
CHAPTER 3

COVERING L− SEMI UNIFORM SPACES

3.1 Introduction

In the first chapter, a sketch on development of uniform spaces on the various cate-

gory of fuzzy topological spaces and it was pointed that important notion covering

L− semi-uniform space not developed and remained unexplored in the category of C-

TOP. For filling up this void in the development of theory of generalisation of uniform

spaces in fuzzy topological spaces. In this chapter developed covering L−semi uni-

form space (In short CLS-uniform spaces) in the category of C-TOP by generalising

covering L−uniform space.

In the first section introduced the notion of CLS-uniform space and build up this

notion in terms of various properties. In second section the study of uniformly contin-

uous function in the context of CLS-Uniform spaces, and then studied its properties.

In the last section, condition for metrization in the same is presented.
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3.2 CLS-uniform spaces

This section introduced a CLS-uniform structure and studied essential notions such

as interior operator, topological interior operator, and some significant results were

obtained.

Definition 3.2.1. A non-empty family S of L−covers of LX is said to be cover-

ing semi-uniform spaces (in short CLS-uniform space) if it satisfies the following

conditions:-

(SC1) A ≼ B,A ∈ S ⇒ B ∈ S.

(SC2) For every A ,B ∈ S,A
⋂

B ∈ S.

A CLS-uniform space will be denoted by (LX ,S).

Definition 3.2.2. A non-empty sub-family B of S is called base for CLS-uniform

space on LX if for any S ∈ S, there is B ∈ S such that B ≼ S .

Example 3.2.1. LetX = {a, b, c} with L = [0, 1]. Then clearly A = {{a}, {b}, {a, b}, {c}}

and B = {{a}, {a, b}, {b, c}, {c}} are L− covers then B = {A ,B} is a CLS-uniform

space on LX .

Lemma 3.2.1. Let (LX ,S) be an CLS-uniform space. The mapping int : LX → LX

defined by

int(A) =
⋃

{xα : st(xα,C ) ⊆ A, for some C ∈ S}

is an interior operator on LX

Proof. (IO1) Clearly, int(1) = 1 and

(IO2) int(A) ⊆ A
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(IO3) By (SC2) we have int(A
⋂
B) = int(A)

⋂
int(B).

Every CLS-uniform space generates an interior space. Generated interior space of

CLS-Uniform space but not topological interior for this an example is given below,

Example 3.2.2. Let X = {a, b, c} and L = [0, 1].

Then A = {{a, b}, {b, c}},B = {a, b, c}} are L-covers of X.

The collection S = {A ,B} forms a base for CLS-Uniform space.

Now considering, A = {a, b},

Then

int(A) =
⋃

{xα : st(xα,C ) ⊆ A, for some C ∈ S}

= {a}

⇒ int(int(A)) =
⋃

{xα : st(xα,C ) ⊆ int(A), for some C ∈ S}

= 0

Hence int(A) ̸= int(int(A))

Lemma 3.2.2. For every L−covers A and for each A ∈ LX , we have

st(A, A ) =
⋂

{B | st(B′,A ) ⊆ A′}

Proof. It follows from the fact that for any B ∈ LX , B ⊆ st(A, A ) if and only if

A ⊆ st(B, A ) as A
⋂
B ̸= 0 if and only if B

⋂
A ̸= 0.

Lemma 3.2.3. Let (LX ,S) be a CLS-uniform space and cl : LX → LX be a mapping

such that for any A ∈ LX ,

cl(A) =
⋂

{st(A,A ) : A ∈ S}
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Then cl(A) = int(int(A′))′,∀A ∈ LX .

Proof. For any A ∈ LX , we have

int(A′) =
⋃

{xα ∈ LX | st(xα,A ) ⊆ A′ for some A ∈ S}.

=
⋃

{
⋃

{xα ∈ LX | st(xα,A ) ⊆ A′},A ∈ S}.

=
⋃

{st(A, A )′ | A ∈ S} [By Lemma 3.2.2].

Hence, int(A′)′ =
⋂

{st(A, A ) | A ∈ S}.

= cl(A).

Theorem 3.2.4. Let (LX ,S) be an CLS-uniform space. Then the required condition

for generated interior space to be topological interior space is ∀A ∈ S and ∀xα there

exists B ∈ S such that ∀yβ ∈ st(xα,B) there corresponds C ∈ S with st(yβ,C ) ⊆

st(xα,A ).

Proof. Let xα ∈ int(A), then there exist some A ∈ S such that st(xα,A ) ⊆ A.

