CHAPTER 2_

PRELIMINARIES

In this chapter, the basic definitions and results are utilized in the subsequent chapters. Most of the definitions and results can be found in [10, 33, 48]. Some brief notions were used such as nbhd means neighbourhood and iff means if and only if.

2.1 Lattice Structures

Definition 2.1.1. Let P be a set and " \leq " is a relation on P. Then P is called partially ordered set (briefly poset) with respect to the relation " \leq ", if it satisfies the following conditions

PO1. Reflexive: $a \leq a$ for all $a \in P$

PO2. Antisymmetric: For any $a, b \in P$ with $a \leq b$ and $b \leq a$ implies a = b.

PO3. Transitive: For any $a, b, c \in P$ with $a \leq b$ and $b \leq c$ implies $a \leq c$.

Definition 2.1.2. Let *L* be a poset and $A \subseteq L$.

- 1. An element $x \in L$ is called he join of A, denoted by $\bigvee A$ or sup A, if,
 - (a) x is upper bound of A,
 - (b) if another y is upper bound for A, then $x \leq y$

If A is finite, we shall call $\bigvee A(\text{if it exists})$ a finite join. For two elements a and b the join is denoted by $a \bigvee b$.

- 2. An element $x \in L$ is called the meet of A, is denoted by $\bigwedge A$ or $\inf A$, if,
 - (a) x is a lower bound of A
 - (b) if y is lower bound for A, then $y \le x$

If A is finite, is call $\bigwedge A(\text{if it exists})$ a finite meet. For two elements a and b the meet is denoted by $a \bigwedge b$.

Definition 2.1.3. Let L be a poset. Then,

- 1. Join-semilattice: Every join for a finite subset of L exists; particulary, the smallest element exists as the join of non-empty subset.
- 2. Meet-semilattice: Every meet for a finite subset of *L* exists; particulary, the largest element exists as the meet of non-empty subset.
- 3. Lattice: It is both join-semilatice and meet-semilattice

Remark 2.1.1. A lattice will always be non-empty. Every lattice is always assumed to possess at least two elements, the smallest element 0_L and largest element 1_L .

Definition 2.1.4. Let L be a poset. Then,

- 1. Complete join-semilattice: Every join for arbitrary subset of *L* exists, i.e., smallest element exists as the join of non-empty subset.
- 2. Complete meet-semilattice: Every meet for arbitrary subset of *L* exists, i.e., largest element exists as the meet of non-empty subset.
- 3. **Complete lattice**: It is both complete join-semilattice and complete meetsemilattice.

Proposition 2.1.1. Let L be a poset, then the following conditions are equivalent:

- 1. L is a complete lattice.
- 2. L has the smallest element and $\forall A \subseteq L, A \neq \phi, \forall A \text{ exists in } L.$
- 3. L has the largest element and $\forall A \subseteq L, A \neq \phi, \land A$ exists in L.
- 4. L is a lattice and $\forall A \subseteq L, A \neq \phi, \bigvee A$ exists in L
- 5. L is a lattice and $\forall A \subseteq L, A \neq \phi, \bigwedge A$ exists in L

Definition 2.1.5. Let L be a complete lattice. Then L is called infinitely distributive if it satisfies the following conditions

IFD1. For all $a \in L$, $\forall B \subseteq L$, $a \bigwedge \bigvee B = \bigvee_{b \in B} (a \bigwedge b)$.

IFD2. For all $a \in L$, $\forall B \subseteq L$, $a \bigvee \bigwedge B = \bigwedge_{b \in B} (a \bigvee b)$

where **IFD1** and **IFD2** is called 1st infinitely distributive law and 2nd infinitely distributive law respectively.

Remark 2.1.2. The 1st infinitely distributive law is not equivalent to 2nd infinitely distributive law.

Proposition 2.1.2. Let L be a complete lattice. Then,

1. L satisfies the **IFD1** if and only if $\forall A, B \subseteq L, \bigwedge A \bigvee \bigwedge B = \bigvee_{a \in A, B \in B} (a \bigwedge b)$.

2. L satisfies the **IFD2** if and only if $\forall A, B \subseteq L, \bigvee A \land \bigvee B = \bigwedge_{a \in A, b \in B} (a \lor b)$.

Definition 2.1.6. Let L be a complete lattice. Then L is called completely distributive lattice if it satisfies the following conditions:

 $\forall \{ \{a_{i,j} | j \in J_i\}, i \in I \} \subseteq \mathscr{P}(L) \setminus \phi, I \neq \phi$

CD1. $\bigwedge_{i \in I} (\bigvee_{j \in J_j} a_{i,j}) = \bigvee_{\Phi \in \prod_{i \in I} J_i} (\bigwedge_{i \in I} a_{i,\Phi(i)})$

CD2. $\bigvee_{i \in I} (\bigwedge_{j \in J_j} a_{i,j}) = \bigwedge_{\Phi \in \prod_{i \in I} J_i} (\bigvee_{i \in I} a_{i,\Phi(i)})$

where CD1 and CD2 are called completely distributive law.

Remark 2.1.3. For $I = \{0, 1\}$, $J_0 = \{0\}$ in **CD1** and **CD2**. So **CD1** implies **IFD1** and **CD2** implies **IFD2** and hence completely distributive lattice is infinitely distributive. But converse is not true in general.

Theorem 2.1.3. A complete lattice satisfies CD1 if and only if CD2.

