
CHAPTER 2

PRELIMINARIES

In this chapter, the basic definitions and results are utilized in the subsequent chap-

ters. Most of the definitions and results can be found in [10, 33, 48]. Some brief

notions were used such as nbhd means neighbourhood and iff means if and only if.

2.1 Lattice Structures

Definition 2.1.1. Let P be a set and “ ≤ ” is a relation on P . Then P is called

partially ordered set (briefly poset) with respect to the relation “ ≤ ”, if it satisfies

the following conditions

PO1. Reflexive: a ≤ a for all a ∈ P

PO2. Antisymmetric: For any a, b ∈ P with a ≤ b and b ≤ a implies a = b.

PO3. Transitive: For any a, b, c ∈ P with a ≤ b and b ≤ c implies a ≤ c.

Definition 2.1.2. Let L be a poset and A ⊆ L.
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1. An element x ∈ L is called he join of A, denoted by
∨
A or supA, if,

(a) x is upper bound of A,

(b) if another y is upper bound for A, then x ≤ y

If A is finite, we shall call
∨
A(if it exists) a finite join. For two elements a and

b the join is denoted by a
∨
b.

2. An element x ∈ L is called the meet of A, is denoted by
∧
A or inf A, if,

(a) x is a lower bound of A

(b) if y is lower bound for A, then y ≤ x

If A is finite, is call
∧
A(if it exists) a finite meet. For two elements a and b the

meet is denoted by a
∧
b.

Definition 2.1.3. Let L be a poset. Then,

1. Join-semilattice: Every join for a finite subset of L exists; particulary, the

smallest element exists as the join of non-empty subset.

2. Meet-semilattice: Every meet for a finite subset of L exists; particulary, the

largest element exists as the meet of non-empty subset.

3. Lattice: It is both join-semilatice and meet-semilattice

Remark 2.1.1. A lattice will always be non-empty. Every lattice is always assumed

to possess at least two elements, the smallest element 0L and largest element 1L.

Definition 2.1.4. Let L be a poset. Then,
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1. Complete join-semilattice: Every join for arbitrary subset of L exists, i.e.,

smallest element exists as the join of non-empty subset.

2. Complete meet-semilattice: Every meet for arbitrary subset of L exists, i.e.,

largest element exists as the meet of non-empty subset.

3. Complete lattice: It is both complete join-semilattice and complete meet-

semilattice.

Proposition 2.1.1. Let L be a poset, then the following conditions are equivalent:

1. L is a complete lattice.

2. L has the smallest element and ∀ A ⊆ L, A ̸= ϕ,
∨
A exists in L.

3. L has the largest element and ∀ A ⊆ L, A ̸= ϕ,
∧
A exists in L.

4. L is a lattice and ∀A ⊆ L,A ̸= ϕ,
∨
A exists in L

5. L is a lattice and ∀A ⊆ L,A ̸= ϕ,
∧
A exists in L

Definition 2.1.5. Let L be a complete lattice. Then L is called infinitely distributive

if it satisfies the following conditions

IFD1. For all a ∈ L, ∀ B ⊆ L, a
∧∨

B =
∨

b∈B(a
∧
b).

IFD2. For all a ∈ L, ∀ B ⊆ L, a
∨∧

B =
∧

b∈B(a
∨
b)

where IFD1 and IFD2 is called 1st infinitely distributive law and 2nd infinitely

distributive law respectively.

Remark 2.1.2. The 1st infinitely distributive law is not equivalent to 2nd infinitely

distributive law.
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Proposition 2.1.2. Let L be a complete lattice. Then,

1. L satisfies the IFD1 if and only if ∀A,B ⊆ L,
∧
A
∨∧

B =
∨

a∈A,B∈B(a
∧
b).

2. L satisfies theIFD2 if and only if ∀A,B ⊆ L,
∨
A
∧∨

B =
∧

a∈A,b∈B(a
∨
b).

Definition 2.1.6. Let L be a complete lattice. Then L is called completely distribu-

tive lattice if it satisfies the following conditions:

∀{{ai,j|j ∈ Ji}, i ∈ I} ⊆ P(L) \ ϕ, I ̸= ϕ

CD1.
∧

i∈I(
∨

j∈Jj ai,j) =
∨

Φ∈
∏

i∈I Ji
(
∧

i∈I ai,Φ(i))

CD2.
∨

i∈I(
∧

j∈Jj ai,j) =
∧

Φ∈
∏

i∈I Ji
(
∨

i∈I ai,Φ(i))

where CD1 and CD2 are called completely distributive law.

