CHAPTER 3_

$_ \textbf{COVERING} \ L- \ \textbf{SEMI UNIFORM SPACES}$

3.1 Introduction

In the first chapter, a sketch on development of uniform spaces on the various category of fuzzy topological spaces and it was pointed that important notion covering L- semi-uniform space not developed and remained unexplored in the category of **C**-**TOP**. For filling up this void in the development of theory of generalisation of uniform spaces in fuzzy topological spaces. In this chapter developed covering L-semi uniform space (In short CLS-uniform spaces) in the category of **C**-**TOP** by generalising covering L-uniform space.

In the first section introduced the notion of CLS-uniform space and build up this notion in terms of various properties. In second section the study of uniformly continuous function in the context of CLS-Uniform spaces, and then studied its properties. In the last section, condition for metrization in the same is presented.

3.2 CLS-uniform spaces

This section introduced a CLS-uniform structure and studied essential notions such as interior operator, topological interior operator, and some significant results were obtained.

Definition 3.2.1. A non-empty family \mathfrak{S} of L-covers of L^X is said to be covering semi-uniform spaces (in short CLS-uniform space) if it satisfies the following conditions:-

 $(\mathbf{SC1}) \ \mathscr{A} \preccurlyeq \mathscr{B}, \mathscr{A} \in \mathfrak{S} \Rightarrow \mathscr{B} \in \mathfrak{S}.$

(SC2) For every $\mathscr{A}, \mathscr{B} \in \mathfrak{S}, \mathscr{A} \cap \mathscr{B} \in \mathfrak{S}$.

A CLS-uniform space will be denoted by (L^X, \mathfrak{S}) .

Definition 3.2.2. A non-empty sub-family \mathfrak{B} of \mathfrak{S} is called base for CLS-uniform space on L^X if for any $\mathscr{S} \in \mathfrak{S}$, there is $\mathscr{B} \in \mathfrak{S}$ such that $\mathscr{B} \preccurlyeq \mathscr{S}$.

Example 3.2.1. Let $X = \{a, b, c\}$ with L = [0, 1]. Then clearly $\mathscr{A} = \{\{a\}, \{b\}, \{a, b\}, \{c\}\}$ and $\mathscr{B} = \{\{a\}, \{a, b\}, \{b, c\}, \{c\}\}$ are L- covers then $\mathfrak{B} = \{\mathscr{A}, \mathscr{B}\}$ is a CLS-uniform space on L^X .

Lemma 3.2.1. Let (L^X, \mathfrak{S}) be an CLS-uniform space. The mapping $int : L^X \to L^X$ defined by

$$int(A) = \bigcup \{ x_{\alpha} : st(x_{\alpha}, \mathscr{C}) \subseteq A, \text{ for some } \mathscr{C} \in \mathfrak{S} \}$$

is an interior operator on L^X

Proof. (IO1) Clearly, $int(\underline{1}) = \underline{1}$ and

(IO2) $int(A) \subseteq A$

(IO3) By (SC2) we have $int(A \cap B) = int(A) \cap int(B)$.

Every CLS-uniform space generates an interior space. Generated interior space of CLS-Uniform space but not topological interior for this an example is given below,

Example 3.2.2. Let $X = \{a, b, c\}$ and L = [0, 1].

Then $\mathscr{A} = \{\{a, b\}, \{b, c\}\}, \mathscr{B} = \{a, b, c\}\}$ are *L*-covers of *X*.

The collection $\mathfrak{S} = \{ \mathscr{A}, \mathscr{B} \}$ forms a base for CLS-Uniform space.