Proposition 2.1.4. Let $\{P_i : i \in I\}$ be a family of posets then the relation " \leq " on $\prod_{i \in I} P_i$ defined by

$$\alpha, \beta \in \prod_{i \in I} P_i, \quad \alpha \le \beta \Leftrightarrow \forall i \in I, \alpha(i) \le \beta(i)$$

is reflexive, antisymmetric and transitive.

Theorem 2.1.5. Let $\{L_i : i \in I\}$ be a family of posets. Then $\prod_{i \in I} L_i$ is a completely distributive lattice if and only if $\forall i \in I$, L_i is completely distributive lattice.

Definition 2.1.7. Let *L* be a lattice, $\alpha \in L$. α is called join-irreducible, if $\alpha < 1_L$ and $\forall a, b \in L, \alpha = a \bigvee b \Rightarrow \alpha = a$ or $\alpha = b$.

A join-irreducible element of L is called molecule in L.

The set of all molecules in L is denoted by M(L).

Remark 2.1.4. Every element in a completely distributive lattice can be represented as a join of molecules.

Definition 2.1.8. Let L be a complete lattice. Define a relation \leq in L as follows: For all $a, b \in L, a \leq b$ iff $\forall S \subseteq L, b \leq \bigvee S \Rightarrow \exists s \in S$ such that $a \leq s, \forall a \in L$, denoted by $\beta_L(a) = \{b \in L : b \leq a\}, \beta_L^*(a) = M(\beta_L(a))$ or denoted by them $\beta(a)$ and $\beta^*(a)$ in briefly.

 $\forall a \in L, D \subseteq \beta(a)$ is called a minimal set of a if $\bigvee D = a$.

Theorem 2.1.6. Let L be a complete lattice, then the following are equivalent:

- 1. L is completely distributive lattice.
- 2. $\forall a \in L$, $\beta(a)$ is minimal set of a.
- 3. $\forall a \in L, \beta^*(a)$ is minimal set of a.

Theorem 2.1.7. Let L be a complete lattice. Then

1. $\beta: L \to \mathscr{P}(L)$ is an arbitrary join-preserving mapping, i.e., for every $A \subseteq L$,

$$\beta(\bigvee A) = \bigvee_{a \in A} \beta(a)$$

2. $\beta^* : L \to \mathscr{P}(M(L))$ is an arbitrary join-preserving mapping, i.e., for every $A \subseteq L$,

$$\beta^*(\bigvee A) = \bigvee_{a \in A} \beta^*(a)$$

where $\mathscr{P}(L)$ and $\mathscr{P}(M(L))$ are power sets of L and M(L) respectively.

Definition 2.1.9. A set D equipped with a relation " \leq " is called down directed, if for any finite set $D_0 \subseteq D$, there exists $d_0 \in D$ such that $d_0 \leq d$ for all $d \in D$.

Definition 2.1.10. Let *L* be a lattice, then a map $': L \to L$ is called order reversing involution if

$$\forall a, b \in L, a \leq b \Rightarrow b' \leq a' and (a')' = a$$

Proposition 2.1.8. Let L be a lattice with order reversing involution '. Then

- 1. $(\bigvee_i a_i)' = \bigwedge_i a'_i$.
- 2. $(\bigwedge_i a_i)' = \bigvee_i a'_i$

Definition 2.1.11. A completely distributive lattice L is called a fuzzy lattice or an F-lattice (in briefly), if L has an order reversing involution $': L \to L$.

2.2 *L*-fuzzy sets and *L*-Topological Spaces

Throughout the thesis, the notion $(L, \leq, \bigwedge, \bigvee, ')$ as a fuzzy lattice with order reversing involution '; inf $L = 0_L$ and $\sup L = 1_L$ (in briefly L for the simplicity). The basic definition and results of L-fuzzy sets and L-topological space can be found in [26, 34, 35, 48]

Definition 2.2.1. Let X be an arbitrary set and L a complete lattice. Let L^X will denote the collection of all mapping $A : X \to L$. Then any member of L^X is called an L-fuzzy set. L^X is called an L-fuzzy space.

Definition 2.2.2. The *L*-fuzzy sets $x_{\alpha} : X \to L$, where $\alpha \in L$ defined by

$$x_{\alpha}(y) = \begin{cases} \alpha & \text{if } x = y \\ 0_L & \text{if } x \neq y \end{cases}$$

are called the *L*-fuzzy points. The set of all fuzzy point of X is denoted by $Pt(L^X)$.

Remark 2.2.1. The mapping $A: X \to L$ and $B: X \to L$ defined by $A(x) = 1_L$, $\forall x \in X$ and $B(x) = 0_L$, $\forall x \in X$ are denoted by $\underline{1}$ and $\underline{0}$ respectively. Clearly, $\underline{1}$ and $\underline{0}$ will act as the largest and smallest element respectively on the fuzzy lattice L^X .

Definition 2.2.3. Let X be a non-empty crisp set and L be a fuzzy lattice with order reversing involution '. Let ': $L \to L$ be an operation on L^X is called pseudo complementary operation, defined by

$$A'(x) = (A(x))', \forall x \in X, \forall A \in L^X$$

Proposition 2.2.1. Let X be a crisp set and L be a fuzzy lattice with order reversing involution '. Then the pseudo-complementary operation ': $L^X \to L^X$ is an order reversing involution.

Definition 2.2.4. For any $A, B \in L^X$, then

- 1. A union B as $A \bigcup B$ defined as $A \bigcup B(x) = A(x) \bigvee B(x), \forall x \in X$.
- 2. A intersection B as $A \cap B$ defined as $A \cap B(x) = A(x) \wedge B(x), \forall x \in X$
- 3. A is subset of B as $A \subseteq B$ and defined as $A \subseteq B$ iff $A(x) \leq B(x)$.
- 4. Complement of A denoted by A' defined as A'(x) = A(x)'.

