy of semigraphs in this

chapter.
4.2 Distance matrix and energy of semigraphs [51]

In this section we are trying to obtain the energy of distance matrix of a

semigraph and some of its properties. Suppose G(V,X) be a connected semigraph
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with vertex set V={v1,v2,...,vp} and edge set X={e1,e2,...,eq}. Some

definitions relating with this section are given follow:

Definition 4.2.1 Shortest path distance in semigraph
In a semigraph, shortest path distance between two vertices d(u,v) is the
number of edges in the shortest path between two vertices u and v. Clearly, distance

between two distinct vertices on same edge is 1.

Definition 4.2.2 Distance matrix of a semigraph

If the shortest distance among all pairs of vertices in a connected semigraph
G(V,X) with p vertices can be arranged in a square matrix of order p. Then the matrix
D obtained is a symmetric matrix known as distance matrix of a semigraph and
defined as D = [d;j]pxp
where d;;(v;,v;) = The number of edges in the shortest path from vertices v; to v;

in G.
=1, Ifvertices v; and v; lies in same edge.

= 0, If v = Uj.

Example 4.1 If G(V,X) be a connected semigraph with vertex set V =
{1,2,3,4,5,6,7,8} and edge set X = {e;(1,2,3),e,(3,4),e5(4,5,6),e4(6,7,3),e5(7,8)}
. Then adjacency matrix D of the semigraph G (V, X) is

NRRNROR R
WNR RO RN N
_R OR NN RPN N
O RPN WWNW W

WNN WN == O
WNN WN RO =
WNR OR NW W
N RO RR RN N

Figure 4.1
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Definition 4.2.3 Eccentricity of a vertex
The maximum entry for a given row/column of the distance matrix of a

semigraph is known as the eccentricity e(v) of the vertex v

Definition 4.2.4 Diameter of a semigraph
The maximum eccentricity among the vertices is known as the diameter of a

semigraph

Definition 4.2.5 Distance spectrum of semigraph
Distance matrix of a semigraph D is symmetric and all of its eigenvalues

U1, a2, ... Uy are real, are said to be D-eigenvalues of G and can be ordered as

U1 = Uy =....= Uy, to form the distance spectrum (D-spectrum) of G.

Definition 4.2.6 Distance energy of semigraph

The distance energy of semigraph G is defined as Ep(G) = XF_, |l

Which is coincide with the definition of distance energy of a graph [19]. For a
symmetric matrix, its singular values are same as their eigenvalues. Therefore, the
definition of Ep (G) is also put forward in full analogy to the definition of the matrix
energy of semigraphs [64] denoted by E(G) and is defined as the summation of the

singular values of adjacency matrix of G.

4.2.1 Distance spectrum of some semigraphs and its properties:

In this section, we obtained some properties of the distance spectrum, and

distance energy of semigraphs of diameter 2, and establish some theorems.
Semigraphs of diameter 2 and its distance matrix

If G(V,X) be a semigraph with vertex set V = {vy, vz,..,vp} and edge set X =
{er, ez,..., eq} then adjacency matrix A = (aij), of G(V,X) is a p X p matrix whose
entries are given by

a;; =1 ; ifv;, v are adjacent

=0 ; otherwise.
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Also, if A€ be the adjacency matrix of G (complement of G).

and, distance matrix D = (dl- j) of a semigraph of diameter 2 is defined as

dif =0 ) If Vi = V.
=1 ; Ifwv;,v; are adjacent in G.
=2, if v, v are adjacent in G.

Then, the distance matrix of semigraph G of diameter 2 is D = A + 2A°.

Example 4.2 G(V,X) be a connected semigraph of diameter 2 with vertex set
V =1{1,2,3,4,5} and edge set X = {e;(1,2,3),e,(3,4,5),e5(1,5)} . Then adjacency
matrix D of the semigraph G (V, X) is

5
0 11 2 1 4
|10122|
D=1 10 1 1 -
2 21 0 1
[12110J 3 2 1
Figure 4.2

Lemma 4.1 If G be a semigraph of diameter 2 having order p and size ¢. Let
U1, Uz, - -, by beE D-eigenvalues of G then,

p q

2 _ 2 _ _ le;]
Zui—Z 2p°—2p 32(2)]
i=1 i=1

Proof: In distance matrix D of semigraph G, there are [2 Z?zl (

|32i |)] entries equal to

1 and [p(p —1)-2%%, (|921|)] entries equal to 2.

