CHAPTER 3

COVERING L— SEMI UNIFORM SPACES

3.1 Introduction

In the first chapter, a sketch on development of uniform spaces on the various cate-
gory of fuzzy topological spaces and it was pointed that important notion covering
L— semi-uniform space not developed and remained unexplored in the category of C-
TOP. For filling up this void in the development of theory of generalisation of uniform
spaces in fuzzy topological spaces. In this chapter developed covering L—semi uni-
form space (In short CLS-uniform spaces) in the category of C-TOP by generalising
covering L—uniform space.

In the first section introduced the notion of CLS-uniform space and build up this
notion in terms of various properties. In second section the study of uniformly contin-
uous function in the context of CLS-Uniform spaces, and then studied its properties.

In the last section, condition for metrization in the same is presented.
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3.2 CLS-uniform spaces

This section introduced a CLS-uniform structure and studied essential notions such
as interior operator, topological interior operator, and some significant results were

obtained.

Definition 3.2.1. A non-empty family & of L—covers of LY is said to be cover-
ing semi-uniform spaces (in short CLS-uniform space) if it satisfies the following

conditions:-

(SC1) ¥ X B, A €G=ABc6.
(SC2) For every & , B € S, (B <€ 6.
A CLS-uniform space will be denoted by (L*, &).

Definition 3.2.2. A non-empty sub-family B of & is called base for CLS-uniform

space on L* if for any .¥ € &, there is £ € & such that £ < .7.

Example 3.2.1. Let X = {a,b,c} with L = [0,1]. Then clearly & = {{a}, {b},{a,b},{c}}
and Z = {{a},{a,b},{b,c},{c}} are L— covers then B = {7/, A} is a CLS-uniform

space on L.

Lemma 3.2.1. Let (L*, &) be an CLS-uniform space. The mapping int : LX — L*
defined by
int(A) = U{xa : st(xe,€) C A, for some € € &}

is an interior operator on LX
Proof. (I01) Clearly, int(1) = 1 and
(I02) int(A) C A
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(I03) By (SC2) we have int(A () B) = int(A) () int(B).
[

Every CLS-uniform space generates an interior space. Generated interior space of

CLS-Uniform space but not topological interior for this an example is given below,

Example 3.2.2. Let X = {a,b,c} and L = [0, 1].

Then & = {{a,b},{b,c}}, & = {a,b,c}} are L-covers of X.

The collection & = {.o/, Z} forms a base for CLS-Uniform space.
Now considering, A = {a, b},

Then

int(A) = U{xa :st(xg,€) C A, for some € € S}
= {a}
= int(int(A)) = U{xa : st(xy, €) Cint(A), for some € € &}
=0
Hence int(A) # int(int(A))
Lemma 3.2.2. For every L—-covers &/ and for each A € L, we have
st(A, o) = (B | st(B, o) C A’}

Proof. Tt follows from the fact that for any B € LX, B C st(A, &) if and only if
AC st(B, o) as A(\B #0if and only if B[ A # 0. O

Lemma 3.2.3. Let (L*, &) be a CLS-uniform space and cl : L — LX be a mapping

such that for any A € LX,

c(A) = [st(A, o) : o € &}
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Then cl(A) = int(int(A")),VA € L*.
Proof. For any A € L*, we have

int(A) = | J{za € L | st(zq, o) C A for some o € &}.
= | J{UH{wa € L | st(q, o) C A}, o € &},
= J{st(A, @) | #/ € &} [By Lemma 3.2.2].
Hence, int(A') = [ {st(A, o) | o € &}.

= cl(A).
U

Theorem 3.2.4. Let (L, &) be an CLS-uniform space. Then the required condition
for generated interior space to be topological interior space is V.o € & and Vz,, there
exists B € & such that Vyg € st(x,, B) there corresponds € € & with st(yz, €) C

st(xa, ).

