

5

RESULT AND DISCUSSION

CONTENT

 5.1 AUTHENTICATION OF THE SYSTEM FOR USERS 97

 5.2 INTEGRATED DATABASE AS COMMON PLATFORM 99

 5.3 IVR USER 100

 5.3.1 Error Analysis And Speech Recognition

Analysis

100

 5.4 SPEECH RECOGNITION WITH SPHINX 102

 5.4.1 Sphinx Train 102

 5.4.2 Sphinx Decode 102

 5.4.3 Result Analysis 103

 5.5 OUTCOME FOR WI-FI COMMUNICATION 108

 5.5.1 Wi-Fi Enabled Circuit Stimulation 108

CHAPTER 5

RESULT AND DISCUSSION

 As mentioned in the objective of the proposed system, the aim of this project work is

to control electronic or electrical devices which are controlled through a common platform

for four communication mechanisms. So, the outcome of this project should be switch on or

off these devices in an efficient manner by using a web page, SMS, Speech and Wi-Fi. The

result of this system that is outcome finally can be easily visualized with the help of the

screen-shots of graphical user interface of software package and hardware modules.

 After connecting and switching the all components required in the system

administrator comes to the server machine. So, now operation in the server side will begin.

Step 1: At first, run the server program, once if program is executed, then a login interface is

appeared in the server machine.

Step 2: Now administrator has to active the server pressing the Start button in the users

interface of the server. Similarly, administrator checks the check box for allowing the

system to listen remote control command and presses the Connect to GSM modem to

listen the commands sent from the GSM end.

 After this, the server system is activated and ready to use i.e. ready operate its functions

according to the user’s request.

Step 3: Now, this time is for Remote users. There are four types of users communicating

four different mechanisms as Webpage users, Mobile SMS users, speech user and Wi-Fi

User. The web user uses a web page to send the commands using a standard web browser

through a dynamic IP address. Similarly, the mobile user uses message service from a

simple cell-phone.

 Figure 5.1 Screenshot of one part of present system in server side

5.1 Authentication of the System for Users

 In case of the Web and Wifi Communication, remote users have to log in their user_id

and password in the user interface as both are interface based in the server end through an IP

address.

 If user name and password does not match with the database, then the following

scenario has been occurred, otherwise can process the system.

Figure 5.2: User Verification Interface

Figure 5.3 : Users Information in MySql

Figure 5.4: Unauthorized Users

If the user name and password is correct, then the following interface is appeared for

controlling the devices.

In case of the SMS Communication, remote users have to send their user_id and password

along with the SMS that is already predefined. Besides, the SMS should be sent from an

authorized mobile number that is also stored in software package available in the server.

Otherwise users will be denied to be executed.

 In case of Speech Communication, remote users have to call to the server mobile or GSM

Modem to deliver their voice commands to control the devices using the authorized mobile

number. Otherwise speech cannot be accepted.

5.2 Integrated Database as Common Platform

 The integrated database of the system is the heart of the home automation system

because every command actions delivered by different communication mechanisms will be

stored in a same database to control the household appliances. The database is responsible

for storing the various information about the action commands given by different users. The

actual command will be triggered to the microcontroller from the same database as database

can carry the same status for the devices.

Figure 5.5: action table in MySql database

 In the discussion section, it is claimed that the command reached from all four

communication mechanism is stored in the same server database and the feedback to both

user is delivered from that database. So, it will possible to get the recent status for both users

i.e. if device is switched off by the web user, then also that feedback will be delivered into

the GSM user and vice-versa. Again, it will possible to get the recent status for both users

i.e. if device is switched off by the speech user, then also that feedback will be delivered into

the Wi-Fi users and vice-versa.

5.3 IVR User

 In this system, database consists of 8 different words LIGHT, FAN, FREEZE, TV,

MOTOR,YES,NO,ON, OFF and STATUS. Our speech recognition systems consist of total

1000 utterance words taken from different speaker. Including these words we have taken

880 utterance words for training, which are spoken by 200 different users and took them as a

trainee in training phase by recognition toolkit. After completion of their training we have

tested by new utterance words by the new input different speakers. We took 120 new

utterance words from new speakers. After testing phase is completed, we have compared the

training and testing phase. Then we have recognized different kinds of sounds as mention

below:

1. Matching sound: These are the sounds used in the training model which match with the

testing sounds.

2. Non matching sound: These are the sounds used in the training model which do not

match with the testing sounds.