Remark 2.2.2. For any $x_{\alpha} \in Pt(L^X)$ and $A \in L^X$, $x_{\alpha} \in A$ iff $\alpha < A(x)$ and $x_{\alpha} \subseteq A$ iff $\alpha \leq A(x)$. Particularly for any $y_{\beta} \in Pt(L^X)$, $x_{\alpha} \subseteq y_{\beta}$ iff x = y and $\alpha \leq \beta$.

Proposition 2.2.2. Let L^X be an L-fuzzy space. Then

1. L^X is a complete lattice for any $\mathscr{A} \subseteq L^X$, we have

$$\forall x \in X \ (\bigvee_{A \in \mathscr{A}} A)(x) = \bigvee_{A \in \mathscr{A}} A(x)$$
$$\forall x \in X \ (\bigwedge_{A \in \mathscr{A}} A)(x) = \bigwedge_{A \in \mathscr{A}} A(x)$$

- 2. L is distributive iff L^X is distributive.
- 3. L satisfies IDF1 iff L^X satisfies IDF1.
- 4. L satisfies IDF2 iff L^X satisfies IDF2.
- 5. L is completely distributive iff L^X is completely distributive.

Definition 2.2.5. For any ordinary mapping $f : X \to Y$, the induced *L*-fuzzy mapping $f^{\to} : L^X \to L^Y$ and its *L*-fuzzy reverse mapping $f^{\leftarrow} : L^Y \to L^X$ respectively are defined as:

$$f^{\rightarrow}(A)(y) = \bigvee \{A(x) \mid x \in X, \ f(x) = y\}, \ \forall A \in L^X, \ \forall y \in Y.$$
$$f^{\leftarrow}(B)(x) = B(f(x)), \ \forall B \in L^Y, \ \forall x \in X.$$

Symbol f^{\rightarrow} and f^{\leftarrow} always denote f^{\rightarrow} to be the *L*-fuzzy mapping induced from an ordinary mapping f and f^{\leftarrow} is the *L*-fuzzy reverse mapping of f^{\rightarrow} . Both the *L*-fuzzy mappings f^{\rightarrow} and f^{\leftarrow} are order preserving.

Theorem 2.2.3. Let L^X and L^Y be L-fuzzy spaces, $f : X \to Y$ an ordinary mapping. Then

- 1. f^{\rightarrow} is injective iff f is injective.
- 2. f^{\rightarrow} is surjective iff f is surjective.
- 3. f^{\rightarrow} is bijective iff f is bijective.

Theorem 2.2.4. Let L^X, L^Y and L^Z be L-fuzzy space, $f: X \to Y$ and $g: Y \to Z$ are ordinary mappings. we have

1. $g^{\rightarrow}f^{\rightarrow} = (gf)^{\rightarrow}$.

2.
$$f \leftarrow g \leftarrow = (gf) \leftarrow .$$

Theorem 2.2.5. Let L^X and L^Y be L-fuzzy space, $f : X \to Y$ an ordinary mapping. Then

- 1. $A \subseteq f \leftarrow f \rightarrow (A), \forall A \in L^X.$
- 2. $f \to f \leftarrow (B) \subseteq B, \forall B \in L^Y$.
- 3. $f^{\rightarrow}(A) = f^{\rightarrow}f^{\leftarrow}f^{\rightarrow}(A), \ \forall A \in L^X.$
- $4. f^{\leftarrow} f^{\rightarrow} f^{\leftarrow}(B) = f^{\leftarrow}(B), \ \forall B \in L^Y.$

Proposition 2.2.6. Let X and Y be two non-empty sets, L be a fuzzy lattice and $f : X \to Y$ be an ordinary mapping. Then $\forall A \in L^X$, $(f^{\to}(A))' \subseteq f^{\to}(A')$ and $f^{\leftarrow}(A') = (f^{\leftarrow}(A))'$. Where ' is the pseudo complementary operation.

Theorem 2.2.7. Let L^X and L^Y be L-fuzzy spaces, $f : X \to Y$ an ordinary mapping. then f^{\leftarrow} is bijective iff $f^{\leftarrow} \circ f^{\rightarrow} = id_{L^X}, f^{\rightarrow} \circ f^{\leftarrow} = id_{L^Y}.$ **Definition 2.2.6.** Let \mathbb{F} be a subset of L^X , then F is called L-fuzzy topology on L^X (in briefly L-topology), if F is closed under finite intersection and arbitrary union. The members of \mathbb{F} is called L-fuzzy open sets and its complements are called the L-fuzzy closed sets. The pair (L^X, \mathbb{F}) is called L-topological space.

Remark 2.2.3. Let \mathbb{F}_1 and \mathbb{F}_2 are two L-topologies on L^X . The \mathbb{F}_2 is called finer than \mathbb{F}_1 , if $\mathbb{F}_1 \subseteq \mathbb{F}_2$.

Definition 2.2.7. Let (L^X, \mathbb{F}) be an *L*-topological space. Then a non-empty subfamily \mathscr{B} of \mathbb{F} is called base for \mathbb{F} if

$$\mathbb{F} = \{ \bigcup \mathscr{A} | \mathscr{A} \subseteq \mathscr{B} \}.$$

Definition 2.2.8. Let (L^X, \mathbb{F}) be an *L*-topological spaces and let $A \in L^X$.