Proof. Let x, € int(A), then there exist some &/ € & such that st(z,, /) C A.
Let # € & such that for any ys € st(z,, #) there is € € & such that st(yz, €) C
st(xy, 7). Since x, € st(x,,B) we may choose € € & such that st(z,,€) C
st(xy, 7). This implies z, € int(int(A)) and since the other inclusion follows by
(102) in Lemma 3.2.1, we have int(A) = int(int(A)).

]

Theorem 3.2.5. An CLS- uniform spaces with the condition in Theorem 3.2.4 gen-

erates an L—topological spaces.

Proof. Tt follows from Lemma 3.2.1 and Theorem 3.2.4. O
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The L—topology induced by an CLS-uniform spaces is denoted by F(&). It may
conclude that the topological CLS-uniform spaces lies between CLS-uniform space

and covering L—uniform spaces.

Theorem 3.2.6. Let (LY, &) and (LY, &) be two CLS-uniform spaces. If &, C &y,

Proof. Straight forward. m

Theorem 3.2.7. Let (L, &) be an CLS-uniform spaces, then {st(z., o) : o € G}

is a base for nbds(=neighbourhoods) of x, in interior spaces

Proof. Suppose G € L* is open and z, € G. Since int(G) = G, there exists &7 € &

such that st(z,, ) C G. Thus {st(z,, &) : &/ € G} is a base for nbds of z,. O

3.3 Semi-Uniformly Continuous

In this section, semi-uniformly continuous function in the context of CLS-Uniform

spaces is introduced, and then studied its properties.

Definition 3.3.1. Let (L%, &) and (LY, &,) be two CLS-uniform spaces. Then
f7: L* — LY is called semi-uniformly continuous if f< (%) € &, for each & € Gy,

where (%) ={f"(B): B € B}.

Theorem 3.3.1. Let [~ : (L¥,6,) — (LY, 83) be semi-uniformly continuous is

continuous. Then = : (L, F(&;)) — (LY, F(S,)) is continuous function.

Proof. Let f7 : (L*,&;) — (LY, &3) be a semi-uniformly continuous function. Let

A€ LY, then int(A) = U{zq : st(zq, o) C A} for some & € G,.
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Since f* is arbitrary join preserving, then by Theorem 2.1.17(i) in [48], we have
f(int(A U{f“ Tqo) : St(xg, ) C A for some o € Gy} (3.3.1)
Also, f© is order preserving, we have
st(xg, ) C A= [T(st(xa, o)) C fT(A). (3.3.2)

By the Proposition 2.4.2(6) and line (3.3.2) we have

st(f " (za), [7()) C [ (st(za, o)) C f7(A) (3.3.3)

Again from line (3.3.1), we have

“(int(A) = | U (@a) : (S (za), f () C f7(A) for some o € &y}
(3.3.4)
Since f7 is semi-uniformly continuous, so f< (&) € &y, therefore by line (3.3.4)

fe(int(A)) Ciant(f (int(A))) implies f< (int(A)) € F(S;). Hence the theorem. [

Theorem 3.3.2. Let [~ : (L*, &) — (LY, 85) and g7 : (LY, 8,) — (L%, &3) be

two semi-uniformly continuous. Then (g o f)™ is semi-uniformly continuous.

Proof. Let f7 : (L*, &) — (LY,8,) and g~ : (LY, 83) — (L?,G3) be two semi-
uniformly continuous functions. Let ¥ € &3, by the Theorem 2.1.23 (ii) in [48] we
have (go f)*(€¢) = f* (¢ (¥)). Since g~ is semi-uniformly continuous g* (%) € G..
Also f* is uniformly continuous implies f< (¢ (%)) € &;. Hence (g o f)™ is semi-

uniformly continuous. [
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3.4 [-Semi-Pseudo-Metrization

The problem of metrization has occupied an important place in the study of uni-
form spaces. Having developed the theory of CLS-uniform spaces, the study of

metrization(semi-pseudo-metrization) in the same context.
Theorem 3.4.1. Every L—semi-pseudo metric generates a CLS-uniform space.

