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Chapter 4 

 

DISTANCE MATRIX OF SEMIGRAPHS AND ITS ENERGY 

 

 

4.1 Introduction 

Gopalapillai et al. [19] introduced the concept of distance matrix and energy on 

graphs in the year 2008, and the same will be defined as given below: 

 

In case of connected graph G with p vertices and q edges, the distance matrix 

or D-matrix 𝐷 = [𝑑௜௝] , is a square matrix of order p where, 𝑑௜௝ is the distance 

between the two vertices 𝑣௜ and 𝑣௝ .  

 

The D-Matrix 𝐷(𝐺) of 𝐺 is symmetric, and its eigenvalues 𝜇ଵ, 𝜇ଶ, 𝜇ଷ, . . . 𝜇௣ are 

all real, form D-spectrum of 𝐺. Then, distance energy or D-energy is defined as the 

sum of the absolute values of its D-eigenvalues, which is full analogy to the 

definition of graph energy introduced by Ivan Gutman [22] in the year 1978, for 

chemical graphs to approximate the total 𝜋-electron energy of a molecule.  

 

Further, in the year 2013 M. R. Rajesh Khanna et al. [29] investigated 

minimum covering distance matrix and energy of a graph, and defined as follows: 

 

Suppose  𝐺(𝑉, 𝑋) be a graph of order n and size m. Let C be a subset of the 

vertex set V, is the minimum covering set of a graph 𝐺. The minimum covering 

distance matrix of 𝐺 is the square matrix of order n defined as 𝐴ெ஽(𝐺) = [𝑑௜௝],  

where   𝑑௜௝ = ൜
1

𝑑(𝑣௜, 𝑣௝)
                 if 𝑖 = 𝑗 and 𝑣௜ ∈ 𝐶

otherwise.
 

 

The characteristic polynomial of 𝐴ெ஽(𝐺) is denoted by 𝑃௡(𝐺, 𝜆) =

𝑑𝑒𝑡[𝜆𝐼 − 𝐴ெ஽(𝐺)]. The minimum covering eigenvalues of the graph 𝐺 are the 

eigenvalues of 𝐴ெ஽(𝐺). Since 𝐴ெ஽(𝐺) is real and symmetric, its eigenvalues are all 
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real number and we label them in non-increasing order 𝜆ଵ ≥ 𝜆ଶ ≥. . . ≥ 𝜆௡. The 

minimum covering distance energy of 𝐺 is defined as 𝐸ெ஽(𝐺) = ∑ |𝜆௜|
௡
௜ୀଵ .  

 

E. Sampathkumar [15] in the year 1994 generalized the definition of a graph to 

semigraph and introduce an adjacency matrix which determines a semigraph 

uniquely.  

 

In the year 2017, C. M. Deshpande, Y. S. Gaidhani and B.P. Athawale [65] 

defined adjacency matrix associated with a semigraph in another way as follows:  

 

Let 𝐺(𝑉, 𝑋) be a semigraph with vertex set 𝑉 = ൛𝑣ଵ, 𝑣ଶ, . . . , 𝑣௣ൟ and edge set                

𝑋 = ൛𝑒ଵ, 𝑒ଶ, . . . , 𝑒௤ൟ. The Adjacency matrix of 𝐺(𝑉, 𝑋) is a 𝑝 × 𝑝 matrix   𝐴 = ൣ𝑎௜௝൧ 

defined as follows:  

1. For every edge 𝑒௜ of X of cardinality, say k, let 𝑒௜ = (𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖௞) 

such that 𝑖ଵ, 𝑖ଶ, 𝑖ଷ, . . . , 𝑖௞ are distinct vertices in 𝑉, for all  𝑖௥ ∈

𝑒௜ ; 𝑟 = 1,2, . . . , 𝑘 

           (𝑎)  𝑎௜భ௜ೝ
= 𝑟 − 1        (𝑏)𝑎௜ೖ௜ೝ

= 𝑘 − 𝑟   

2. All the remaining entries of A are zero.        

 

On the other hand, a 𝑝 × 𝑝 matrix 𝑀 is said to be semigraphical if there exists a 

semigraph 𝐺 on 𝑝 vertices with adjacency matrix equal to 𝑀. Again, Y. S. Gaidhani  

et al. [64] introduced energy of semigraph in the year 2019.   

  

Thus, motivated from the above-mentioned works, our studies focus on the 

distance energy and minimum covering distance energy of semigraphs in this 

chapter.   

 

4.2 Distance matrix and energy of semigraphs [51] 

In this section we are trying to obtain the energy of distance matrix of a 

semigraph and some of its properties. Suppose 𝐺(𝑉, 𝑋) be a connected semigraph 
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Figure 4.1   

with vertex set 𝑉 = ൛𝑣ଵ, 𝑣ଶ, . . . , 𝑣௣ൟ and edge set 𝑋 = ൛𝑒ଵ, 𝑒ଶ, . . . , 𝑒௤ൟ. Some 

definitions relating with this section are given follow: 

 

Definition 4.2.1 Shortest path distance in semigraph 

In a semigraph, shortest path distance between two vertices 𝑑(𝑢, 𝑣) is the 

number of edges in the shortest path between two vertices u and v. Clearly, distance 

between two distinct vertices on same edge is 1.  

 

Definition 4.2.2 Distance matrix of a semigraph 

If the shortest distance among all pairs of vertices in a connected semigraph 

𝐺(𝑉, 𝑋) with p vertices can be arranged in a square matrix of order p. Then the matrix 

𝐷 obtained is a symmetric matrix known as distance matrix of a semigraph and 

defined as 𝐷 = [𝑑௜௝]௣×௣ 

where 𝑑௜௝(𝑣௜ , 𝑣௝)   =  The number of edges in the shortest path from vertices 𝑣௜ to 𝑣௝  

                                 in G. 

      = 1,    If vertices 𝑣௜ and 𝑣௝ 
lies in same edge. 