- 1. The interior of A, denoted by int(A) is defined as $int(A) = \{G : G \in \mathbb{F} \text{ and } G \subseteq A\}.$
- 2. The closure of A, denoted by cl(A) is defined as $cl(A) = \bigcap \{F : F' \in \mathbb{F} \text{ and } A \subseteq F\}.$

Theorem 2.2.8. Let (L^X, \mathbb{F}) be an L-topological spaces. Then

- 1. $int(\underline{0}) = \underline{0}$, $int(\underline{1}) = \underline{1}$ and $cl(\underline{0}) = \underline{0}$, $cl(\underline{1}) = (\underline{1})$.
- 2. $int(A) \subseteq A$ and $A \subseteq cl(A)$ $\forall A \in L^X$.
- 3. int(int(A)) = int(A) and $cl(cl(A)) = cl(A) \quad \forall A \in L^X$.
- 4. $A \subseteq B$, then $int(A) \subseteq int(B)$ and $cl(A) \subseteq cl(B)$, $\forall A, B \in L^X$.
- 5. $int(A \cap B) = int(A) \cap int(B)$ and $cl(A \cup B) = cl(A) \cup cl(B) \quad \forall A, B \in L^X$.

6.
$$int(A)' = cl(A'), int(A') = cl(A)', int(A) = cl(A')' and cl(A) = int(A')' \quad \forall A \in L^X.$$

Proposition 2.2.9. Let X be a non-empty set and L^X be a fuzzy lattice. Let cl: $L^X \to L^X$ is called closure operator if it satisfies the following properties

CO1. $cl(\underline{0}) = \underline{0}$

CO2. $A \subseteq cl(A)$, $\forall A \in L^X$.

CO3. $cl(A \bigcup B) = cl(A) \bigcup cl(B), \forall A, B \in L^X$

Then the pair (L^X, cl) is called closure space.

Proposition 2.2.10. The closure space is topological if it satisfies CO1,CO2, CO3 and the following

CO4. $cl(cl(A)) = cl(A), \forall A \in L^X$

then it is called topological closure operator. Also $\mathbb{F} = \{A \in L^X : cl(A') = A'\}$ is an L-topology.

Proposition 2.2.11. Let X be a non-empty set and L^X be a fuzzy lattice. Let int: $L^X \to L^X$ is called interior operator if

IO1. $int(\underline{1}) = \underline{1}$

IO2. $int(A) \subseteq A$, $\forall A \in L^X$.

IO3. $int(A \cap B) = int(A) \bigcup int(B), \forall A, B \in L^X$

Then the pair (L^X, int) is called interior space.

Proposition 2.2.12. The interior space is topological if it satisfies **IO1,IO2,IO3** and the following

IO4. $int(int(\underline{1})) = int(\underline{1}), \forall A \in L^X.$

then it is called topological interior operator. Also $\mathbb{F} = \{A \in L^X : int(A) = A\}$ is an L-topology.

Definition 2.2.9. Let (L^X, \mathbb{F}_1) and (L^Y, \mathbb{F}_2) be two *L*-topological spaces. The mapping $f^{\rightarrow} : L^X \to L^Y$ is called *L*- fuzzy continuous mapping iff for any $V \in \mathbb{F}_2$ implies $f^{\leftarrow}(V) \in \mathbb{F}_1$.

Definition 2.2.10. Let (L^X, \mathbb{F}_1) and (L^Y, \mathbb{F}_2) be two topological spaces and f^{\rightarrow} : $L^X \rightarrow L^Y$ be a mapping. Then

- 1. f^{\rightarrow} is called open map, if for any $G \in \mathbb{F}_2$ we have $f^{\rightarrow}(G) \in \mathbb{F}_2$.
- 2. f^{\rightarrow} is called closed map, if for any $F \in \mathbb{F}'_1$ we have $f^{\rightarrow}(F) \in \mathbb{F}'_2$.

Definition 2.2.11. Let (L^X, \mathbb{F}_1) and (L^Y, \mathbb{F}_2) be two topological spaces, then f^{\rightarrow} : $L^X \rightarrow L^Y$ is called an *L*-fuzzy homeomorphism, if it is bijective, continuous and open mapping.

Definition 2.2.12. Let $\{(L^{X_t}, \mathbb{F}_t) : t \in \Lambda\}$ be a family of *L*-topological spaces, where Λ is the index set. Denote $X = \prod_{t \in \Lambda} X_t$. For every $t \in \Lambda$, let $\pi_t : X \to X_t$ be an ordinary projection define the projection from L^X to L^Y as

$$\pi_t^{\rightarrow}: L^X \to L^Y$$

The product topology of L-topologies { $\mathbb{F}_t : t \in \Lambda$ } on X is denoted by $\prod_{t \in \Lambda} \mathbb{F}_t$, as the L- topology \mathbb{F} on L^X generates by the subbase

$$\{\pi_t^{\leftarrow}(G_t): G_t, t \in \Lambda\}$$

and called the *L*-topological spaces (L^X, \mathbb{F}) , the product space of *L*-topological spaces $\{(L^{X_t}, \mathbb{F}) : t \in \Lambda\}$, denoted by $\prod_{t \in \Lambda} (L^{X_t}, \mathbb{F}_t)$.

Definition 2.2.13. Let (L^X, \mathbb{F}) be an L-topological space. Then (L^X, \mathbb{F}) is said to be regular if for every $G \in \mathbb{F}$ and $x_\alpha \subseteq G$, there is $A \in \mathbb{F}$ such that $x_\alpha \subseteq A \subseteq cl(A) \subseteq G$.

Theorem 2.2.13. Product of regular L-topology is regular iff each of L- topology is regular.

