
CHAPTER 4

PROXIMALLY COARSE CLS-UNIFORM

SPACES

4.1 Introduction

In the previous chapter, the notion CLS-uniform spaces had developed in the category

of C-TOP. Various important results concerning interior space, topological interior

space, uniformly continuous function is developed and also carried out problem of

metrizablity. It is however, observed that the generating spaces in the above context

are interior spaces, which are generalisation of L−topological spaces. On the other

hand L−fuzzy basic proximity spaces(In short L−fbps) generates interior spaces. So,

it becomes pertinent to investigate whether there is a relation between CLS-uniform

spaces and L−fbps in L−topological spaces.

The relation between L− fuzzy proximity spaces and CLS-uniform spaces is ob-

tained and it shows that every L−fuzzy basic proximity space (in short L−fbps)
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induces CLS-uniform space, for a given L−fuzzy basic proximity there exists a uni-

formly coarsest one which will be called the proximally coarse CLS-uniform spaces.

It turns out that CLS-uniformity is totally bounded if L−fbps induce it.

4.2 L−fbps in the context of CLS-Uniform spaces

In this section, we study the relation between the CLS-uniform space and L−fbps,

and then the relation them is obtained. It is found that every L−fbps is induced by

totally bounded CLS-uniformity.

Theorem 4.2.1. Let (LX ,S) be a CLS-uniform spaces. Define a relation δ on LX

such that

AδSB iff st(A,C )
⋂
st(B,C ) ̸= 0 A,B ∈ LX ,C ∈ S

Then δS is an L−fbps on LX .

Proof. (PB1) Let A,B ∈ LX , C ∈ S then

AδB ⇒ st(A,C )
⋂

st(B,C ) ̸= 0

⇒ st(B,C )
⋂

st(A,C ) ̸= 0

⇒ BδA

(PB2) Let A,B,C ∈ LX , C ∈ S then

Aδ(B
⋃

C) ⇔ st(A,C )
⋂

st(B ∪ C,C ) ̸= 0

⇔ st(A,C )
⋂

[st(B,C ) ∪ st(C,C )] ̸= 0 by Proposition2.4.2(4)

⇔ st(A,C )
⋂

st(B,C ) ̸= 0 or st(A,C )
⋂

st(C,C ) ̸= 0

⇔ AδB or AδC
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(PB3) Since st(0,C ) = 0 which implies 0��δA for every A ∈ LX ;

(PB4) A and B are L−quasi-coincident then by Corollary 2.2.14 we have A∩B ̸= 0

and Let C ∈ S, then by proposition 2.4.2 we have

st(A ∩B,C ) ⊆ st(A,C ) ∩ st(B,C ) ̸= 0

Hence AδB.

Now from Definition (2.6.3) we have

Corollary 4.2.2. Let δC is a L−fbps induced by a CLS-uniform space (LX ,S). Then

A ∈ N (B) iff there is an L−cover of C ∈ S such that st(A,C )
⋂
st(B′,C ) = 0.

Now we tackle up the problem how can one construct a CLS-uniform spaces when

L−fbps is given.

Definition 4.2.1. Let (LX , δ) be a L−fbps. Then an L−covering U = {Ui : i ∈ Λ}

of LX is called as δ−cover of LX iff there exists a refinement of U of V = {Vi : i ∈ Λ}

such that for each i, Vi is a δ−nbhd of Ui and in that case we called V a δ−refinement

of U .

Theorem 4.2.3. Let (LX , δ) be a L−fbps then the collection of finite δ-covers forms

a base for CLS-uniformity on LX

Proof. Let (LX , δ) be an L−fbps, the collection U of all finite δ−covers of LX . We

claim that U is a base for CLS-uniformity.

(SC1) It follows from Definition 4.2.1.
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(SC2) Let U = {Ui : 1 ≤ i ≤ n},V = {Vi : 1 ≤ i ≤ n}, are finite δ−covers of LX .