Now considering, $A = \{a, b\},\$

Then

$$int(A) = \bigcup \{x_{\alpha} : st(x_{\alpha}, \mathscr{C}) \subseteq A, \text{ for some } \mathscr{C} \in \mathfrak{S}\}$$
$$= \{a\}$$
$$\Rightarrow int(int(A)) = \bigcup \{x_{\alpha} : st(x_{\alpha}, \mathscr{C}) \subseteq int(A), \text{ for some } \mathscr{C} \in \mathfrak{S}\}$$
$$= 0$$

Hence $int(A) \neq int(int(A))$

Lemma 3.2.2. For every L-covers \mathscr{A} and for each $A \in L^X$, we have

$$st(A, \mathscr{A}) = \bigcap \{B \mid st(B', \mathscr{A}) \subseteq A'\}$$

Proof. It follows from the fact that for any $B \in L^X$, $B \subseteq st(A, \mathscr{A})$ if and only if $A \subseteq st(B, \mathscr{A})$ as $A \bigcap B \neq \underline{0}$ if and only if $B \bigcap A \neq \underline{0}$.

Lemma 3.2.3. Let (L^X, \mathfrak{S}) be a CLS-uniform space and $cl : L^X \to L^X$ be a mapping such that for any $A \in L^X$,

$$cl(A) = \bigcap \{ st(A, \mathscr{A}) : \mathscr{A} \in \mathfrak{S} \}$$

Then $cl(A) = int(int(A'))', \forall A \in L^X$.

Proof. For any $A \in L^X$, we have

$$int(A') = \bigcup \{ x_{\alpha} \in L^{X} \mid st(x_{\alpha}, \mathscr{A}) \subseteq A' \text{ for some } \mathscr{A} \in \mathfrak{S} \}.$$
$$= \bigcup \{ \bigcup \{ x_{\alpha} \in L^{X} \mid st(x_{\alpha}, \mathscr{A}) \subseteq A' \}, \mathscr{A} \in \mathfrak{S} \}.$$
$$= \bigcup \{ st(A, \mathscr{A})' \mid \mathscr{A} \in \mathfrak{S} \} \quad [By \text{ Lemma } 3.2.2].$$
$$Hence, int(A')' = \bigcap \{ st(A, \mathscr{A}) \mid \mathscr{A} \in \mathfrak{S} \}.$$
$$= cl(A).$$

Theorem 3.2.4. Let (L^X, \mathfrak{S}) be an CLS-uniform space. Then the required condition for generated interior space to be topological interior space is $\forall \mathscr{A} \in \mathfrak{S}$ and $\forall x_{\alpha}$ there exists $\mathscr{B} \in \mathfrak{S}$ such that $\forall y_{\beta} \in st(x_{\alpha}, \mathscr{B})$ there corresponds $\mathscr{C} \in \mathfrak{S}$ with $st(y_{\beta}, \mathscr{C}) \subseteq$ $st(x_{\alpha}, \mathscr{A}).$

Proof. Let $x_{\alpha} \in int(A)$, then there exist some $\mathscr{A} \in \mathfrak{S}$ such that $st(x_{\alpha}, \mathscr{A}) \subseteq A$. Let $\mathscr{B} \in \mathfrak{S}$ such that for any $y_{\beta} \in st(x_{\alpha}, \mathscr{B})$ there is $\mathscr{C} \in \mathfrak{S}$ such that $st(y_{\beta}, \mathscr{C}) \subseteq st(x_{\alpha}, \mathscr{A})$. Since $x_{\alpha} \in st(x_{\alpha}, \mathscr{B})$ we may choose $\mathscr{C} \in \mathfrak{S}$ such that $st(x_{\alpha}, \mathscr{C}) \subseteq st(x_{\alpha}, \mathscr{A})$. This implies $x_{\alpha} \in int(int(A))$ and since the other inclusion follows by (IO2) in Lemma 3.2.1, we have int(A) = int(int(A)).

Theorem 3.2.5. An CLS- uniform spaces with the condition in Theorem 3.2.4 generates an L-topological spaces.