Therefore,

p

p
D= 0D
i=1 i=1
p p
35w

i=1j=1

As D is a symmetric matrix
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P
ui = Z dij2

g XD

q
=2[2p(p—1)—3 |e|]

T

TI'M-:;
=y

1% +

NgB

q
pp-1n-2) (19 ]22

i=1

Juy

4.2.2 Bounds for the spectral radius and distance energy:

Based on Lemma 4.1, and applying a technique analogous to what McClelland

used for estimating graph energy [3], we arrive at the following two theorems.

Theorem 4.1 Let G be a connected semigraph of order p and degree ¢ and of
diameter 2. If A= |det D(G)| then

q
Ep = [4p% —4p — 62 (|€2'i|) +p(p— 14

With equality hold if and only if forall 1 < i < j < n, |uu;| = ¢ for some fixed real

number c.

Proof: In view of the definition of D-energy of semigraph and using Lemma 4.1

Zul +Z|M1I|u1

i+j

q
|e l + Z|Hiﬂj|
=1

i i#j

=2[2p(p—1)—3
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The right-hand side summation in the above expression goes over p(p — 1)

summands. Thus, applying to it the inequality between the arithmetic and geometric means

we have,

1 1/10(10—1)
— Z|Miﬂj|2 1_[|.Ui||.uj|
plp-D i#) i#]

1/p(p—l)
= 1_[|Hi|2(p_1)
i+j
2/,
= 1_[|Hi|
i+j
= Z/P
2
ZIMillujIZP(p—l)A /v
i#j

Combining both the results we have,
q

E2>2|2p(p—1) - 32 (";”) +p(p—1)4"/p

i=1

q
ie. Ep > |4p? —4p—62(|ezi|)+p(p—1)412/p
i—-1

Theorem 4.2 Let G be a connected semigraph of order p and degree g and of

diameter 2. Then

le;l

q
2 _ —
Ep < |2p| 2p2-2p 3_1(2

1

with equality hold if and only if for all 1 <i <n, |y;| =c for some fixed real

number c.

Proof: Expanding the expression given below we have,

p

2.2 (= lyl) =)

p p
i=1j=1 i=1j=

(|Hi|2 + |Iij|2 - 2|Iii||lij|)
1



14 p p 14
2
=p2|m|2+p2|ﬂj| -2 ZIMI ZI#;I
i=1 = i=1 =1
p
=2(p) w2 - £}
i=1

From the obvious relation

p p

D (il =) =0

i=1j=
noting that equality holds if and only if all distance eigenvalues are mutually equal
by absolute value.

We have

Using Lemma 4.1 yields

. _
E2 <2p lZp(p —1)— 32 (";”)
gz

L

q

ie. Ep < |2p [ZpZ—Zp—BZ(lezil)

=1

Lemma 4.2 Let the distance eigenvalues of the semigraph G be labeled as py > u, =

Uz =...= Up. If G is connected of diameter 2, then

p(p—n-i(';f')]

Proof: According to the Rayleigh-Ritz variational principle, if / is any p-dimensional

2
I’l' > —
)

row matrix, then

IDIT

>

Setting [ = [1,1,1,...,1] , we get

77



;]

5 ) elements equal to 1 and p? —p —

since the distance matrix has ZZ?zl(

231, (|92i |) elements equal to 2.
In addition, IIT = p. Hence, we get

q
™ 2% p(p — 1) —Z(IZ"I)

i

Using Lemma 4.2 and following a proof technique invented by Koolen and
Moulton [23] we obtain another upper bound for the distance energy of connected

semigraph of diameter 2.

Theorem 4.3 Let G be a connected semigraph of order p and degree g and of

diameter 2.
Ep <

1

Z|2p%2 —2p —
» p P

2 2?:1 (leéll) +

\/2”2(” - D [2p@ -1 -33, (lezil)] —4@-D[pp-1-3¥, (";il)]2

Proof: Applying the Cauchy-Schwarz inequality to the vectors (1,1,1,....,1) and

(luzl, lusl, .., |up|) we obtained
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14 2 14
Zl”il S(p—l)zpt?
i=2

i=2

from which, recalling that y; > 0,

14 q
(Ep—pm)?<(@-1) Zu?ﬂé =(p—1)<4p2—4p—62(|ezi|)—ui>
i=1 i=1
q
i Ep < —1)|4p2-4ap-6 ledly _ 2 4.1
i.e. p<m+ [((p—1)| 4p p 5 uy (4.1)
i=1

Consider now the function

q
fX)=x+ [(p—-1) 4p2—4p—62(|;i|)—x2 (4.2)
i=1

Which is monotonically decreasing in the interval (a, b) where

q

q
a=§[p(p—1)—;:(|ezi|)] and b= 4p2—4p—6zl(|ezi|)

as a=>1for a<x® But a<x<x?as x>1.