Definition 2.2.14. [48] Let (X, \mathbb{F}) be an L- topological space. (L^X, \mathbb{F}) is regular, if every $U \in \mathbb{F}$, there exists $\mathscr{V} \subseteq \mathbb{F}$ such that $\bigcup \mathscr{V} = U$ and $cl(U) \subseteq U$ for every $V \in \mathscr{V}$.

Definition 2.2.15. For any $x_{\alpha}, A, B \in L^X$, x_{α} is said to be quasi-coincident with A, denoted as $x_{\alpha}qA$ if $x_{\alpha} \notin A'$, i.e., $\alpha \notin A'(x)$.

A is called quasi-coincident with B at y if $A(y) \neq B'(y)$, denoted by $A\hat{q}B$, if A is quasi-coincident with B at some $y \in X$.

Corollary 2.2.14. If A and B are quasi coincident at x, both A(x) and B(x) are not zero and hence A and B intersect x.

Definition 2.2.16. Let $x_{\alpha} \in Pt(L^X)$. Then an L-fuzzy set U is said to be a quasicoincident neighbourhood (Q-nbhd) at x_{α} in an L-topological space (L^X, \mathbb{F}) , if there is $G \in \mathbb{F}$ such that $x_{\alpha}qG \subseteq U$.

The family of all Q-nbhd at x_{α} in an L-topological space (L^X, \mathbb{F}) is denoted by $\mathscr{Q}(x_{\alpha})$

Definition 2.2.17. A subfamily $\mathscr{A} \subseteq \mathscr{Q}(x_{\alpha})$ is called a Q-nbhd base of x_{α} , if for every $U \in \mathscr{Q}(x_{\alpha})$, there exists $V \in \mathscr{A}$ such that $V \subseteq U$.

Theorem 2.2.15. Let (L^X, \mathbb{F}) be an L-topological space. Then for any $x_{\alpha} \in M(L^X)$, $\mathscr{Q}(x_{\alpha})$ is a down-directed set in L^X and $\underline{0} \notin \mathscr{Q}(x_{\alpha})$.

Theorem 2.2.16. Let (L^X, \mathbb{F}) be an L-topological space and $A \in L^X$. Then an L-fuzzy point $x_{\alpha} \in \overline{A}$ iff each Q-nbhd at x_{α} is quasi-coincident with A.

Definition 2.2.18. [52] A family \mathscr{A} of L^X has the finite intersection property if the intersection of the members of each finite subfamily of \mathscr{A} is non-empty.

Definition 2.2.19. [48] An *L*-topology (L^X, \mathbb{F}) is called compact, if every open cover of (L^X, \mathbb{F}) has a finite subcover.

Theorem 2.2.17. [35] $Let(L^X, \mathbb{F})$ be an L-topology, then (L^X, \mathbb{F}) is compact iff

- 1. Every open cover \mathscr{C} of closed subset A of L^X has a finite subcover.
- 2. Every closed collection with finite intersection property has non-empty intersection.

2.3 Convergence structures in L- Topology

In this section, some basic definitions and results regarding net and filters in L-topology that will necessary in our subsequent chapters. All definition and results can be found in [35, 36, 37, 48].

Definition 2.3.1. An L-fuzzy space L^X , a net $S : D \to Pt(L^X)$ a net in L^X , where D a directed set. In particular a net $S : D \to M(L^X)$ a molecule net in L^X . For $A \subseteq Pt(L^X)$ and a net $S = \{S(n) : n \in D\}$ such that $S(n) \in A \forall n \in D$, we say S consists of points in A. **Definition 2.3.2.** Let S be a net in an L-topological space (L^X, \mathbb{F}) and $x_{\alpha} \in Pt(L^X)$. Then S is said to be convergent to x_{α} , denoted by $S \to x_{\alpha}$, if for any $U \in \mathscr{Q}(x_{\alpha})$ there is $n_0 \in D$ such that $S(n)\widehat{q}U \forall n \geq n_0$.

Definition 2.3.3. A non-empty sub collection \mathscr{F} of L^X is said to be a filter in an L-topological space, if

(F1) $\underline{0} \neq \mathscr{F}$.

(F2) $U_1, U_2 \in \mathscr{F} \Rightarrow U_1 \cap U_2 = \mathscr{F}.$

(F3) $U \in \mathscr{F}$ and $V \in L^X$ such that $U \subseteq V$ then $V \in \mathscr{F}$.

 \mathscr{F} is said to be proper in (L^X, \mathbb{F}) , if $\mathscr{F} \neq L^X$.

Definition 2.3.4. A subfamily \mathscr{B} of L^X is called a filter base in an *L*-topological spaces, if

(B1) $\underline{0} \notin \mathscr{B}$

(B2) for any $U, V \in \mathscr{B}$, there exists $W \in \mathscr{B}$ such that $W \subseteq U \cap V$.

Definition 2.3.5. If \mathscr{F}^* be a *L*-fuzzy ultrafilter on L^X , then

(U1) For every $A \in L^X$, either $A \in \mathscr{F}^*$ or $A' \in \mathscr{F}^*$.

(U2) $A \bigcup B \in \mathscr{F}^*$ implies that either $A \in \mathscr{F}^*$ or $B \in \mathscr{F}^*$.

An L-fuzzy filter \mathscr{F} is L-fuzzy ultrafilter iff every $A \in L^X$, either $A \in \mathscr{F}$ or $A' \in \mathscr{F}$.