      = 0,    If  𝑣௜ = 𝑣௝. 

 

Example 4.1 If 𝐺(𝑉, 𝑋) be a connected semigraph with vertex set 𝑉 =

{1,2,3,4,5,6,7,8} and edge set  𝑋 = {𝑒ଵ(1,2,3), 𝑒ଶ(3,4), 𝑒ଷ(4,5,6), 𝑒ସ(6,7,3), 𝑒ହ(7,8)} 

. Then adjacency matrix D of the semigraph 𝐺(𝑉, 𝑋) is   

 

 

   𝐷 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1
1 0

1 2
1 2

1 1
2 2

0 1
1 0

3 2
3 2

2 3
2 3

2 1
1 1

1 2
2 3

3 3
2 2

2 1
1 1

2 2
3 3

1 2
2 3

0 1
1 0

2 3
1 2

2 1
3 2

0 1
1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Definition 4.2.3 Eccentricity of a vertex 

The maximum entry for a given row/column of the distance matrix of a 

semigraph is known as the eccentricity e(v) of the vertex v 

 

Definition 4.2.4 Diameter of a semigraph 

The maximum eccentricity among the vertices is known as the diameter of a 

semigraph  

 

Definition 4.2.5 Distance spectrum of semigraph 

Distance matrix of a semigraph D  
is symmetric and all of its eigenvalues 

𝜇ଵ, 𝜇ଶ, . . . 𝜇௣ 
are real, are said to be D-eigenvalues of G and can be ordered as 

𝜇ଵ ≥ 𝜇ଶ ≥. . . . ≥ 𝜇௣  to form the distance spectrum (D-spectrum) of G. 

 

Definition 4.2.6 Distance energy of semigraph 

The distance energy of semigraph G is defined as  𝛦஽(𝐺) = ∑ |𝜇௜|௣
௜ୀଵ

 
 

 

Which is coincide with the definition of distance energy of a graph [19]. For a 

symmetric matrix, its singular values are same as their eigenvalues. Therefore, the 

definition of 𝛦஽(𝐺) is also put forward in full analogy to the definition of the matrix 

energy of semigraphs [64] denoted by 𝐸(𝐺) and is defined as the summation of the 

singular values of adjacency matrix of G.  

 

4.2.1 Distance spectrum of some semigraphs and its properties: 

In this section, we obtained some properties of the distance spectrum, and 

distance energy of semigraphs of diameter 2, and establish some theorems.  

Semigraphs of diameter 2 and its distance matrix 

If 𝐺(𝑉, 𝑋) be a semigraph with vertex set 𝑉 = ൛𝑣ଵ, 𝑣ଶ, . . , 𝑣௣ൟ and edge set 𝑋 =

൛𝑒ଵ, 𝑒ଶ, . . . , 𝑒௤ൟ then adjacency matrix  𝐴 = ൫𝑎௜௝൯, of 𝐺(𝑉, 𝑋) is a 𝑝 × 𝑝 matrix whose 

entries are given by  

𝑎௜௝  = 1            ;   if 𝑣௜ , 𝑣௝  are adjacent  

 = 0 ;   otherwise. 
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Also, if 𝐴௖

 
be the adjacency matrix of 𝐺ሜ  (complement of G). 

and, distance matrix 𝐷 = ൫𝑑௜௝൯ of a semigraph of diameter 2 is defined as 

𝑑௜௝          = 0  ;   If  𝑣௜ = 𝑣௝. 

     = 1
 

;   If 𝑣௜ , 𝑣௝  are adjacent in G. 

       = 2 ;   if 𝑣௜ , 𝑣௝  are adjacent in 𝐺ሜ . 

Then, the distance matrix of semigraph G of diameter 2 is 𝐷 = 𝐴 + 2𝐴௖. 

 

Example 4.2 𝐺(𝑉, 𝑋) be a connected semigraph of diameter 2 with vertex set 

𝑉 = {1,2,3,4,5} and edge set  𝑋 = {𝑒ଵ(1,2,3), 𝑒ଶ(3,4,5), 𝑒ଷ(1,5)} . Then adjacency 

matrix D of the semigraph 𝐺(𝑉, 𝑋) is  

𝐷 =

⎣
⎢
⎢
⎢
⎡
0 1 1 2 1
1 0 1 2 2
1 1 0 1 1
2 2 1 0 1
1 2 1 1 0⎦

⎥
⎥
⎥
⎤

                                                

 

Lemma 4.1 If G be a semigraph of diameter 2 having order p and size q. Let 

𝜇ଵ, 𝜇ଶ, . . . , 𝜇௣ be D-eigenvalues of G then,   

෍ 𝜇௜
ଶ

௣

௜ୀଵ

= 2 ൥2𝑝ଶ − 2𝑝 − 3 ෍ ቀ
|𝑒௜|

2
ቁ

௤

௜ୀଵ

൩ 

Proof: In distance matrix D of semigraph G, there are ቂ𝟐 ∑ ቀ
|𝑒௜|

2
ቁ

𝒒
𝒊ୀ𝟏 ቃ entries equal to 

1 and ቂ𝑝(𝑝 − 1) − 2 ∑ ቀ
|𝑒௜|

2
ቁ

௤
௜ୀଵ ቃ entries equal to 2.  