Without loss of generality consider a finite L−covering Wi = {Wi : 1 ≤ i ≤ n}

such that Wi is δ−nbhd of Ui and Wi is δ−nbhd of Ui for each i. Then by

Theorem (2.6.2) we have Wi is δ−nbhd of Ui

⋂
Vi which further implies U

⋂
V

is finite δ−covering of LX

Theorem 4.2.4. Let (LX ,S) be a CLS-uniform space, then Sδ is coarser than S.

Proof. Let U = {Ui : 1 ≤ i ≤ n} is called δ−cover of the L−fbps space LX . Then

by Definition 4.2.1 there exits another L−covering V = {Vi : 1 ≤ i ≤ n} such that

V refinement of U . Hence the theorem.

Theorem 4.2.5. Let (LX ,Sδ) be a CLS-uniform space generate by (LX , δ) be an

L−fbps, denote δ∗ = δSδ
, then δ∗ = δ.

Proof. Let us suppose that AδB, then for any A ∈ Sδ, st(A,A )
⋂
st(B,A ) ̸= 0,

which implies Aδ∗B.

Conversely suppose that Aδ∗B then for any finite δ∗−cover B of (LX , δ∗) we have

st(A,B)
⋂
st(B,B) ̸= 0. Since B is finite δ∗−cover, so we can consider B = {Bi :

1 ≤ i ≤ n}, there exits another finite L−cover C = {Ci : 1 ≤ i ≤ n} such that C a

δ−refinement of B which implies st(A,C )
⋂
st(B,C ) ̸= 0 and hence AδB.

We now proceed to find the relation between the collection of all L−fbps and the

collections of CLS-uniform spaces on LX . Given a L−fbps on LX , CLS-uniformity

constructed in Theorem 4.2.3 will denoted by Sδ

Definition 4.2.2. Let (LX ,S) be a CLS-uniformity, then it is called totally bounded

if for each A ∈ S there exists a finite A ⊆ Pt(LX) such that st(A,A ) = 1.
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Theorem 4.2.6. For any L−fbps δ, the CLS-uniform space Sδ is totally bounded.

Proof. Let A ∈ Sδ then A is a finite δ−cover. So, A = {Ai : 1 ≤ i ≤ n, n ∈ Z}. For

each Ai we collect one xαi
fuzzy point and denote it by A∗ = {xαi

: 1 ≤ i ≤ n}. Then

A∗ ⊆ Pt(LX) is finite [since A is finite δ−cover] also st(A∗,A ) = 1 since
⋃

A = 1.

Hence Sδ is totally bounded.

Then by the Theorem 4.2.3 we have the following corollary

Corollary 4.2.7. Every L−fbps is induced by totally bounded CLS-uniform space.

From above we may conclude that “There is a one-one correspondence between

L−fbps and the collection of all totally bounded CLS-uniform spaces.”

4.3 Proximally coarse CLS-Uniform spaces

In this section, the study of proximally CLS-uniform spaces considered, and then it

is found that for a given L−fbps has a uniformly coarsest CLS-uniform space that

will be called the proximally coarse CLS-uniform space. It turns out that proximally

coarsest CLS-uniform spaces are totally bounded CLS-uniform spaces.

Theorem 4.3.1. Sδ is the only totally bounded CLS-uniformity giving the L−fbps δ.

Proof. It is sufficient to show that the finite δ−covers form a base for any totally

bounded CLS-uniformity S which generates δ. Let U be a any finite uniform cover,

V ≼ U and for each V ∈ V , let us consider Uv ∈ U such that V ⊆ Uv. Then

U0 = {Uv : V ∈ V } is a finite cover which refines U so it suffices to show that U0

is a δ−cover. If W is refinement V , then st(V,W )
⋂
st(U ′v,W ) = 0; it follows that

V ��δUv, i.e., V is δ−nbhd of Uv.
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Corollary 4.3.2. Let a CLS-uniform space S on LX induces L−fbps δ on LX . Then

S is the uniformly coarsest CLS-uniform space inducing δ iff the finite δ−covers of

S form a base for S i.e., if S and S∗ are two CLS-uniform spaces induces same

L−fbps such that finite δ−cover form a base for S, then S ⊂ S′

Definition 4.3.1. A CLS-uniform space S will be called proximally coarse iff finite

δ−covers form a base for S.