Definition 2.3.6. Let $x_{\alpha} \in L^X$ and \mathscr{F} be a filter in L-topology, then \mathscr{F} is said to be convergent to x_{α} , denoted by $\mathscr{F} \to x_{\alpha}$ if for any $U \in \mathscr{Q}(x_{\alpha})$ there exists $F \in \mathscr{F}$ such that $F \subseteq U$, i.e., $\mathscr{Q}(x_{\alpha}) \subseteq \mathscr{F}$. An L-fuzzy point x_{α} is called a cluster point of \mathscr{F} , denoted by $\mathscr{F} \propto x_{\alpha}$ if every $U \in \mathscr{Q}(x_{\alpha})$ and $F \in \mathscr{F}, U \bigcap F \neq \underline{0}$

2.4 Covering *L*-uniform spaces

In this section, the basic definitions and results of the theory of covering L-uniform spaces which requires in the subsequent chapters. Most of the definition and results can be found in [59, 60, 75].

Definition 2.4.1. Let X be a non-empty set. Let $\mathscr{A} \subseteq L^X$ is called L-fuzzy cover of X if and only if $\bigcup \mathscr{A} = \underline{1}$.

- Remark 2.4.1. 1. The set of all L-covers of X is denoted by L Cov(X), a preordered set.
 - 2. Let \mathscr{A}, \mathscr{B} be *L*-covers of *X*, then $\mathscr{A} \bigcup \mathscr{B} = \{A \bigcup B : A \in \mathscr{A} \text{ and } B \in \mathscr{B}\}.$
 - 3. Let \mathscr{A}, \mathscr{B} be *L*-covers of *X*, then $\mathscr{A} \cap \mathscr{B} = \{A \cap B : A \in \mathscr{A} \text{ and } B \in \mathscr{B}\}.$

Definition 2.4.2. For any $\mathscr{A}, \mathscr{B} \subseteq L^X$. Then \mathscr{A} is refinement of \mathscr{B} denoted by $\mathscr{A} \preccurlyeq \mathscr{B}$ if for all $A \in \mathscr{A}$, there exists some $B \in \mathscr{B}$ such that $A \subseteq B$.

Proposition 2.4.1. Let \mathscr{A}, \mathscr{B} be L-covers of X, then

- 1. $\mathscr{A} \cap \mathscr{B} \preccurlyeq \mathscr{A} \text{ and } \mathscr{A} \cap \mathscr{B} \preccurlyeq \mathscr{B}$
- 2. $\mathscr{A} \bigcup \mathscr{B} \preccurlyeq \mathscr{A} \text{ and } \mathscr{A} \bigcup \mathscr{B} \preccurlyeq \mathscr{B}$

Definition 2.4.3. Let $x_{\alpha}, A \in L^X$ and $\mathscr{A} \subseteq L^X$ be a *L*-cover, then

1. star of A with respect to cover \mathscr{A} is denoted by $st(A, \mathscr{A})$ and defined as

$$st(A,\mathscr{A}) = \bigcup \{ B \in \mathscr{A} : A \bigcap B \neq \underline{0} \}$$

2. star of x_{α} with respect to cover \mathscr{A} is denoted by $st(x_{\alpha}, \mathscr{A})$ and defined as

$$st(x_{\alpha},\mathscr{A}) = \bigcup \{A \in \mathscr{A} : x_{\alpha} \in A\}$$

3. star of L-cover \mathscr{A} is denoted by $st(\mathscr{A})$ and defined as

$$st(\mathscr{A}) = \{st(A, \mathscr{A}) : A \in \mathscr{A}\}$$

Proposition 2.4.2. Let $\mathscr{A}, \mathscr{B} \subseteq L^X$ and $A, B \in L^X$, then

- 1. If \mathscr{A} is L- cover then $A \subseteq st(A, \mathscr{A})$ and consequently, $\mathscr{A} \preccurlyeq st(\mathscr{A})$.
- 2. If $A \subseteq B$, then $st(A, \mathscr{A}) \subseteq st(B, \mathscr{A})$.
- 3. If $\mathscr{A} \preccurlyeq \mathscr{B}$, then $st(A, \mathscr{A}) \subseteq st(A, \mathscr{B})$.
- $4. \ st(\bigcup \mathscr{B}, \mathscr{A}) = \bigcup_{B \in \mathscr{B}} st(B, \mathscr{A}).$
- 5. If \mathscr{A} is an L-cover then $st(st(A, \mathscr{A}), \mathscr{A}) \subseteq st(A, st(\mathscr{A}))$.
- 6. $st(A \cap B, \mathscr{C}) \subseteq st(A, \mathscr{C}) \cap st(B, \mathscr{C}).$
- 7. Let $f: X \to Y$, $\mathscr{B} \subseteq L^Y$, $f^{-1}(\mathscr{B}) = \{f^{\leftarrow}(B) : B \in \mathscr{B}\}$ and let $C \in L^Y$, then $st(f^{\leftarrow}(C), f^{-1}(\mathscr{B})) \subseteq f^{\leftarrow}(st(C, \mathscr{B})).$

Remark 2.4.2. Let \mathscr{A} and \mathscr{B} be two L-covers of L^X such that $st(\mathscr{A}) \preccurlyeq \mathscr{B}$, then $st(A, st(\mathscr{A})) \subseteq st(A, \mathscr{B})$ for all $A \in L^X$.