Proof. let (L%, P) be an L—semi-pseudo-metric space and for any s > 0, let %, be
an L-cover of L* such that %, = {B.(1,) : xo € L*}. Then clearly %%S < %, and
U\ U < Unax|sy)- Therefore, (P) = {, : s > 0} is a base for CLS-uniformity. [

Definition 3.4.1. We shall say that a CLS-uniform space (LX, &) is L—semi-pseudo-

metrizable if there is an L—semi-pseudo-metric that generates &.

Definition 3.4.2. A CLS-uniform space is L—semi-pseudo-metrizable if it is induced

by a L—semi-pseudo-metric.

Lemma 3.4.2. Let (L*, &) be a CLS-uniform space. For € € & define a mapping
P(€) : L — L* such that [(%)](A) = st(A,€). Then

N 4) = st J A %) = Jw(@))(4)
Theorem 3.4.3. A CLS-uniform space is L—semi-pseudo-metrizable if it has a count-

able base.

Proof. Let {€, : n € N} be a base for CLS-uniform space (L%, &).Without lost of
generality we can assume ¢, < %, for each n € N. For any r > 0, let ¢, : LX — LX

be a mapping defined by

VA e L*,if &5 <r < 5, then [¢,(6,)](A) = st(A,6,)

on
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and if [¢,(%,)](A) = 1 or 0 according A # 0 or A = 0.
For every r > 0, let ., : L — L* be a mapping defined by
T ={tby, - S e =1V < Ky > 0,k < w}
Obviously {.%, : r > 0} is a base for & and also define
Fr(A) = U, ca st(2a, F) for all A e L¥.
Let P: LX x L* — [0, 00] be a mapping defined by
P(A,B) = \{r: B C #.(A)}, where we assume that \ ® = +o0 .

We claim that P is the required L—semi-pseudo-metric that generates &

(SEM1) By Theorem 2.5.4, P fulfils (SEM1).

(SEM3) By Theorem 1.3.24(ii) in [48] we have §*[#,] = U ez B (A).
Now for any arbitrary A, B # 0 by assumption P(A, B) <r = B C
= Va, € 8*(B),z, € *(F.(A)).
= Vag € §°(B),3ys € B*(A), 30 € 5" (F:(ys))
= &q € §°(B),3ys € B*(A), P(ys, za) <7
= Usaes (n) ﬂyﬁEB*(A) P(yg, xa) <.

Again suppose that U, cs-p) (y,ep-a) P(Us: Ta) <7
= Vzo € §7(B), Jys(xa) € B7(A), P(ys(a), a) <7,

Z.(A).

Where yg(x,) is an L—fuzzy point corresponding to the L—fuzzy point z,,.

= Ta € B°(B), WYs(7a) € 7 (A), 0 C Fr(ys(2a))
= B=UB"(B) € U,.con8) Zr(Ys(7a))

= Fr(Usaep ) ¥8(ta) € Fr(UB(A)) = F(A).
Which implies P(A, B) <.

Hence A, B # 0= P(A, B) = U, cs:p) myﬂeﬁ*(A) P(ys, zo).
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(SEM4) Suppose .Z,.(A) C B< | J{C: P(A,C)<r}CB

& P(A,C)=CCB

< P(B,D)<r=DCA
s U{D:PB,D)<r}CA
& F(B') C A

Which implies “P(A,C) <r=CC B’ < “P(B',D) <r=D CA"”

For any z, € LX, they have same nbhd at z, viz, {1,[€,](x)r > 0} = {F.(z,) :
r > 0}. which implies they induced the same interior operator. Conversely, Let & is
CLS-uniform spaces generated by L—semi-pseudo-metric P. For any s > 0, let %; be
an L-cover of L* such that %, = {B.(1,) : xo € LX}. Then clearly %%S < %, and
Us (U < Unax|sy)- Therefore, (P) = {%, : s > 0} is a base for CLS-uniformity. [
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