Therefore, inequality (4.1) remains valid if on the right-hand side of (4.2) the

variable x is replaced by the lower bound for u; from Lemma 2.

Hence, we have

Ep

IA

152 o _
pr 2p
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2 Z;I=1 (Iezll) +

2

jzpz(p -1 [2p(p-1) 337, ('ezil)] —4(p-D[pp-1 -3¢, (IZ"I)]

4.3 On minimum covering distance matrix and energy of

semigraphs:

Definition 4.3.1 Suppose G(V,X) be a connected semigraph of order n and size m
with vertex set V = {vy,v,,........ , v} and edge set X = {eq, ey, ..... ,em}. Let C SV
be the minimum covering set. The minimum covering distance matrix of G is the
square matrix D,,.(G) = [d;;] of order n, whose (i, j)-element,

b ={awry " o

where d (v;, v;) is the distance between two vertices v; and vj in G.

Example 4.3 G(V,X) be a connected semigraph as shown in Figure 4.1 with
vertex set V = {1,2,3,4,5,6,7,8} and edge set
X ={e;(1,2,3),e,(3,4),e5(4,5,6),e4(6,7,3),e5(7,8)}.

Let C = {3, 4, 7} be the minimum covering set. Then,

Minimum covering distance matrix D,,.(G) of the semigraph G (V, X) is

Dy (G) =

WNNWN R RO
WNR R R R NN
WNR O RN WW
NRORRRNN
R R NN R NN
ORNWWNWW

WNNWN R O R
NP R NP, R R

Definition 4.3.2 The minimum covering distance matrix D,,.(G) of a semigraph G is

symmetric and hence its eigenvalues &;,&,,&5,....,&, are all real, called minimum
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covering distance eigenvalues of G. The minimum covering distance energy of a

semigraph G is denoted by Ef.(G) and defined as En.(G) = YiL4|¢,| -

In this section, we are interested in realizing the mathematical aspects of the
minimum covering distance energy of semigraphs. Some properties and bounds for
minimum covering distance matrix and energy for a semigraph of diameter 2 are

investigated as follows:

4.3.1 Properties of minimum covering distance energy of

semigraphs:

Suppose G(V, X) be a semigraph of diameter 2 having order » and size m, and
let C SV be the minimum covering set. Suppose Dp(G) = (d;j)nxn be the
minimum covering distance matrix of G. Suppose characteristic polynomial of
D (G) be

PR.(G,&) = det(&] — Dppe(G)) = agé™ + a1 €M1 + ap™ 2 + azé" 3+ +a,

Lemma 4.3. [45] If 4 is a real or complex square matrix of order n with eigenvalues
&1,8,,83,...,&,, then for each k € {1,2,3....,n}, the number S, = (—1)*a; = the sum
of the k Xk principal minors of A4, where aj’s are the coefficients of the
characteristic polynomial of 4, and Sj, the Kt symmetric function of &;,¢&,,&5,...,&,, 18

the sum of the products of the eigenvalues taken £ at a time.

Theorem 4.4 Using the notations given above, we have
(@) ap=1
(b) a; =—|C]

(©) a;= (lgl) -2n(n—1)+ 3; (|92i|)

where |e;| is the number of vertices in the edge e; € X.

Proof: (a) From the definition of the characteristic polynomial PR.(G,¢) =

det(&1 — Dpe(G)) of Dp(G), itis clear that ay = 1.
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(b) (—1)'a; = Sum of all first order principal minors of D,,.(G)
= Trace of D,,,.(G) = |C]|
Thus a; = —|C|

(¢) (—1)%a, = Sum of all the 2 x 2 principal minors of D,,.(G)

di dij
_ Z i il _ z (diidjj_dijd]'i)z(Igl)_zdzij

dj- dj-
1<i<jsn 1<i<jsn i<j

Since, G is a semigraph of diameter 2, then in its minimum covering distance
matrix D,,.(G), there are |C| diagonal elements equal to 1 and other diagonal

elements are 0.

Also, in D,,.(G) there are 2 /%, (|92i|) non-diagonal entries are equal to 1 and

othern? —n—2Y", (|92i |) non-diagonal elements are equal to 2.