Therefore,  

෍ 𝝁𝒊
𝟐

𝒑

𝒊ୀ𝟏

= ෍(𝑫𝟐)𝒊𝒊

𝒑

𝒊ୀ𝟏

 

                    = ෍ ෍ 𝒅𝒊𝒋

𝒑

𝒋ୀ𝟏

𝒑

𝒊ୀ𝟏

𝒅𝒋𝒊 

As D is a symmetric matrix 
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෍ 𝝁𝒊
𝟐

𝒑

𝒊ୀ𝟏

 = ෍ ෍ 𝒅𝒊𝒋
𝟐

𝒑

𝒋ୀ𝟏

𝒑

𝒊ୀ𝟏

                                                                                       

                       = ൥2 ෍ ቀ
|𝑒௜|

2
ቁ

௤

௜ିଵ

൩ 1ଶ + ൥𝑝(𝑝 − 1) − 2 ෍ ቀ
|𝑒௜|

2
ቁ

௤

௜ୀଵ

൩ 2ଶ
 

= 2 ൥2𝑝(𝑝 − 1) − 3 ෍ ቀ
|𝑒௜|

2
ቁ

௤

௜ୀଵ

൩              

 

4.2.2  Bounds for the spectral radius and distance energy: 

Based on Lemma 4.1, and applying a technique analogous to what McClelland 

used for estimating graph energy [3], we arrive at the following two theorems.  

 

Theorem 4.1 Let G be a connected semigraph of order p and degree q and of 

diameter 2. If  ∆= |𝑑𝑒𝑡 𝐷(𝐺)| then  

𝐸஽ ≥ ඩ4𝑝ଶ − 4𝑝 − 6 ෍ ቀ
|𝑒𝑖|

2
ቁ

௤

௜ିଵ

+ 𝑝(𝑝 − 1)𝛥
ଶ

௣ൗ  

With equality hold if and only if for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 , ห𝜇௜𝜇௝ห = 𝑐 for some fixed real 

number c. 

 

Proof:  In view of the definition of D-energy of semigraph and using Lemma 4.1    

                                        𝐸஽
ଶ = ቌ෍|𝜇௜|

௣

௜ୀଵ

ቍ

ଶ

 

                                              = ෍ 𝜇௜
ଶ

௣

௜ୀଵ

+ ෍|𝜇௜|

௜ஷ௝

ห𝜇௝ห

 

  = 2 ቎2𝑝(𝑝 − 1) − 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

௤

௜ୀଵ

቏ + ෍ห𝜇௜𝜇௝ห

௜ஷ௝
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The right-hand side summation in the above expression goes over 𝑝(𝑝 − 1) 

summands. Thus, applying to it the inequality between the arithmetic and geometric means 

we have,   

1

𝑝(𝑝 − 1)
෍ห𝜇௜𝜇௝ห

௜ஷ௝

≥ ቌෑ|𝜇௜|ห𝜇௝ห

௜ஷ௝

ቍ

ଵ
௣(௣ିଵ)ൗ

 

                                              = ቌෑ|𝜇௜|ଶ(௣ିଵ)

௜ஷ௝

ቍ

ଵ
௣(௣ିଵ)ൗ

 

                         = ቌෑ|𝜇௜|

௜ஷ௝

ቍ

ଶ
௣ൗ

 

= 𝛥
ଶ

௣ൗ

 
                                                    ෍|𝜇௜|

௜ஷ௝

ห𝜇௝ห ≥ 𝑝(𝑝 − 1)𝛥
ଶ

௣ൗ
 

Combining both the results we have,  

𝐸஽
ଶ ≥ 2 ቎2𝑝(𝑝 − 1) − 3 ෍ ቀ

|𝑒𝑖|

2
ቁ

௤

௜ୀଵ

቏ + 𝑝(𝑝 − 1)𝛥
ଶ

௣ൗ  

𝑖. 𝑒.                                   𝐸஽ ≥ ඩ4𝑝ଶ − 4𝑝 − 6 ෍ ቀ
|𝑒𝑖|

2
ቁ

௤

௜ିଵ

+ 𝑝(𝑝 − 1)𝛥
ଶ

௣ൗ
 

 

Theorem 4.2 Let G be a connected semigraph of order p and degree q and of 

diameter 2. Then     

𝐸஽ ≤ ඩ2𝑝 ቌ2𝑝ଶ − 2𝑝 − 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

௤

௜ୀଵ

ቍ 

with equality hold if and only if for all 1 ≤ 𝑖 ≤ 𝑛, |𝜇௜| = 𝑐 for some fixed real 

number c. 

 

Proof:  Expanding the expression given below we have, 

෍ ෍൫|𝝁𝒊| − ห𝝁𝒋ห൯

𝒑

𝒋ୀ𝟏

𝒑

𝒊ୀ𝟏

𝟐

= ෍ ෍ ቀ|𝜇௜|ଶ + ห𝜇௝ห
ଶ

− 2|𝜇௜|ห𝜇௝หቁ

௣

௝ୀଵ

௣

 ௜ୀଵ
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= 𝑝 ෍|𝜇௜|ଶ

௣

௜ୀଵ

+ 𝑝 ෍ห𝜇௝ห
ଶ

௣

௝ୀଵ

− 2 ቌ෍|𝜇௜|

௣

௜ୀଵ

ቍ ቌ෍ห𝜇௝ห

௣

௝ୀଵ

ቍ 

= 2 ቌ𝑝 ෍ 𝜇௜
ଶ

௣

௜ୀଵ

− 𝐸஽
ଶቍ 

From the obvious relation      

෍ ෍൫|𝝁𝒊| − ห𝝁𝒋ห൯

𝒑

𝒋ୀ𝟏

𝒑

𝒊ୀ𝟏

𝟐

≥ 𝟎 

noting that equality holds if and only if all distance eigenvalues are mutually equal 

by absolute value.  