3. Silence sound: These are the sounds used in the training which do not show any outcome.

5.3.1 Error Analysis and Speech Recognition Accuracy

 Word error rate often referred to as WER is a way to measure the performance of an

automatic speech recognition (ASR) system. It is tricky to measure because the “ASR result”

can have a different length than the “Voice Input”. The calculated results are shown below

in the table.

Table 5.1: List of training word, occurrences in training set and % of accuracy

N
am

e
of

 t
h

e
W

or
d

T
ot

al
 N

o.
 o

f
W

or
d

s

R
ec

og
n

ze
d

 W
or

d

(N
)

D
el

et
io

n
s

(D
)

S
u

b
st

it
u

ti
n

s
(S

)

In
se

rt
io

n
s

(I
)

M
is

 R
ec

og
n

iz
ed

E
rr

or
s

W
or

d
 C

or
re

ct
io

n

R
at

e(
P

C
)

W
or

d
 A

cc
u

ra
cy

R

at
e(

P
A

)

W
or

d
 E

rr
or

 R
at

e

LIGHT 237 232 0 5 3 5 8 97.84 96.55 3.45

FAN 235 227 1 7 2 7 10 96.48 95.59 4.41

FREEZE 238 228 5 5 1 5 11 95.61 95.18 4.82

AC 235 230 3 2 0 2 5 97.83 97.83 2.17

MOTOR 240 233 2 5 2 5 9 96.99 96.14 3.86

ON 242 238 0 4 3 4 7 98.32 97.06 2.94

OFF 242 230 4 8 4 8 16 94.78 93.04 6.96

YES 239 232 3 4 2 4 9 96.98 96.12 3.88

NO 238 232 2 4 0 4 6 97.41 97.41 2.59

The system performances in terms of word recognition accuracies with GMMs of different

sizes and fixed number of tied states are given in Table 1.3 Subsequently the number of tied

states is also varied for 16 and 32 GMMs/state systems as given in Table 1.4. As the SDS

system with 16 and 32 GMMs/state are found to give similar performances and hence we

have used 16 GMMs/state in the deployed system.

 Table 5.2: Word accuracies with different GMM sizes and fixed no. of tied states

Decoder

No. of GMM/state Total

Test files 4 8 16 32

Voice Command 66.73 68.45 62.69 62.63 1000

 Table 5.3: Word accuracies with different no. of tied states and 16 GMM vs 32 GMM

Decoder

Sennon Tot.

Test

files

1000 1500 2000 2500

16

GMM

32

GMM

16

GMM

32

GMM

16

GMM

32

GMM

16

GMM

32

GMM

Voice Command 70.23 69.5 71.34 62.8 72.38 72.8 72.69 72.6 1000

5.4 Speech Recognition with SPHINX

5.4.1 SPHINX Train

 After preparing the environment and data preparation for speech recognition, we have

prepared the sample data for training that already collected.

 We have followed the following steps [56]:

 In the workspace directory we create the directory hmm using the command mkdir

hmm.

 After that we have to go to the hmm directory using the command cd hmm then

execute the following command

 $SPHINXTRAIN/scripts_pl/setup SphinxTrain.pl -task calflow1

 The above command sets up all the folders and files required for training. The above

 script generates the following important directories in hmm directory which contains

the configuration files and the required transcript and dictionary files.

 After executing above command, we go to the hmm dir using the command cd hmm

 Then executing the following command

perl scripts_pl/make_feats.pl -ctletc/calflow1_train.fileids

 The above command extracts the feature in the form of .mfc files and saves them in

 the feat directory (/workspace/hmm/etc).

 Then we run the command

$ perl scripts_pl/RunAll.pl

The whole process may take some time. This creates the trained vectors which will

be used while decoding.

5.4.2 SPHINX Decode

 After completion training, we have prepared the sample data for decoding that already

collected. We have followed the following steps:

 We make the decode directory in the path /home/WordModel/workspace.

 In the path /home/WordModel/workspace/decode

Then we create the subfolders by name feats, models and wav folders where,

 a) feats directory contains all the .mfc (feature extracted files) files

 b) wav directory contains all the test wav files

 In the path /home/WordModel/workspace/decode/models create the subfolders hmm

and lm

a) hmm directory has the following files created during training: feat.params, mdef,

means, mixture_weights, transition_matrices, variances

b) lm directory has the following files:

calflow1.dic, calflow1.filler and the calflow1.fsg files

All the above files in hmm and lm are copied from the trained models executing the

following commands in the path /home/WordModel/workspace/

cp hmm/model_parameters/taskword.cd_cont_1000_8/* decode/models/hmm/

cp hmm/model_architecture/taskword .1000.mdef decode/models/hmm/mdef

cp hmm/etc/calflow1.dic decode/models/lm

cp hmm/etc/calflow1.filler decode/models/lm

cp hmm/etc/feat.paramsdecode/models/hmm

 We have to make calflow1.jsgf file in the lm directory which has the following format