Proof. It follows from Lemma 3.2.1 and Theorem 3.2.4. \Box

The L-topology induced by an CLS-uniform spaces is denoted by $\mathbb{F}(\mathfrak{S})$. It may conclude that the topological CLS-uniform spaces lies between CLS-uniform space and covering L-uniform spaces.

Theorem 3.2.6. Let (L^X, \mathfrak{S}_1) and (L^X, \mathfrak{S}_2) be two CLS-uniform spaces. If $\mathfrak{S}_1 \subseteq \mathfrak{S}_2$, then $\mathbb{F}(\mathfrak{S}_1) \subseteq \mathbb{F}(\mathfrak{S}_2)$.

Proof. Straight forward.

Theorem 3.2.7. Let (L^X, \mathfrak{S}) be an CLS-uniform spaces, then $\{st(x_\alpha, \mathscr{A}) : \mathscr{A} \in \mathfrak{S}\}$ is a base for nbds(=neighbourhoods) of x_α in interior spaces

Proof. Suppose $G \in L^X$ is open and $x_{\alpha} \in G$. Since int(G) = G, there exists $\mathscr{A} \in \mathfrak{S}$ such that $st(x_{\alpha}, \mathscr{A}) \subseteq G$. Thus $\{st(x_{\alpha}, \mathscr{A}) : \mathscr{A} \in \mathfrak{S}\}$ is a base for nbds of x_{α} . \Box

3.3 Semi-Uniformly Continuous

In this section, semi-uniformly continuous function in the context of CLS-Uniform spaces is introduced, and then studied its properties.

Definition 3.3.1. Let (L^X, \mathfrak{S}_1) and (L^Y, \mathfrak{S}_2) be two CLS-uniform spaces. Then $f^{\rightarrow} : L^X \rightarrow L^Y$ is called semi-uniformly continuous if $f^{\leftarrow}(\mathscr{B}) \in \mathfrak{S}_1$ for each $\mathscr{B} \in \mathfrak{S}_2$, where $f^{\leftarrow}(\mathscr{B}) = \{f^{\leftarrow}(B) : B \in \mathfrak{B}\}.$

Theorem 3.3.1. Let $f^{\rightarrow} : (L^X, \mathfrak{S}_1) \rightarrow (L^Y, \mathfrak{S}_2)$ be semi-uniformly continuous is continuous. Then $f^{\rightarrow} : (L^X, \mathbb{F}(\mathfrak{S}_1)) \rightarrow (L^Y, \mathbb{F}(\mathfrak{S}_2))$ is continuous function.

Proof. Let $f^{\rightarrow} : (L^X, \mathfrak{S}_1) \to (L^Y, \mathfrak{S}_2)$ be a semi-uniformly continuous function. Let $A \in L^Y$, then $int(A) = \bigcup \{ x_{\alpha} : st(x_{\alpha}, \mathscr{A}) \subseteq A \}$ for some $\mathscr{A} \in \mathfrak{S}_2$.

Since f^{\leftarrow} is arbitrary join preserving, then by Theorem 2.1.17(i) in [48], we have

$$f^{\leftarrow}(int(A)) = \bigcup \{ f^{\leftarrow}(x_{\alpha}) : st(x_{\alpha}, \mathscr{A}) \subseteq A \text{ for some } \mathscr{A} \in \mathfrak{S}_2 \}$$
(3.3.1)

Also, f^{\leftarrow} is order preserving, we have

$$st(x_{\alpha},\mathscr{A}) \subseteq A \Rightarrow f^{\leftarrow}(st(x_{\alpha},\mathscr{A})) \subseteq f^{\leftarrow}(A).$$
 (3.3.2)

By the Proposition 2.4.2(6) and line (3.3.2) we have

$$st(f^{\leftarrow}(x_{\alpha}), f^{\leftarrow}(\mathscr{A})) \subseteq f^{\leftarrow}(st(x_{\alpha}, \mathscr{A})) \subseteq f^{\leftarrow}(A)$$
(3.3.3)