Let B ∈ S such that for any yβ ∈ st(xα,B) there is C ∈ S such that st(yβ,C ) ⊆

st(xα,A ). Since xα ∈ st(xα,B) we may choose C ∈ S such that st(xα,C ) ⊆

st(xα,A ). This implies xα ∈ int(int(A)) and since the other inclusion follows by

(IO2) in Lemma 3.2.1, we have int(A) = int(int(A)).

Theorem 3.2.5. An CLS- uniform spaces with the condition in Theorem 3.2.4 gen-

erates an L−topological spaces.

Proof. It follows from Lemma 3.2.1 and Theorem 3.2.4.
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The L−topology induced by an CLS-uniform spaces is denoted by F(S). It may

conclude that the topological CLS-uniform spaces lies between CLS-uniform space

and covering L−uniform spaces.

Theorem 3.2.6. Let (LX ,S1) and (LX ,S2) be two CLS-uniform spaces. If S1 ⊆ S2,

then F(S1) ⊆ F(S2).

Proof. Straight forward.

Theorem 3.2.7. Let (LX ,S) be an CLS-uniform spaces, then {st(xα,A ) : A ∈ S}

is a base for nbds(=neighbourhoods) of xα in interior spaces

Proof. Suppose G ∈ LX is open and xα ∈ G. Since int(G) = G, there exists A ∈ S

such that st(xα,A ) ⊆ G. Thus {st(xα,A ) : A ∈ S} is a base for nbds of xα.

3.3 Semi-Uniformly Continuous

In this section, semi-uniformly continuous function in the context of CLS-Uniform

spaces is introduced, and then studied its properties.

Definition 3.3.1. Let (LX ,S1) and (LY ,S2) be two CLS-uniform spaces. Then

f→ : LX → LY is called semi-uniformly continuous if f←(B) ∈ S1 for each B ∈ S2,

where f←(B) = {f←(B) : B ∈ B}.

Theorem 3.3.1. Let f→ : (LX ,S1) → (LY ,S2) be semi-uniformly continuous is

continuous. Then f→ : (LX ,F(S1)) → (LY ,F(S2)) is continuous function.

Proof. Let f→ : (LX ,S1) → (LY ,S2) be a semi-uniformly continuous function. Let

A ∈ LY , then int(A) =
⋃
{xα : st(xα,A ) ⊆ A} for some A ∈ S2.
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Since f← is arbitrary join preserving, then by Theorem 2.1.17(i) in [48], we have

f←(int(A)) =
⋃

{f←(xα) : st(xα,A ) ⊆ A for some A ∈ S2} (3.3.1)

Also, f← is order preserving, we have

st(xα,A ) ⊆ A⇒ f←(st(xα,A )) ⊆ f←(A). (3.3.2)

By the Proposition 2.4.2(6) and line (3.3.2) we have

st(f←(xα), f
←(A )) ⊆ f←(st(xα,A )) ⊆ f←(A) (3.3.3)

Again from line (3.3.1), we have

f←(int(A)) =
⋃

{f←(xα) : (st(f←(xα), f←(A )) ⊆ f←(A) for some A ∈ S2}

(3.3.4)

Since f→ is semi-uniformly continuous, so f←(A ) ∈ S1, therefore by line (3.3.4)

f←(int(A)) ⊆ int(f←(int(A))) implies f←(int(A)) ∈ F(S1). Hence the theorem.

Theorem 3.3.2. Let f→ : (LX ,S1) → (LY ,S2) and g→ : (LY ,S2) → (LZ ,S3) be

two semi-uniformly continuous. Then (g ◦ f)→ is semi-uniformly continuous.

Proof. Let f→ : (LX ,S1) → (LY ,S2) and g→ : (LY ,S2) → (LZ ,S3) be two semi-

uniformly continuous functions. Let C ∈ S3, by the Theorem 2.1.23 (ii) in [48] we

have (g ◦f)←(C ) = f←(g←(C )). Since g→ is semi-uniformly continuous g←(C ) ∈ S2.

Also f← is uniformly continuous implies f←(g←(C )) ∈ S1. Hence (g ◦ f)→ is semi-

uniformly continuous.
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3.4 L-Semi-Pseudo-Metrization

The problem of metrization has occupied an important place in the study of uni-

form spaces. Having developed the theory of CLS-uniform spaces, the study of

metrization(semi-pseudo-metrization) in the same context.

Theorem 3.4.1. Every L−semi-pseudo metric generates a CLS-uniform space.

Proof. let (LX , P ) be an L−semi-pseudo-metric space and for any s > 0, let Us be

an L-cover of LX such that Us = {Bϵ(xα) : xα ∈ LX}. Then clearly U 1
2
s ≼ Us and

Us

⋂
Ut ≼ Umax[s,t]. Therefore, ψ(P ) = {Us : s > 0} is a base for CLS-uniformity.