Definition 2.4.4. Let X be a non-empty set. Let \mathfrak{U} be a family of L-covers of X is called covering L-uniform space if it satisfies the following conditions

- C1. $\mathscr{A} \preccurlyeq \mathscr{B}, \mathscr{A} \in \mathfrak{U} \Rightarrow \mathscr{B} \in \mathfrak{U}.$
- **C2.** For every $\mathscr{A}, \mathscr{B} \in \mathfrak{U}, \mathscr{A} \cap \mathscr{B} \in \mathfrak{U}$
- **C3.** For each $\mathscr{A} \in \mathfrak{U}$, there exists $\mathscr{B} \in \mathfrak{U}$ such that $st(\mathscr{B}) \preccurlyeq \mathscr{A}$.

the pair (L^X, \mathfrak{U}) is called covering *L*-uniform space.

Definition 2.4.5. A base for the covering L-uniformity \mathfrak{U} is any sub-collection of \mathfrak{U} from which \mathfrak{U} can be obtained by applying condition C1.

Proposition 2.4.3. Let (L^X, \mathfrak{U}) be a covering L-uniform spaces, then $\{A \in L^X : A = \bigcup \{B \in L^X : st(B, \mathscr{A}) \subseteq A \text{ for some } \mathscr{A} \in \mathfrak{U} \}\}$ is L-topology on L^X and denoted by $\mathbb{F}(\mathfrak{U})$.

Definition 2.4.6. Let (L^X, \mathfrak{U}_1) and (L^Y, \mathfrak{U}) be a covering L-uniform spaces. A mapping $f^{\rightarrow} : (L^X, \mathfrak{U}_1) \rightarrow (L^X, \mathfrak{U}_2)$ is called covering uniformly continuous if $f^{-1}(\mathscr{C}) \in \mathfrak{U}_1$ for every $\mathscr{C} \in \mathfrak{U}_2$

2.5 Fuzzy Metric Spaces

In this section, a few basic definition and results of Fuzzy metric spaces that are used in the subsequent chapters. Most of the these can be found in [32, 49, 51, 56].

Definition 2.5.1. A mapping $P: L^X \times L^X \to [0, +\infty]$ is called an *L*-pseudo quasimetric on L^X , if *P* satisfies the following conditions **EM1.** $A \neq \underline{0} \Rightarrow P(\underline{0}, A) = +\infty$ $P(A, \underline{0}) = P(A, A) = 0.$

- **EM2.** $P(A, B) \le P(A, C) + P(C, B)$
- **EM3.** 1. $A \subseteq B \Rightarrow P(B, C) \leq P(A, C)$

2.
$$P(A, \bigcup_{\lambda \in \Lambda} B_{\lambda}) = \bigcup_{\lambda \in \Lambda} P(A, B_{\lambda})$$

EM4. If $P(A_{\lambda}, C) < r \Rightarrow C \subseteq B$ for every $\lambda \in \Lambda$, then for every $D \in L^X$: $P(\bigcup_{\lambda \in \Lambda} A_{\lambda}, D) < r \Rightarrow D \subseteq B.$

Definition 2.5.2. A pointwise pseudo-metric on L^X is a map $d: M(L^X) \times M(L^X) \rightarrow [0, +\infty]$ satisfying:

- **M1.** For all $A \in M(L^X)$, d(A, A) = 0;
- **M2.** For all $A, B, C \in M(L^X), d(A, C) \le d(A, B) + d(b, c);$
- **M3.** For all $A, B \in L^X$, $d(A, B) = \bigcap_{C \le D} d(a, c)$;
- **M4.** For all $A, B, C \in M(L^X)$, $A \subseteq B$ implies $d(A, C) \leq d(B, c)$;
- **M5.** Given $A, B \in M(L^X)$, there exists a point $x_{\alpha} \nleq A'$ such that $d(x_{\alpha}, B) < r$ iff there exists $x_{\gamma} \nleq B'$ such that $d(x_{\gamma}, A) < r$

A pointwise pseudo metric d is said to be pointwise metric if d satisfies

M6. d(A, B) = 0 iff $A \subseteq B$.

Theorem 2.5.1. An Erceg's pseudo metric on L^X is equivalent to a family of maps $\{D_r : D_r : L^X \to L^X, r > 0\}$ satisfying the following conditions:

- **D1.** $\forall A \in L^X, D_r(A) \supseteq A;$
- **D2.** $D_r(\bigcup_{i\in\Lambda} A_i) = \bigcup_{i\in\Lambda} D_r(A_i)$
- **D3.** $D_r \circ D_s \subseteq D_{r+s}$
- **D4.** $D_r = \bigcup_{s < r} Ds$

D5. $D^{-1} = D$.

Theorem 2.5.2. If (L^X, d) is a pointwise pseudo metric spaces, then $\mathbb{F}(d) = d(\mathbb{F})$.

Theorem 2.5.3. Let (L^X, \mathbb{F}) be a countable base, then (L^X, \mathbb{F}) is pointwise metrizable if and only if it is a regular Space.

Theorem 2.5.4. [48] A mapping $P : L^X \times L^X \to [0, +\infty]$ is an L-pseudo quasimetric(L-pseudo metric, respectively) on L^X if P satisfies the following conditions (SEMI1)-(SEM3)((SEM1)-(SEM4), respectively:

(SEM1) $B \subseteq A \Rightarrow P(A, B) = \underline{0}, B \neq \underline{0} \Rightarrow P(\underline{0}, B) = +\infty$

(SEM2) $P(A, B) \le P(A, C) + P(C, B)$

(SEM3) $A, B \neq \underline{0} \Rightarrow P(A, B) = \bigcup_{x_{\alpha} \in \beta^*(B)} \bigcap_{y_{\beta} \in \beta^*(A)} P(y_{\beta}, x_{\alpha}).$

(SEM4) " $P(A, C) < r \Rightarrow C \subseteq B$ " \Leftrightarrow " $P(B', D) < r \Rightarrow D \subseteq A'$ "

Definition 2.5.3. Let P be a L-semi-pseudo-metric on L^X . The for any $x_{\alpha} \in L^X$ and $\epsilon > 0$, $B_{\epsilon}(x_{\alpha}) = \bigcup \{ y_{\beta} : d(x_{\alpha}, y_{\beta}) < \epsilon \text{ is a fuzzy set, which is called } \epsilon$ -open ball of x_{α} .