Theorem 4.3.3. Every L−fbps is induced by a CLS-uniformity. Among all the

CLS-uniformity inducing a given L−fbps δ there exists unique proximally coarse CLS-

uniformity S.

Proof. Follows from Theorem 4.2.3 and Corollary 4.3.2.

Theorem 4.3.4. Every proximally coarse CLS-uniformity is totally bounded.

Proof. Let S be a proximally coarse CLS-uniform space for LX and let S∗ be a

collection of finite δ−covers of S. If U ∈ S, then V ≼ U for some V ∈ S∗ where

V is finite L−cover. Now if A ⊆ Pt(LX) is finite L−fuzzy set with A
⋂
Vi ̸= 0 and

hence clearly st(A,V ) = 1.

Theorem 4.3.5. The class of all proximally coarse CLS-uniform spaces is hereditary

and closed under arbitrary products

Proof. If LX ⊂ LY and U is finite δ−covers of LX , then LY
⋂

U is a finite δ− cover

of LY and therefore every relative of proximally coarse CLS-uniform space proximally

coarse.

If (LX ,S) product of family {(LXα ,Sα}, where LX =
∏
LXα and S =

∏
Sα and

Uα ∈ Sα is a finite δ−cover, then
∏

Uα is also δ−cover of
∏
LXα . This shows that

S is proximally coarse.
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Theorem 4.3.6. If f→ : (LX ,S1) → (LY ,S2) be a semi-uniformly continuous, then

f→ : (LX , δS1) → (LY , δS2) is proximally continuous.

Proof. Let f→ : (LX ,S1) → (LY ,S2) is semi-uniformly continuous. Then f←(B) ∈

S1 for each B ∈ S2, where f
←(B) = {f←(B) : B ∈ B}. Let A,B ∈ LY and

suppose A��δ2B then there exists C ∈ S2 such that st(A,C )
⋂
B = 0, Since f→ is

semi-uniformly continuous, so f←[st(A,C )
⋂
B] = f←(0) implies that

st(f←(A), f←(C )
⋂
f←(B) = 0 which further implies that f←(A)��δ1f

←(B). Hence

the Theorem 2.6.4, f→ : (LX , δS1) → (LY , δS2) is proximally continuous.

Theorem 4.3.7. If (LX ,S) be a proximally coarse CLS-uniform space, then ev-

ery proximally continuous mapping of CLS-uniform spaces in to (LX ,S) is semi-

uniformly continuous.

Proof. Suppose f→ is a proximally continuous mapping of a CLS-uniform space

(LX ,S1) into proximally coarse CLS-uniform space (LY ,S). To prove f→ is semi-

uniformly continuous it sufficient to find a sub-base B for S such that f←(B) ∈ S1

for each B ∈ S. Considering B is collection of finite δ−cover for the L−fbps in-

duced by S. Since f→ is proximally continuous for any A,B ∈ LY A��δ2B implies

f←(A)��δ1f
←(B). Then by assumption there exists B ∈ B such that

st(A,B)
⋂

B ̸= 0

⇒ st(f←(A), f←(B))
⋂

f←(B) ̸= 0

Hence f←(B) is finite δ1 cover of LX where δ1 is L−fbps induced by S1. Hence the

theorem.
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From above theorem it has the following characteristic for proximally coarse CLS-

uniform spaces.

Theorem 4.3.8. A CLS-uniform space S is proximally coarse iff every proximally

continuous mapping of CLS-uniform space into S is semi-uniformly continuous.

Proof. Immediate consequence of the Theorem 4.3.7.

******
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