Thus, we have

m m
2 _q2 le;l 2 —1) — Z le;]
22d11_1 [22(2) +28 n(n-1)-2, (2)
i<j i=1 i=1
NI
e.
i<j i=1
NI
_(ICI _ _ Z e;
Hence, az—(z) 2n(n 1)+3'1(21)
=
Theorem 4.5 If ¢&;,&,,&5,....,&, are the eigenvalues of the minimum covering

distance matrix D,,.(G) of a semigraph G(V,X) of order n, having m edges of

diameter 2, and if C be the minimum covering set of G, then

L. zn:fi = |C|
i=1
ii. fo =2 [Zn(n —1) - 32 (Iezil)

where |e;| is the number of vertices in the edge e; € X.

+1C|
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Proof: 1. Since, the sum of the eigenvalues of D,,.(G) = The trace of D,,.(G)

n
Z =D du=lc
i=1 1

l=

Hence,

1. Consider

> 6= (0w~ Y Y

i= i=1j=1

As D,,,.(G) is a symmetric matrix

Zn:fl? - zn:duz —ZZ(dU) +Z(du)2
i=1

i=1j=1 i<j

=2 [Zn(n 1) — 35: (|32i|)

i=1

+1C|

4.3.2 Bounds for minimum covering distance energy of semigraphs:

Using Theorem 4.5, and applying technique adopted by McClelland used for

estimating graph energy [3], we obtain the following two theorems.

Theorem 4.6 If G(V,X) be a semigraph having n vertices and m edges of diameter 2.

Let C be the minimum covering set G, then

m

IeI
=1

ER.(G) < |2n [Zn(n -1)-3 + n|C]|

i

Proof: The minimum covering distance matrix D,,.(G) of a semigraph G is
symmetric and hence its eigenvalues are real and can be ordered as & > &, > &5 >

=&

Appling the Cauchy-Schwarz inequality, we have

(2] ()&
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Substituting u; = 1, v; = |§;| in the above inequality and by Theorem 4.5 we have

n 2 n n
(Zm) Sn(Zw):n %
=1 i=1 i=1
ie. [ED_(&)]? =n[2{2n(n—1)—32(|62i|)}+ IC|
Hence, ER.(G) < |2n [Zn(n -1-3 leil) [ 4 n|C|
Z( >)

Theorem 4.7 Let G(V, X) be a semigraph having n vertices and m edges of diameter

2, with the minimum covering set C. If A = |det D,,,.(G)| then

m

ER.(G) = |2 <2n(n —1)— 32 (";”)) +[Cl + n(n = 1)4%n

=1
Proof: We have,

n 2 n
[Epc(G)]* = (Z|fi|) = Zflz + Z|fi| 1€
i=1 i=1

i#j

By applying AM > GM, we have

1 1/n(n—l)
mZkzﬂ €| = H|fi||fj|
l:f-'] l-'vtj
1/n(n—l)
= 1_[|fi|2(n_1)
i#j
2/n
= nfi
i#j
= Az/n

iLe. Z|fi| €] = n(n — 1)4%n

i#j
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Thus, [ER_(G)]? = Z £2 4 n(n—1)4%n
i=1

Now using Theorem 4.5

m

[ER.(G)]* =2 [Zn(n ~1) - 32 (|92i|)

=1

+|C| +n(n — 1)4*/n

Hence the result.

4.3.3 Some other bounds for minimum covering distance energy of

semigraphs:

Theorem 4.8 Let G(V, X) be semigraph of diameter 2 having order n, size m and if

C be the minimum covering set. Then

m m
E,%C(G) > |2 [Zn(n -1) - 32 (lezzl) + (lgl) —2n(n—1)+ 32 (lgzl) +]C|
=1 i=1
Proof: Consider
n 2
[ERe(@ = (Zm)
i=1
n
= Z|fi|2 + Z|fi| €]
i=1 i%)
=T &" + 2816l |55 (4.3)
di dij
We have, &&= ! J
1s;sn 1stsn d] d]
= z (dudj; — dijd;;)
1<i<jsn

The minimum covering distance matrix D, (G) is symmetric, thus d;; = dj;,

2 §i§j = Z dd;; — Z d;jdj;

Therefore we have,

1<i<jsn 1<i<jsn 1<i<jsn
2
= z diidjj — z (diy)

1si<jsn 1si<js<n
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= (N -2nm-1)+3 Z (|92i|)