We have                                    

𝑝 ෍ 𝜇௜
ଶ

௣

௜ୀଵ

− 𝐸஽
ଶ ≥ 0 

Using Lemma 4.1 yields  

𝐸஽
ଶ ≤ 2𝑝 ቎2𝑝(𝑝 − 1) − 3 ෍ ቀ

|𝑒𝑖|

2
ቁ

𝑞

𝑖=1

቏ 

𝑖. 𝑒.                                            𝐸஽ ≤ ඩ2𝑝 ቎2𝑝ଶ − 2𝑝 − 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

௤

௜ୀଵ

቏ 

Lemma 4.2 Let the distance eigenvalues of the semigraph G be labeled as 𝜇ଵ ≥ 𝜇ଶ ≥

𝜇ଷ ≥. . . ≥ 𝜇௣. If G is connected of diameter 2, then  

𝜇ଵ ≥
2

𝑝
൥𝑝(𝑝 − 1) − ෍ ቀ

|𝑒௜|

2
ቁ

௤

௜ୀଵ

൩ 

Proof: According to the Rayleigh-Ritz variational principle, if I is any p-dimensional 

row matrix, then 

𝝁𝟏 ≥
𝑰𝑫𝑰𝑻

𝑰𝑰𝑻
 

Setting 𝐼 = [1,1,1, . . . ,1] , we get 
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𝑰𝑫𝑰𝑻 = ෍ ෍ 𝑑௜௝

௣

௝ୀଵ

௣

௜ୀଵ

 

           = 𝟏 . ൥2 ෍ ቀ
|𝑒௜|

2
ቁ

௤

௜ୀଵ

൩ + 2 . ൥𝑝ଶ − 𝑝 − 2 ෍ ቀ
|𝑒௜|

2
ቁ

௤

௜ୀଵ

൩ 

since the distance matrix has 2 ∑ ቀ
|𝑒௜|

2
ቁ

௤
௜ୀଵ  elements equal to 1 and 𝑝ଶ − 𝑝 −

2 ∑ ቀ
|𝑒௜|

2
ቁ

௤
௜ୀଵ  elements equal to 2.  

In addition, 𝐼𝐼் = 𝑝. Hence, we get  

𝝁𝟏 ≥
𝟐

𝒑
቎𝑝(𝑝 − 1) − ෍ ቀ

|𝑒௜|

2
ቁ

𝒒

𝒊ୀ𝟏

቏ 

Using Lemma 4.2 and following a proof technique invented by Koolen and 

Moulton [23] we obtain another upper bound for the distance energy of connected 

semigraph of diameter 2. 

 

Theorem 4.3 Let G be a connected semigraph of order p and degree q and of 

diameter 2.  

 

𝑬𝑫 ≤

𝟏

𝒑
቎𝟐𝒑𝟐 − 𝟐𝒑 −

𝟐 ∑ ቀ
|𝑒௜|

2
ቁ +

𝒒
𝒊ୀ𝟏

 ඨ𝟐𝒑𝟐(𝒑 − 𝟏) ቂ𝟐𝒑(𝒑 − 𝟏) − 𝟑 ∑ ቀ
|𝑒௜|

2
ቁ

𝒒
𝒊ି𝟏 ቃ − 𝟒(𝒑 − 𝟏) ቂ𝒑(𝒑 − 𝟏) − ∑ ቀ

|𝑒௜|

2
ቁ

𝒒
𝒊ି𝟏 ቃ

𝟐
቏ 

Proof: Applying the Cauchy-Schwarz inequality to the vectors (1,1,1, . . . . ,1) and 

(|𝜇ଶ|, |𝜇ଷ|, . . . , ห𝜇௣ห) we obtained  
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ቌ෍|𝝁𝒊|

𝒑

𝒊ୀ𝟐

ቍ

𝟐

≤ (𝒑 − 𝟏) ෍ 𝝁𝒊
𝟐

𝒑

𝒊ୀ𝟐

 

from which, recalling that  𝜇ଵ > 0, 

(𝑬𝑫 − 𝝁𝟏)𝟐 ≤ (𝒑 − 𝟏) ቎෍ 𝝁𝒊
𝟐

𝒑

𝒊ୀ𝟏

− 𝝁𝟏
𝟐቏ = (𝒑 − 𝟏) ቌ𝟒𝒑𝟐 − 𝟒𝒑 − 𝟔 ෍ ቀ

|𝑒௜|
2

ቁ

𝒒

𝒊ୀ𝟏

− 𝝁𝟏
𝟐ቍ 

𝒊. 𝒆.                       𝑬𝑫 ≤ 𝝁𝟏 + ඩ(𝒑 − 𝟏) ቌ𝟒𝒑𝟐 − 𝟒𝒑 − 𝟔 ෍ ቀ
|𝑒௜|

2
ቁ

𝒒

𝒊ୀ𝟏

− 𝝁𝟏
𝟐ቍ         (𝟒. 𝟏) 

Consider now the function 

𝒇(𝒙) = 𝒙 + ඩ(𝒑 − 𝟏) ቌ𝟒𝒑𝟐 − 𝟒𝒑 − 𝟔 ෍ ቀ
|𝑒௜|

2
ቁ

𝒒

𝒊ୀ𝟏

− 𝒙𝟐ቍ                                    (𝟒. 𝟐) 

Which is monotonically decreasing in the interval (a, b) where 

𝑎 =
2

𝑝
൥𝑝(𝑝 − 1) − ෍ ቀ

|𝑒௜|

2
ቁ

௤

௜ୀଵ

൩      𝑎𝑛𝑑      𝑏 = ඩ4𝑝ଶ − 4𝑝 − 6 ෍ ቀ
|𝑒௜|

2
ቁ

௤

௜ୀଵ

 

as   𝑎 ≥ 1  for   𝑎 ≤ 𝑥ଶ
.  But    𝑎 ≤ 𝑥 ≤ 𝑥ଶ

  as  𝑥 ≥ 1.  

Therefore, inequality (4.1) remains valid if on the right-hand side of (4.2) the 

variable x is replaced by the lower bound for  𝜇ଵ from Lemma 2.  