Again from line (3.3.1), we have

$$f^{\leftarrow}(int(A)) = \bigcup \{ f^{\leftarrow}(x_{\alpha}) : (st(f^{\leftarrow}(x_{\alpha}), f^{\leftarrow}(\mathscr{A})) \subseteq f^{\leftarrow}(A) \text{ for some } \mathscr{A} \in \mathfrak{S}_2 \}$$

$$(3.3.4)$$

Since f^{\rightarrow} is semi-uniformly continuous, so $f^{\leftarrow}(\mathscr{A}) \in \mathfrak{S}_1$, therefore by line (3.3.4) $f^{\leftarrow}(int(A)) \subseteq int(f^{\leftarrow}(int(A)))$ implies $f^{\leftarrow}(int(A)) \in \mathbb{F}(\mathfrak{S}_1)$. Hence the theorem. \Box

Theorem 3.3.2. Let $f^{\rightarrow} : (L^X, \mathfrak{S}_1) \to (L^Y, \mathfrak{S}_2)$ and $g^{\rightarrow} : (L^Y, \mathfrak{S}_2) \to (L^Z, \mathfrak{S}_3)$ be two semi-uniformly continuous. Then $(g \circ f)^{\rightarrow}$ is semi-uniformly continuous.

Proof. Let $f^{\rightarrow} : (L^X, \mathfrak{S}_1) \to (L^Y, \mathfrak{S}_2)$ and $g^{\rightarrow} : (L^Y, \mathfrak{S}_2) \to (L^Z, \mathfrak{S}_3)$ be two semiuniformly continuous functions. Let $\mathscr{C} \in \mathfrak{S}_3$, by the Theorem 2.1.23 (ii) in [48] we have $(g \circ f)^{\leftarrow}(\mathscr{C}) = f^{\leftarrow}(g^{\leftarrow}(\mathscr{C}))$. Since g^{\rightarrow} is semi-uniformly continuous $g^{\leftarrow}(\mathscr{C}) \in \mathfrak{S}_2$. Also f^{\leftarrow} is uniformly continuous implies $f^{\leftarrow}(g^{\leftarrow}(\mathscr{C})) \in \mathfrak{S}_1$. Hence $(g \circ f)^{\rightarrow}$ is semiuniformly continuous.

3.4 L-Semi-Pseudo-Metrization

The problem of metrization has occupied an important place in the study of uniform spaces. Having developed the theory of CLS-uniform spaces, the study of metrization(semi-pseudo-metrization) in the same context.

Theorem 3.4.1. Every L-semi-pseudo metric generates a CLS-uniform space.

Proof. let (L^X, P) be an L-semi-pseudo-metric space and for any s > 0, let \mathscr{U}_s be an L-cover of L^X such that $\mathscr{U}_s = \{B_{\epsilon}(x_{\alpha}) : x_{\alpha} \in L^X\}$. Then clearly $\mathscr{U}_{\frac{1}{2}s} \preccurlyeq \mathscr{U}_s$ and $\mathscr{U}_s \bigcap \mathscr{U}_t \preccurlyeq \mathscr{U}_{\max[s,t]}$. Therefore, $\psi(P) = \{\mathscr{U}_s : s > 0\}$ is a base for CLS-uniformity. \Box

Definition 3.4.1. We shall say that a CLS-uniform space (L^X, \mathfrak{S}) is *L*-semi-pseudometrizable if there is an *L*-semi-pseudo-metric that generates \mathfrak{S} .

Definition 3.4.2. A CLS-uniform space is L-semi-pseudo-metrizable if it is induced by a L-semi-pseudo-metric.