We know that, Yladlg =1 &)l
i<j i<j
m
11E ICl\ _ _ Z legl
Thus Z &gl = (1) -2ne- 1+ 3 | & (4.4)
i<j i=1
Using inequation (4.3) and (4.4) and Theorem 4.5, we obtain
m m
D 2 1 le; IC _ _ le;|
[E2.(G)] ZZ[Zn(n 1) 32( )+ (1)) - 2nn 1)+3Z( )|+ 1c1
1= =
Taking positive square-root, we get
m m
D 1) — legl ICT _ _ legl
E2.(G) > Z[Zn(n 1 32( ) +|(15]) - 2nn 1)+3Z( )|+ 1cl
L= 1=

Hence the result.

Theorem 4.9  Let G(V,X) be a semigraph of order n, size m and having C be the

minimum covering set, of diameter 2. Then

m
ER.(G) < Z[Zn(n—l)—BZ(lezil) +]C|
i=1
Proof: Clearly,
" (led
e.
n<2lan(n-1)-3, (21) +C|
i=1
Thus,
" (led " (led 2
e; e
n[Z[ZH(n—l)—3Z(21) +|C]| S[Z[Zn(n—l)—; (21) +C|
i=1 i=1
Taking positive square-root, we get
" (led NI
— — €; _ _ e;
Zn[Zn(n 1) 3;( 2) +n|C|sZ[2n(n 1) 3;( 2) +IC]

Thus, by using Theorem 4.6
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EP (G) < 2 [Zn(n —1)— 32 (";”) +1cl

Theorem 4.10 Let G(V,X) be a semigraph having order n and size m of diameter 2,
with the minimum covering set C. Let minimum covering distance eigenvalues of the

matrix D, (G) be & =&, =& =...=>&,. Then

m

Enc(G) <&l + [(n—1) [2 [Zn(n—l)_g (If;il)

=1

+|C|—€12]

Proof: Let & =2&6,=2&2>........ >¢, be the minimum covering distance
eigenvalues of D,,.(G). Appling the Cauchy-Schwarz inequality on to vectors

(&1, 151, ..., 1&,D) and (1,1,...,1) with n — 1 entries,

n 2 n
(Zm) <(-1 (Zw)
i=2 (=2
ie. ilg‘il < [((n—1) (i|fi|2>

i.e. Z|fi|‘|f1|§ (n—l)( fiz—ﬁz)
i=1

By using Theorem 4.5, we have
m

Epc(G) < |&|+ [(n—1) [2 [zn(n —1)— 32 (|62i|)

i=1

NIE

l

1l
[y

+1]C| - 512]

Theorem 4.11 Let G(V, X) be a semigraph having order n and size m of diameter 2
with the minimum covering set C. Let &,,,, be the largest absolute value of minimum

covering distance eigenvalue. Then

ER.(G) = fiax [2 {Zn(n —1) - 32 (";”)} +cC|

Proof: Let &,,,, be the largest absolute value of the minimum covering distance

eigenvalue of D,,.(G). Then
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S;maxlfil = flz

n n
Thus, z fmax |€l| = z 512
i=1 i=1

By Theorem 4.5, we have
n m
$max Z|fi| > 2 [Zn(n -1)— 32 (|92i|) +c|
i=1 i=1
1 m
Hence, ER.(G) = 242n(n—1) — 32 (|6i|) +C|
fmax =l 2

Theorem 4.12 If G(V, X) is a semigraph having order »n and size m of diameter 2,
and C be the minimum covering set of G. Let &; be the greatest minimum covering

distance eigenvalue of D,,,.(G) then

m
2 o le;
2n% —2n 22(2‘)+|C|
i=1
T

Proof: According to the Rayleigh-Ritz variational principle, if I = [1,1,....,1]" isa

1
5125

1T Dppe(G) 1

n-dimensional column vector. Then & > i

Since in the minimum covering distance matrix D,,.(G), there are |C| diagonal

elements equal to 1 and other diagonal elements are 0. Also, there are 2 )7, (legl)

non-diagonal entries are equal to 1 and other n> —n—2Y", (|92i|) non-diagonal

elements are equal to 2. In addition, I”] = n we have

n
1 1
T D@ 1 == ) dy

- %[lr D, (6)1] = %[1{25“ (|f;i|) + |c|} + z{n2 —n- zi (lezil)}]
(

i=1

1
Thus, > —
us ¢, n
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