Hence, we have 

 

𝑬𝑫 ≤

𝟏

𝒑
቎𝟐𝒑𝟐 − 𝟐𝒑 −
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𝟐 ∑ ቀ
|𝑒௜|

2
ቁ +

𝒒
𝒊ୀ𝟏

 ඨ𝟐𝒑𝟐(𝒑 − 𝟏) ቂ𝟐𝒑(𝒑 − 𝟏) − 𝟑 ∑ ቀ
|𝑒௜|

2
ቁ

𝒒
𝒊ି𝟏 ቃ − 𝟒(𝒑 − 𝟏) ቂ𝒑(𝒑 − 𝟏) − ∑ ቀ

|𝑒௜|

2
ቁ

𝒒
𝒊ି𝟏 ቃ

𝟐
቏ 

 

4.3 On minimum covering distance matrix and energy of 

semigraphs: 

Definition 4.3.1 Suppose 𝐺(𝑉, 𝑋) be a connected semigraph of order n and size m 

with vertex set 𝑉 = {𝑣ଵ, 𝑣ଶ, . . . . . . . . , 𝑣௡} and edge set 𝑋 = {𝑒ଵ, 𝑒ଶ, . . . . . , 𝑒௠}.  Let 𝐶 ⊆ 𝑉 

be the minimum covering set. The minimum covering distance matrix of 𝐺 is the 

square matrix  𝐷௠௖(𝐺) = [𝑑௜௝] of order n, whose (𝑖, 𝑗)-element,   

    𝑑௜௝ = ൜
1

𝑑(𝑣௜ , 𝑣௝)   
𝑖𝑓 𝑖 = 𝑗 𝑎𝑛𝑑 𝑣௜ ∈ 𝐶

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

where 𝑑(𝑣௜ , 𝑣௝) is the distance between two vertices 𝑣௜ and 𝑣௝ in 𝐺. 

 

Example 4.3 𝐺(𝑉, 𝑋) be a connected semigraph as shown in Figure 4.1 with 

vertex set  𝑉 = {1,2,3,4,5,6,7,8}  and edge set  

𝑋 = {𝑒ଵ(1,2,3), 𝑒ଶ(3,4), 𝑒ଷ(4,5,6), 𝑒ସ(6,7,3), 𝑒ହ(7,8)}.  

Let 𝐶 = {3, 4, 7} be the minimum covering set. Then,  

 

Minimum covering distance matrix 𝐷௠௖(𝐺) of the semigraph 𝐺(𝑉, 𝑋) is     

 

𝐷௠௖(𝐺) =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
0 1 1 2 3 2 2 3
1 0 1 2 3 2 2 3
1 1 1 1 2 1 1 2
2 2 1 1 1 1 2 3
3 3 2 1 0 1 2 3
2 2 1 1 1 0 1 2
2 2 1 2 2 1 1 1
3 3 2 3 3 2 1 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

    

 

Definition 4.3.2 The minimum covering distance matrix 𝐷௠௖(𝐺) of a semigraph 𝐺 is 

symmetric and hence its eigenvalues 𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . . , 𝜉௡ are all real, called minimum 
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covering distance eigenvalues of 𝐺. The minimum covering distance energy of a 

semigraph 𝐺 is denoted by 𝐸௠௖
஽ (𝐺) and defined as 𝐸௠௖

஽ (𝐺) = ∑ ห𝜉
𝑖
ห𝑛

𝑖=1  .    

 

In this section, we are interested in realizing the mathematical aspects of the 

minimum covering distance energy of semigraphs. Some properties and bounds for 

minimum covering distance matrix and energy for a semigraph of diameter 2 are 

investigated as follows: 

 

4.3.1 Properties of minimum covering distance energy of 

semigraphs: 

 

Suppose 𝐺(𝑉, 𝑋) be a semigraph of diameter 2 having order n and size m, and 

let 𝐶 ⊆ 𝑉 be the minimum covering set. Suppose  𝐷௠௖(𝐺) = (𝑑௜௝)௡×௡ be the 

minimum covering distance matrix of 𝐺. Suppose characteristic polynomial of 

𝐷௠௖(𝐺) be   

  𝑃௠௖
஽ (𝐺, 𝜉) = 𝑑𝑒𝑡൫𝜉𝐼 − 𝐷௠௖(𝐺)൯ = 𝑎଴𝜉௡ + 𝑎ଵ𝜉௡ିଵ + 𝑎ଶ𝜉௡ିଶ + 𝑎ଷ𝜉௡ିଷ+. . . . . +𝑎௡ 

 

Lemma 4.3. [45] If A is a real or complex square matrix of order n with eigenvalues 

𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . , 𝜉௡, then for each 𝑘 ∈ {1,2,3. . . . , 𝑛}, the number  𝑆௞ = (−1)௞𝑎௞ =  the sum 

of the 𝑘 × 𝑘 principal minors of A, where 𝑎௞’s are the coefficients of the 

characteristic polynomial of A, and 𝑆௞ the kth symmetric function of 𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . , 𝜉௡, is 

the sum of the products of  the eigenvalues taken k at a time.  

 

Theorem 4.4 Using the notations given above, we have 

(𝑎)   𝑎଴ = 1 

(𝑏)   𝑎ଵ = −|𝐶| 

(𝑐)   𝑎ଶ = ቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

 

where |𝑒௜|
 
is the number of vertices in the edge  𝑒௜ ∈ 𝑋.  

 

Proof: (a) From the definition of the characteristic polynomial 𝑃௠௖
஽ (𝐺, 𝜉) =

𝑑𝑒𝑡൫𝜉𝐼 − 𝐷௠௖(𝐺)൯   of   𝐷௠௖(𝐺), it is clear that  𝑎଴ = 1.   
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(b) (−1)ଵ𝑎1 = Sum of all first order principal minors of 𝐷௠௖(𝐺)  

                       = Trace of  𝐷௠௖(𝐺) = |𝐶| 

        Thus  𝑎ଵ = −|𝐶| 

 

(c) (−1)ଶ𝑎ଶ = Sum of all the 2 × 2 principal minors of 𝐷௠௖(𝐺)  

   = ෍ ቤ
𝑑௜௜ 𝑑௜௝

𝑑௝௜ 𝑑௝௝
ቤ

ଵஸ௜ழ௝ஸ௡

= ෍ ൫𝑑௜௜𝑑௝௝ − 𝑑௜௝𝑑௝௜൯

ଵஸ௜ழ௝ஸ௡

= ቀ
|𝐶|
2

ቁ − ෍ 𝑑ଶ
௜௝

௜ழ௝

 

Since, G is a semigraph of diameter 2, then in its minimum covering distance 

matrix 𝐷௠௖(𝐺), there are |𝐶| diagonal elements equal to 1 and other diagonal 

elements are 0. 