Definition 3.4.1. We shall say that a CLS-uniform space (LX ,S) is L−semi-pseudo-

metrizable if there is an L−semi-pseudo-metric that generates S.

Definition 3.4.2. A CLS-uniform space is L−semi-pseudo-metrizable if it is induced

by a L−semi-pseudo-metric.

Lemma 3.4.2. Let (LX ,S) be a CLS-uniform space. For C ∈ S define a mapping

ψ(C ) : LX → LX such that [ψ(C )](A) = st(A,C ). Then

[ψ(C )](
⋃
i

Ai) = st(
⋃
i

Ai,C ) =
⋃
i

[ψ(C )](Ai)

Theorem 3.4.3. A CLS-uniform space is L−semi-pseudo-metrizable if it has a count-

able base.

Proof. Let {Cn : n ∈ N} be a base for CLS-uniform space (LX ,S).Without lost of

generality we can assume Cn+1 ≼ Cn for each n ∈ N. For any r > 0, let ψr : L
X → LX

be a mapping defined by

∀A ∈ LX , if 1
2n
< r ≤ 1

2n−1 , then [ψr(Cn)](A) = st(A,Cn)
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and if [ψr(Cn)](A) = 1 or 0 according A ̸= 0 or A = 0.

For every r > 0, let Fr : L
X → LX be a mapping defined by

Fr = {ψrk :
∑k

i=0 rk = r,∀i ≤ k, ri > 0, k < ω}

Obviously {Fr : r > 0} is a base for S and also define

Fr(A) =
⋃

xα∈A st(xα,Fr) for all A ∈ LX .

Let P : LX × LX → [0,∞] be a mapping defined by

P (A,B) =
∧
{r : B ⊆ Fr(A)}, where we assume that

∧
Φ = +∞ .

We claim that P is the required L−semi-pseudo-metric that generates S

(SEM1) By Theorem 2.5.4, P fulfils (SEM1).

(SEM3) By Theorem 1.3.24(ii) in [48] we have β∗[Fr] =
⋃

A∈Fr
β∗(A).

Now for any arbitrary A,B ̸= 0 by assumption P (A,B) < r ⇒ B ⊆ Fr(A).

⇒ ∀xα ∈ β∗(B), xα ∈ β∗(Fr(A)).

⇒ ∀xβ ∈ β∗(B),∃yβ ∈ β∗(A), xα ∈ β∗(Fr(yβ))

⇒ xα ∈ β∗(B), ∃yβ ∈ β∗(A), P (yβ, xα) < r

⇒
⋃

xα∈β∗(B)

⋂
yβ∈β∗(A) P (yβ, xα) < r.

Again suppose that
⋃

xα∈β∗(B)

⋂
yβ∈β∗(A) P (yβ, xα) < r

⇒ ∀xα ∈ β∗(B),∃yβ(xα) ∈ β∗(A), P (yβ(xα), xα) < r,

Where yβ(xα) is an L−fuzzy point corresponding to the L−fuzzy point xα.

⇒ xα ∈ β∗(B), ∃yβ(xα) ∈ β∗(A), xα ⊆ Fr(yβ(xα))

⇒ B =
⋃
β∗(B) ⊆

⋃
xα∈β∗(B) Fr(yβ(xα))

⇒ Fr(
⋃

xα∈β∗(B) yβ(xα)) ⊆ Fr(
⋃
β∗(A)) = Fr(A).

Which implies P (A,B) < r.

Hence A,B ̸= 0 ⇒ P (A,B) =
⋃

xα∈β∗(B)

⋂
yβ∈β∗(A) P (yβ, xα).
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(SEM4) Suppose Fr(A) ⊆ B ⇔
⋃
{C : P (A,C) < r} ⊆ B

⇔ P (A,C) ⇒ C ⊆ B

⇔ P (B′, D) < r ⇒ D ⊆ A′

⇔
⋃
{D : P (B′, D) < r} ⊆ A′

⇔ Fr(B
′) ⊆ A′

Which implies “P (A,C) < r ⇒ C ⊆ B” ⇔ “P (B′, D) < r ⇒ D ⊆ A′”

For any xα ∈ LX , they have same nbhd at xα viz, {ψr[Cn](xα)r > 0} = {Fr(xα) :

r > 0}. which implies they induced the same interior operator. Conversely, Let S is

CLS-uniform spaces generated by L−semi-pseudo-metric P . For any s > 0, let Us be

an L-cover of LX such that Us = {Bϵ(xα) : xα ∈ LX}. Then clearly U 1
2
s ≼ Us and

Us

⋂
Ut ≼ Umax[s,t]. Therefore, ψ(P ) = {Us : s > 0} is a base for CLS-uniformity.

******

44