#JSGF V1.0;

public<topping>

<words> = (on | off | status|fan|light|motor|freeze|ac|yes|no|)

 Now we run the following command to create the calflow1.sfg file

/home/WordModel/workspace/tools/sphinxbase/bin/sphinx_jsgf2fsg

calflow1.jsfg >calflow1.fsg

 The feat.params should have the following enteries–

 alpha 0.97

-samprate 8000

-frate 100

-dither yes

-doublebw no

-nfilt 31

-ncep 13

-lowerf 200

-upperf 3500

-nfft 512

-wlen 0.0256

-transform legacy

 We use following Feature Extraction Command for Testing

 /home/WordModel/workspace/tools/sphinxbase-0.6/bin/sphinx_fe-argfile

models/hmm/feat.params -c test_files -di wav/ -do feats -ei wav -mswav yes –eomfc

 Where,

 -argfile is specified as models/hmm/feat.params. -mswav specifies the

Microsoft Wave file format. test_files contains the list of all the wave files used for

testing prepared is a manner similar to that of training.

 The command for decoding is as follows

 /home/WordModel/workspace/tools/sphinx3-0.8/bin/sphinx3_decode -hmm

 models/hmm -op_mode 2 -fsg models/lm/assamese2.fsg –dict

 models/lm/calflow1.dic -fdict models/lm/calflow1.filler -ctltest_files -logfn

 log.txt -hyp /dev/ttyUSB1 -cepdir feats/

Where,

 -hmm Directory for specifying Sphinx 3's hmm, the following files are assummed to

be present, mdef, mean, var, mixw, tmat. If -mdef, -mean, -var, -mixw or -tmat are specified,

they will override this command. -op_mode Operation mode, for internal use only. Since

FSG is the mode used so -op_mode has to be set to 2 -fsg Finite state grammar. -ctl Control

file listing utterances to be processed (List of file that has to processed) -logfn Log file

(log.txt) -hyp Recognition result file, with only words (out.txt) -cepdir Input cepstrum files

directory (prefixed to file specs in control file) (Where, feats/ directory contain all the test

mfc files.

 5.4.3. Result Analysis

 Matching Sound

INFO: utt.c(195): Processing: of121

INFO: feat.c(1148): At directory feats/

INFO: feat.c(378): Reading mfc file: 'feats//of121.mfc'[0..-1]

INFO: cmn.c(175): CMN: 4.85 4.07 -2.75 1.21 -0.52 -0.13 0.08 -0.77 0.19 -0.33

0.05 -0.06 -0.19

..............

INFO: fsg_search.c(1080): Utt of121: 134 frames, 679 HMMs evaluated, 1084

history entries

Backtrace(of121)

FV:of121> WORD SFrm EFrm AScr(UnNorm) LMScore AScr+LScr

AScale

fv:of121> <sil> 0 14 28918 -72912 -43994 146759

fv:of121> off 15 48 260615 -34779 225836 457815

fv:of121> <sil> 49 133 2995539 -72912 2922627 3338085

FV:of121> TOTAL 3285072 -180603

FWDVIT: off (of121)

FWDXCT: of121 S 3922182 T 3104469 A 3285072 L -180603 0 28918 -72912 <sil>

15 260615 -34779 off 49 2995539 -72912 <sil> 134

INFO: stat.c(174): 134 frm; 4 cdsen/fr, 12 cisen/fr, 33 cdgau/fr, 96 cigau/fr,

Sen 0.00, CPU 0.00 Clk [Ovrhd 0.00 CPU 0.00 Clk]; Search: 0.00 CPU 0.00 Clk

(of121)

INFO: corpus.c(661): of121: 0.0 sec CPU, 0.0 sec Clk; TOT: 0.0 sec CPU,

0.0 sec Clk

 Non matching sounds:

INFO: utt.c(195): Processing: o201

INFO: feat.c(1148): At directory feats/

INFO: feat.c(378): Reading mfc file: 'feats//o201.mfc'[0..-1]

INFO: cmn.c(175): CMN: 8.89 0.63 -0.69 0.14 -0.26 -0.29 -0.29 -0.06 -0.17 -0.02 -

0.16 -0.12 -0.08

.............