Also, in 𝐷௠௖(𝐺) there are 2 ∑ ቀ
|𝑒௜|

2
ቁ௠

௜ୀଵ  non-diagonal entries are equal to 1 and 

other 𝑛ଶ − 𝑛 − 2 ∑ ቀ
|𝑒௜|

2
ቁ௠

௜ୀଵ  non-diagonal elements are equal to 2.  

Thus, we have  

2 ෍ 𝑑2
𝑖𝑗

𝑖<𝑗

= 12 ൥2 ෍ ቀ
|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ + 22 ൥𝑛(𝑛 − 1) − 2 ෍ ቀ
|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ 

                        ⇒ ෍ 𝑑ଶ
௜௝

௜ழ௝

= 𝑛(𝑛 − 1) − 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

 

𝐻𝑒𝑛𝑐𝑒,                           𝑎ଶ = ቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

 

 

Theorem 4.5  If  𝜉ଵ, 𝜉ଶ, 𝜉ଷ, . . . . , 𝜉௡ are the eigenvalues of the minimum covering 

distance matrix 𝐷௠௖(𝐺) of a semigraph 𝐺(𝑉, 𝑋) of order n, having m edges of 

diameter 2, and if C be the minimum covering set of 𝐺, then  

𝑖.  ෍ 𝜉௜

௡

௜ୀଵ

= |𝐶| 

𝑖𝑖.  ෍ 𝜉௜
ଶ

௡

௜ୀଵ

= 2 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ
|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ + |𝐶| 

where |𝑒௜|
 
is the number of vertices in the edge  𝑒௜ ∈ 𝑋.  
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Proof:  i. Since, the sum of the eigenvalues of 𝐷௠௖(𝐺) = The trace of  𝐷௠௖(𝐺) 

Hence, 

෍ 𝜉௜

௡

௜ୀଵ

= ෍ 𝑑௜௜

௡

௜ୀଵ

= |𝐶| 

 

ii. Consider    

෍ 𝝃𝒊
𝟐

𝒏

𝒊ୀ𝟏

= ෍൫(𝐷𝑚𝑐)2൯
𝒊𝒊

𝒏

𝒊ୀ𝟏

= ෍ ෍ 𝑑௜௝

௡

௝ୀଵ

௡

௜ୀଵ

𝑑௝௜ 

As 𝐷௠௖(𝐺) is a symmetric matrix 

෍ 𝝃𝒊
𝟐

𝒏

𝒊ୀ𝟏

= ෍ ෍ 𝑑௜௝
ଶ

௡

௝ୀଵ

௡

௜ୀଵ

= 2 ෍൫𝑑௜௝൯
ଶ

௜ழ௝

+ ෍(𝑑௜௜)
ଶ

௡

௜ୀଵ

 

      = 2 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ
|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ + |𝐶| 

 

4.3.2 Bounds for minimum covering distance energy of semigraphs: 

 

Using Theorem 4.5, and applying technique adopted by McClelland used for 

estimating graph energy [3], we obtain the following two theorems. 

 

Theorem 4.6  If 𝐺(𝑉, 𝑋) be a semigraph having n vertices and m edges of diameter 2. 

Let C be the minimum covering set 𝐺, then    

𝐸௠௖
஽ (𝐺) ≤ ඩ2𝑛 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ + 𝑛|𝐶| 

Proof: The minimum covering distance matrix 𝐷௠௖(𝐺)  of a semigraph 𝐺 is 

symmetric and hence its eigenvalues are real and can be ordered as 𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥

. . . . ≥ 𝜉௡.  

Appling the Cauchy-Schwarz inequality, we have   

൭෍ 𝑢௜𝑣௜

௡

௜ୀଵ

൱

ଶ

≤ ൭෍ 𝑢௜
ଶ

௡

௜ୀଵ

൱ ൭෍ 𝑣௜
ଶ

௡

௜ୀଵ

൱ 
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Substituting 𝑢௜ = 1 , 𝑣௜ = |𝜉௜| in the above inequality and by Theorem 4.5 we have  

൭෍|𝜉௜|

௡

௜ୀଵ

൱

ଶ

≤ 𝑛 ൭෍|𝜉௜|
ଶ

௡

௜ୀଵ

൱ = 𝑛 ෍ 𝜉௜
ଶ

௡

௜ୀଵ

 

𝑖. 𝑒.                     [𝐸௠௖
஽ (𝐺)]ଶ = 𝑛 ൥2 ൝2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

ൡ + |𝐶|൩ 

𝐻𝑒𝑛𝑐𝑒,               𝐸௠௖
஽ (𝐺) ≤ ඩ2𝑛 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ + 𝑛|𝐶| 

 

Theorem 4.7  Let 𝐺(𝑉, 𝑋) be a semigraph having n vertices and m edges of diameter 

2, with the minimum covering set C. If  𝛥 = |𝑑𝑒𝑡 𝐷௠௖(𝐺)| then   

𝐸௠௖
஽ (𝐺) ≥ ඩ2 ൭2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

൱ + |𝐶| + 𝑛(𝑛 − 1)𝛥
ଶ

௡ൗ
 

Proof:   We have,   

[𝐸௠௖
஽ (𝐺)]ଶ = ൭෍|𝜉௜|

௡

௜ୀଵ

൱

ଶ

= ෍ 𝜉௜
ଶ

௡

௜ୀଵ

+ ෍|𝜉௜|

௜ஷ௝

ห𝜉௝ห 

By applying  𝐴𝑀 ≥ 𝐺𝑀, we have 

1

𝑛(𝑛 − 1)
෍|𝜉௜|

௜ஷ௝

ห𝜉௝ห ≥ ቌෑ|𝜉௜|ห𝜉௝ห

௜ஷ௝

ቍ

ଵ
௡(௡ିଵ)ൗ

 