Lemma 3.4.2. Let (L^X, \mathfrak{S}) be a CLS-uniform space. For $\mathscr{C} \in \mathfrak{S}$ define a mapping $\psi(\mathscr{C}) : L^X \to L^X$ such that $[\psi(\mathscr{C})](A) = st(A, \mathscr{C})$. Then

$$[\psi(\mathscr{C})](\bigcup_{i} A_{i}) = st(\bigcup_{i} A_{i}, \mathscr{C}) = \bigcup_{i} [\psi(\mathscr{C})](A_{i})$$

Theorem 3.4.3. A CLS-uniform space is L-semi-pseudo-metrizable if it has a countable base.

Proof. Let $\{\mathscr{C}_n : n \in N\}$ be a base for CLS-uniform space (L^X, \mathfrak{S}) . Without lost of generality we can assume $\mathscr{C}_{n+1} \preccurlyeq \mathscr{C}_n$ for each $n \in \mathbb{N}$. For any r > 0, let $\psi_r : L^X \to L^X$ be a mapping defined by

$$\forall A \in L^X$$
, if $\frac{1}{2^n} < r \le \frac{1}{2^{n-1}}$, then $[\psi_r(\mathscr{C}_n)](A) = st(A, \mathscr{C}_n)$

and if $[\psi_r(\mathscr{C}_n)](A) = \underline{1}$ or $\underline{0}$ according $A \neq \underline{0}$ or $A = \underline{0}$.

For every r > 0, let $\mathscr{F}_r : L^X \to L^X$ be a mapping defined by

$$\mathscr{F}_r = \{\psi_{r_k} : \sum_{i=0}^k r_k = r, \forall i \le k, r_i > 0, k < \omega\}$$

Obviously $\{\mathscr{F}_r : r > 0\}$ is a base for \mathfrak{S} and also define

 $\mathscr{F}_r(A) = \bigcup_{x_\alpha \in A} st(x_\alpha, \mathscr{F}_r)$ for all $A \in L^X$.

Let $P: L^X \times L^X \to [0, \infty]$ be a mapping defined by

 $P(A,B) = \bigwedge \{r: B \subseteq \mathscr{F}_r(A)\},$ where we assume that $\bigwedge \Phi = +\infty$.

We claim that P is the required L-semi-pseudo-metric that generates \mathfrak{S}

(SEM1) By Theorem 2.5.4, P fulfils (SEM1).

(SEM4) Suppose $\mathscr{F}_r(A) \subseteq B \Leftrightarrow \bigcup \{C : P(A, C) < r\} \subseteq B$

$$\begin{aligned} \Leftrightarrow P(A,C) \Rightarrow C \subseteq B \\ \Leftrightarrow P(B',D) < r \Rightarrow D \subseteq A' \\ \Leftrightarrow \bigcup \{D: P(B',D) < r\} \subseteq A' \\ \Leftrightarrow \mathscr{F}_r(B') \subseteq A' \end{aligned}$$

Which implies " $P(A, C) < r \Rightarrow C \subseteq B$ " \Leftrightarrow " $P(B', D) < r \Rightarrow D \subseteq A'$ "

For any $x_{\alpha} \in L^X$, they have same nbhd at x_{α} viz, $\{\psi_r[\mathscr{C}_n](x_{\alpha})r > 0\} = \{\mathscr{F}_r(x_{\alpha}) : r > 0\}$. which implies they induced the same interior operator. Conversely, Let \mathfrak{S} is CLS-uniform spaces generated by L-semi-pseudo-metric P. For any s > 0, let \mathscr{U}_s be an L-cover of L^X such that $\mathscr{U}_s = \{B_{\epsilon}(x_{\alpha}) : x_{\alpha} \in L^X\}$. Then clearly $\mathscr{U}_{\frac{1}{2}s} \preccurlyeq \mathscr{U}_s$ and $\mathscr{U}_s \bigcap \mathscr{U}_t \preccurlyeq \mathscr{U}_{\max[s,t]}$. Therefore, $\psi(P) = \{\mathscr{U}_s : s > 0\}$ is a base for CLS-uniformity. \Box

*	*	*	*	*	*	