2.6 Fuzzy Proximity spaces

In this section, a few basic definition and results of Fuzzy proximity spaces that are used in the subsequent chapters. Most of these can be found in [41, 42].

Definition 2.6.1. [41] Let δ be binary relation on L^X , i.e., $\delta \subseteq L^X \times L^X$. The fact that $(A, B) \in \delta, (A, B) \notin \delta$ are denoted by the symbols $A\delta B, A\delta B$ respectively. A binary relation δ on L^X is called an L-fuzzy proximity iff

(LFP1) $A\delta B \Rightarrow B\delta A;$

(LFP2) A and B are L-quasi-coincident $\Rightarrow A\delta B$;

- (LFP3) $A\delta B, A \subseteq C, C \subseteq D \Rightarrow C\delta B;$
- (LFP4) $\underline{0}\delta \underline{1};$

(LFP5) $A \not \circ C, B \not \circ C \Rightarrow (A \cup B) \not \circ C;$

(LFP6) $A \not B$ there exists a $C \in L^X$ such that $A \not B C$ and $B \not B C'$

The Pair (L^X, δ) is called an L-fuzzy proximity space.

Remark 2.6.1. The condition (LFP6) equivalent to the following condition:

(LFP6') $A \not \delta B$ there exists a δ -nbhd C of A and D of B such that $C \cap D = \underline{0}$

Definition 2.6.2. A binary relation δ on L^X is said to be an L-fuzzy basic proximity if it satisfies the four conditions

(**PB1**) $A\delta B \Rightarrow B\delta A;$

(PB2) $A\delta(B \bigcup C)$ iff $A\delta B$ or $A\delta C$;

(**PB3**) $\underline{0} \delta A$ for every $A \in L^X$;

(PB4) A and B are L-quasi-coincident $\Rightarrow A\delta B$

Remark 2.6.2. Every L-fuzzy proximity spaces is L-fuzzy basic proximity space. But converse is not be true.

Definition 2.6.3. Let (L^X, δ) be an L-fbps and let $A, B \in L^X$, then B is said to be a δ -neighbourhood of A if $A \not \delta B'$. The set of all δ -neighbourhoods of A is denoted by $\mathscr{N}(A)$. If $A = \underline{0}$, then $\mathscr{N}(A) = L^X$.

Theorem 2.6.1. If (L^X, δ) be an L-fbps, then

- (N1) $B \in \mathcal{N}(A) \Rightarrow A \subseteq B;$
- (N2) $B \in \mathcal{N}(A) \Leftrightarrow A' \in \mathcal{N}(B')$
- **(N3)** $\mathcal{N}(A \bigcup B) = \mathcal{N}(A) \bigcup \mathcal{N}(B)$

Theorem 2.6.2. Let X be a non-empty set and let there be assigned to each $A \in L^X$ a subset $\mathcal{N}(A)$ of L^X satisfying (N1), N(2) and (N3). Then:

- (N4) $B, C \in \mathcal{N}(A)$ implies $B \cap C \in \mathcal{N}(A)$
- (N5) $A \subseteq B \Rightarrow \mathcal{N}(A) \subseteq \mathcal{N}(B)$
- (N6) $B \in \mathcal{N}(A), B \subseteq C \Rightarrow C \in \mathcal{N}(A)$
- **(N7)** $\mathcal{N}(\underline{1}) = \underline{1}$
- (N8) $\underline{1} \in \mathcal{N}(A)$ for all $A \in L^X$.

(N9) $\mathcal{N}(\underline{0}) = L^X$

(N10)
$$\mathscr{N}(A \cap B) \subseteq \mathscr{N}(A) \cap \mathscr{N}(B)$$

Theorem 2.6.3. Let X be a non-empty set and let there be assigned to each $A \in L^X$ a subset $\mathcal{N}(A)$ of L^X satisfying (N1), N(2) and (N3). Then the binary relations δ on L^X defined by

$$A \not \! \delta B \Leftrightarrow B' \in \mathcal{N}(A)$$

is an L-fbp on X.

Definition 2.6.4. Let (L^X, δ_1) and (L^X, δ_2) be two *L*-fuzzy proximity spaces. A function $f^{\rightarrow} : (L^X, \delta_1) \rightarrow (L^X, \delta_2)$ is said to be proximally continuous iff

$$A\delta_1B \Rightarrow f^{\rightarrow}(A)\delta_2f^{\rightarrow}(B)$$

Theorem 2.6.4. A function $f^{\rightarrow} : (L^X, \delta_1) \rightarrow (L^Y, \delta_2)$ is proximally continuous iff for every $A, B \in L^Y$, $A \delta_2 B$ implies $f^{\leftarrow}(A) \delta_1 f^{\leftarrow}(B)$.

Theorem 2.6.5. Let (L^X, δ) be an L-fbps. Define a map $u_{\delta} : L^X \to L^X$ as follows:

for
$$A \in L^X$$
, $u_{\delta} = \bigcap \{ B \in L^X : A \not \delta B' \} = \bigcap \{ B \in L^X : B \in \mathcal{N}(A) \}$

Then u_{δ} is an L-fuzzy closure operator on L^X .