  = ቌෑ|𝜉௜|
ଶ(௡ିଵ)

௜ஷ௝

ቍ

ଵ
௡(௡ିଵ)ൗ

 

  = ቮෑ 𝜉௜

௜ஷ௝

ቮ

ଶ
௡ൗ

                          

= 𝛥
ଶ

௡ൗ        

𝑖. 𝑒.    ෍|𝜉௜|

௜ஷ௝

ห𝜉௝ห ≥ 𝑛(𝑛 − 1)𝛥
ଶ

௡ൗ                                                   
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𝑇ℎ𝑢𝑠,                       [𝐸௠௖
஽ (𝐺)]ଶ ≥ ෍ 𝜉௜

ଶ

௡

௜ୀଵ

+ 𝑛(𝑛 − 1)𝛥
ଶ

௡ൗ  

Now using Theorem 4.5 

[𝐸௠௖
஽ (𝐺)]ଶ ≥ 2 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ + |𝐶| + 𝑛(𝑛 − 1)𝛥
ଶ

௡ൗ
 

Hence the result.  

 

4.3.3 Some other bounds for minimum covering distance energy of 

semigraphs: 

 

Theorem 4.8     Let 𝐺(𝑉, 𝑋) be semigraph of diameter 2 having order n, size m and if 

C be the minimum covering set.  Then  

𝐸௠௖
஽ (𝐺) ≥ ඩ2 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|
2

ቁ

௠

௜ୀଵ

+ อቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3 ෍ ቀ
|𝑒௜|
2

ቁ

௠

௜ୀଵ

อ൩ + |𝐶| 

Proof:    Consider          

[𝐸௠௖
஽ (𝐺)]ଶ  = ൭෍|𝜉௜|

௡

௜ୀଵ

൱

ଶ

 

= ෍|𝜉௜|
ଶ

௡

௜ୀଵ

+ ෍|𝜉௜|

௜ஷ௝

ห𝜉௝ห

 

                                                 = ∑ 𝜉௜
ଶ௡

௜ୀଵ + 2 ∑ |𝜉௜|௜ழ௝ ห𝜉௝ห                                      (4.3)  

𝑊𝑒 ℎ𝑎𝑣𝑒,                                    ෍ 𝜉௜𝜉௝

ଵஸ௜ழ௝ஸ௡

= ෍ ቤ
𝑑௜௜ 𝑑௜௝

𝑑௝௜ 𝑑௝௝
ቤ

ଵஸ௜ழ௝ஸ௡  

                                   = ෍ ൫𝑑௜௜𝑑௝௝ − 𝑑௜௝𝑑௝௜൯

ଵஸ௜ழ௝ஸ௡
 

The minimum covering distance matrix  𝐷௠௖(𝐺) is symmetric, thus 𝑑௜௝ = 𝑑௝௜,  

Therefore we have, 

෍ 𝜉௜𝜉௝ = ෍ 𝑑௜௜𝑑௝௝

ଵஸ௜ழ௝ஸ௡

− ෍ 𝑑௜௝𝑑௝௜

ଵஸ௜ழ௝ஸ௡ଵஸ௜ழ௝ஸ௡

 

                        = ෍ 𝑑௜௜𝑑௝௝

ଵஸ௜ழ௝ஸ௡

− ෍ ൫𝑑௜௝൯
ଶ

ଵஸ௜ழ௝ஸ௡  
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                                = ቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

 

𝑊𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡,                        ෍ |𝜉௜|

௜ழ௝

|𝜉௝| ≥ | ෍ 𝜉௜𝜉௝

௜ழ௝

| 

𝑻𝒉𝒖𝒔                      ෍ |𝝃𝒊|

𝒊ழ௝

|𝝃𝒋| ≥ อቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3 ෍ ቀ
|𝑒௜|

2
ቁ

௠

௜ୀଵ

อ                     (4.4) 

Using inequation (4.3) and (4.4) and Theorem 4.5, we obtain 

[𝑬𝒎𝒄
𝑫 (𝑮)]𝟐 ≥ 2 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|
2

ቁ

௠

௜ୀଵ

+ อቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3 ෍ ቀ
|𝑒௜|
2

ቁ

௠

௜ୀଵ

อ൩ + |𝐶|

 
Taking positive square-root, we get

                                            

𝑬𝒎𝒄
𝑫 (𝑮) ≥ ඩ2 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|
2

ቁ

௠

௜ୀଵ

+ อቀ
|𝐶|
2

ቁ − 2𝑛(𝑛 − 1) + 3 ෍ ቀ
|𝑒௜|
2

ቁ

௠

௜ୀଵ

อ൩ + |𝐶|

 

Hence the result.   