INFO: fsg_search.c(1080): Utt o201: 121 frames, 840 HMMs evaluated, 1275 history

entries

Backtrace(o201)

FV:o201> WORD SFrm EFrm AScr(UnNorm) LMScore AScr+LScr AScale

fv:o201> <sil> 0 30 710597 -72912 637685 800995

fv:o201> status 31 65 -253102 -34779 -287881 107181

fv:o201> <sil> 66 120 2147051 -72912 2074139 2357378

FV:o201> TOTAL 2604546 -180603

FWDVIT: status (o201)

FWDXCT: o201 S 3297574 T 2423943 A 2604546 L -180603 0 710597 -72912 <sil>

31 -253102 -34779 status 66 2147051 -72912 <sil> 121

INFO: stat.c(174): 121 frm; 6 cdsen/fr, 12 cisen/fr, 44 cdgau/fr, 96 cigau/fr,

Sen 0.00, CPU 0.00 Clk [Ovrhd 0.00 CPU 0.00 Clk]; Search: 0.00 CPU 0.00 Clk

(o201)

INFO: corpus.c(661): o201: 0.0 sec CPU, 0.0 sec Clk; TOT: 0.0 sec CPU,

0.0 sec Clk

 Silence sounds

INFO: utt.c(195): Processing: o111

INFO: feat.c(1148): At directory feats/

INFO: feat.c(378): Reading mfc file: 'feats//270320.mfc'[0..-1]

INFO: cmn.c(175): CMN: 6.39 0.30 -0.02 -0.29 -0.13 -0.25 -0.24 -0.07 -0.24 0.10 -

0.01 -0.02 0.06

INFO: fsg_search.c(1080): Utt 270320: 70 frames, 1781 HMMs evaluated, 348 history

entries

WARNING: "fsg_search.c", line 949: No history entry in the final frame 69; using last

entry at frame 57ERROR: "fsg_search.c", line 1001: Final state not reached;

backtracing from best scoring entry

Backtrace(270320)

FV:270320> WORD SFrm EFrm AScr(UnNorm) LMScore AScr+LScr

AScale

fv:270320> <sil> 0 20 -1096388 -72912 -1169300 -882301

fv:270320> <sil> 21 57 -208573 -72912 -281485 379607

FV:270320> TOTAL -1304961 -145824

FWDVIT: (0111)

FWDXCT: o111 S -191116 T -1450785 A -1304961 L -145824 0 -1096388 -72912

<sil> 21 -208573 -72912 <sil> 70

INFO: stat.c(174): 70 frm; 100 cdsen/fr, 130 cisen/fr, 800 cdgau/fr, 1040 cigau/fr,

Sen 0.01, CPU 0.02 Clk [Ovrhd 0.01 CPU 0.01 Clk]; Search: -0.00 CPU 0.00 Clk

(270320)

INFO: corpus.c(661): 270320: 0.0 sec CPU, 0.0 sec Clk; TOT: 2.2 sec CPU,

2.2 sec Clk.

Figure 5.6: Screen shot of output result

Result displayed in manually:

If one wav file is testing then the result will be displayed as-

word recognition(wave file name)

example: on (o221)

Accuracy

From the result of the recognition phase, we have found average 67% accuracy, i.e. our

testing voice data has matched with training voice data with overall 67%. This result

indicates that the training of our system is completed successfully and shows that the

developed system is speaker independent.

5.5 Outcome for Wi-Fi Communication

 In this one of the important parts of present work has implemented internet of things

with the help of Wi-Fi and established a few points.

 Remote Controlling of Load

 A device is built up that could control the power supply of the load connected to it,

thereby allowing the user to remotely turn the device ON or OFF connected to the load

using a web based application through Wi-Fi.

Parameter Based Automation

 The present system has given a focus on automation of the power control of the load

depending upon certain conditions being met by the parameter which we were collecting

from the sensor.

 Modular Sensor Based Automation

 A system is provided for creating with a sense of generality and thereby decides to

include a mechanism to automate the control of the load by introducing some sensors which

would be modular in nature. Thus, we could connect any load and automate it on the basis of

any parameters just by introducing a suitable sensor to the system.

5.5.1 Wi-Fi enabled Circuit Stimulation

 The programming code for this IoT communication is tested first on the circuit

stimulator software called Proteus ISIS before actually burning our code into the

microcontroller which have helped us save a helped a lot in debugging and testing of code,

as a result of which our final working code was possible to be executed successfully and

getting the desired result from the system.

Figure 5.7: Screenshot for the IoT Communication in the server side

Figure 5.8: Screenshot for Wi-Fi communication at User Side

Figure 5.9: Screenshot of circuit simulation in Proteus ISIS