 

Theorem 4.9     Let 𝐺(𝑉, 𝑋) be a semigraph of order n, size m and having C be the 

minimum covering set, of diameter 2.  Then  

𝐸௠௖
஽ (𝐺) ≤ 𝟐 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ + |𝐶| 

Proof:  Clearly,   

𝑛 ≤ 2 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

൩ + |𝐶| 

Thus,  

𝒏 ൥2 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

൩ + |𝐶|൩ ≤ ൥𝟐 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

൩ + |𝐶|൩

𝟐

 

Taking positive square-root, we get
                                              

ඩ2𝑛 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

൩ + 𝑛|𝐶| ≤ 𝟐 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ
|𝑒𝑖|

2
ቁ

𝑚

𝑖=1

൩ + |𝐶| 

 

Thus, by using Theorem 4.6 
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𝐸௠௖
஽ (𝐺) ≤ 𝟐 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ + |𝐶| 

Theorem 4.10   Let 𝐺(𝑉, 𝑋)  be a semigraph having order n and size m of diameter 2, 

with the minimum covering set C. Let minimum covering distance eigenvalues of the 

matrix 𝐷௠௖(𝐺) be  𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥. . . ≥ 𝜉௡.  Then  

𝐸௠௖
஽ (𝐺) ≤ |𝜉ଵ| + ඩ(𝑛 − 1) ൥2 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ + |𝐶| − 𝜉ଵ
ଶ൩ 

Proof: Let  𝜉ଵ ≥ 𝜉ଶ ≥ 𝜉ଷ ≥. . . . . . . . ≥ 𝜉௡  be the minimum covering distance 

eigenvalues of   𝐷௠௖(𝐺). Appling the Cauchy-Schwarz inequality on to vectors 

(|𝜉ଶ|, |𝜉ଷ|, . . . , |𝜉௡|) and  (1,1, . . . ,1)  with  𝑛 − 1 entries,   

൭෍|𝜉௜|

௡

௜ୀଶ

൱

ଶ

≤ (𝑛 − 1) ൭෍|𝜉௜|
ଶ

௡

௜ୀଶ

൱

 

𝑖. 𝑒.                                                ෍|𝜉௜|

௡

௜ୀଶ

≤ ඩ(𝑛 − 1) ൭෍|𝜉௜|
ଶ

௡

௜ୀଶ

൱

 

𝑖. 𝑒.                                    ෍|𝜉௜|

௡

௜ୀଵ

− |𝜉ଵ| ≤ ඩ(𝑛 − 1) ൭෍ 𝜉௜
ଶ

௡

௜ୀଵ

− 𝜉ଵ
ଶ൱

 

By using Theorem 4.5, we have  
 

𝐸௠௖
஽ (𝐺) ≤ |𝜉ଵ| + ඩ(𝑛 − 1) ൥2 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ + |𝐶| − 𝜉ଵ
ଶ൩ 

 

Theorem 4.11     Let 𝐺(𝑉, 𝑋) be a semigraph having order n and size m of diameter 2 

with the minimum covering set C. Let 𝜉௠௔௫ be the largest absolute value of minimum 

covering distance eigenvalue. Then  

𝐸௠௖
஽ (𝐺) ≥

1

𝜉௠௔௫
൥2 ൝2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

ൡ + |𝐶|൩ 

Proof:  Let 𝜉௠௔௫ be the largest absolute value of the minimum covering distance 

eigenvalue of  𝐷௠௖(𝐺). Then                      
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 𝜉௠௔௫|𝜉௜| ≥ 𝜉௜
ଶ          

𝑇ℎ𝑢𝑠,                                       ෍ 𝜉௠௔௫

௡

௜ୀଵ

|𝜉௜| ≥ ෍ 𝜉௜
ଶ

௡

௜ୀଵ

 

By Theorem 4.5, we have               

𝜉௠௔௫ ෍|𝜉௜|

௡

௜ୀଵ

≥ 𝟐 ൥2𝑛(𝑛 − 1) − 3 ෍ ቀ
|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ + |𝑪| 

𝐻𝑒𝑛𝑐𝑒,                    𝐸௠௖
஽ (𝐺) ≥

1

𝜉௠௔௫
൥2 ൝2𝑛(𝑛 − 1) − 3 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

ൡ + |𝐶|൩ 

 

Theorem 4.12    If 𝐺(𝑉, 𝑋) is a semigraph having order n and size m of diameter 2, 

and C be the minimum covering set of G. Let 𝜉ଵ be the greatest minimum covering 

distance eigenvalue of  𝐷𝑚𝑐(𝐺), then     

𝜉ଵ ≥
𝟏

𝒏
൥2𝑛2 − 2𝑛 − 2 ෍ ቀ

|𝑒𝑖|

2
ቁ + |𝐶|

𝑚

𝑖=1

൩ 

Proof: According to the Rayleigh-Ritz variational principle, if 𝐼 = [1, 1, . . . . ,1]் is a 

n-dimensional column vector. Then      𝜉ଵ ≥
𝐼𝑇 ஽೘೎(ீ) 𝐼

𝐼𝑇𝐼
  

Since in the minimum covering distance matrix 𝐷௠௖(𝐺), there are |𝐶| diagonal 

elements equal to 1 and other diagonal elements are 0. Also, there are 2 ∑ ቀ
|𝑒௜|

2
ቁ௠

௜ୀଵ  

non-diagonal entries are equal to 1 and other 𝑛ଶ − 𝑛 − 2 ∑ ቀ
|𝑒௜|

2
ቁ௠

௜ୀଵ  non-diagonal 

elements are equal to 2. In addition, 𝐼்𝐼 = 𝑛 we have  

1

𝐼்𝐼
[𝐼் 𝐷𝑚𝑐(𝐺) 𝐼] =

1

𝑛
෍ ෍ 𝑑௜௝

௡

௝ୀଵ

௡

௜ୀଵ

 

𝑖. 𝑒.          
1

𝐼்𝐼
[𝐼் 𝐷𝑚𝑐(𝐺) 𝐼] =

1

𝑛
൥1 ൝2 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

+ |𝐶|ൡ + 2 ൝𝑛ଶ − 𝑛 − 2 ෍ ቀ
|𝑒௜|

2
ቁ

௠

௜ୀଵ

ൡ൩ 

𝐓𝐡𝐮𝐬,                          𝜉
1

≥
𝟏

𝒏
൥|𝐶| + 2𝑛ଶ − 2𝑛 − 2 ෍ ቀ

|𝑒௜|

2
ቁ

௠

௜ୀଵ

൩ 
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***** 