Remark 2.1.3. For I = {0, 1}, J0 = {0} inCD1 andCD2. SoCD1 implies IFD1 and

CD2 implies IFD2 and hence completely distributive lattice is infinitely distributive.

But converse is not true in general.

Theorem 2.1.3. A complete lattice satisfies CD1 if and only if CD2.

Proposition 2.1.4. Let {Pi : i ∈ I} be a family of posets then the relation “ ≤ ” on∏
i∈I Pi defined by

α, β ∈
∏
i∈I

Pi, α ≤ β ⇔ ∀i ∈ I, α(i) ≤ β(i)

is reflexive, antisymmetric and transitive.

Theorem 2.1.5. Let {Li : i ∈ I} be a family of posets. Then
∏

i∈I Li is a completely

distributive lattice if and only if ∀i ∈ I, Li is completely distributive lattice.
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Definition 2.1.7. Let L be a lattice, α ∈ L. α is called join-irreducible, if α < 1L

and ∀a, b ∈ L, α = a
∨
b⇒ α = a or α = b.

A join-irreducible element of L is called molecule in L.

The set of all molecules in L is denoted by M(L).

Remark 2.1.4. Every element in a completely distributive lattice can be represented

as a join of molecules.

Definition 2.1.8. Let L be a complete lattice. Define a relation ⪯ in L as follows:

For all a, b ∈ L, a ⪯ b iff ∀S ⊆ L, b ≤
∨
S ⇒ ∃s ∈ S such that a ≤ s, ∀ a ∈ L,

denoted by βL(a) = {b ∈ L : b ⪯ a}, β∗L(a) =M(βL(a)) or denoted by them β(a) and

β∗(a) in briefly.

∀a ∈ L,D ⊆ β(a) is called a minimal set of a if
∨
D = a.

Theorem 2.1.6. Let L be a complete lattice,then the following are equivalent:

1. L is completely distributive lattice.

2. ∀a ∈ L , β(a) is minimal set of a.

3. ∀a ∈ L, β∗(a) is minimal set of a.

Theorem 2.1.7. Let L be a complete lattice. Then

1. β : L→ P(L) is an arbitrary join-preserving mapping, i.e., for every A ⊆ L,

β(
∨

A) =
∨
a∈A

β(a)

2. β∗ : L → P(M(L)) is an arbitrary join-preserving mapping, i.e., for every

A ⊆ L,

β∗(
∨

A) =
∨
a∈A

β∗(a)
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where P(L) and P(M(L)) are power sets of L and M(L) respectively.

Definition 2.1.9. A set D equipped with a relation “ ≤ ” is called down directed, if

for any finite set D0 ⊆ D, there exists d0 ∈ D such that d0 ≤ d for all d ∈ D.

Definition 2.1.10. Let L be a lattice, then a map ′ : L→ L is called order reversing

involution if

∀a, b ∈ L, a ≤ b⇒ b′ ≤ a′ and (a′)′ = a

Proposition 2.1.8. Let L be a lattice with order reversing involution ′. Then

1. (
∨

i ai)
′ =

∧
i a
′
i.

2. (
∧

i ai)
′ =

∨
i a
′
i

Definition 2.1.11. A completely distributive lattice L is called a fuzzy lattice or an

F−lattice (in briefly), if L has an order reversing involution ′ : L→ L.

2.2 L−fuzzy sets and L−Topological Spaces

Throughout the thesis, the notion (L,≤,
∧
,
∨
,′ ) as a fuzzy lattice with order reversing

involution ′; inf L = 0L and supL = 1L (in briefly L for the simplicity). The basic

definition and results of L−fuzzy sets and L−topological space can be found in [26,

34, 35, 48]

Definition 2.2.1. Let X be an arbitrary set and L a complete lattice. Let LX will

denote the collection of all mapping A : X → L . Then any member of LX is called

an L−fuzzy set. LX is called an L−fuzzy space.
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Definition 2.2.2. The L−fuzzy sets xα : X → L, where α ∈ L defined by

xα(y) =


α if x = y

0L if x ̸= y

are called the L−fuzzy points. The set of all fuzzy point of X is denoted by Pt(LX).

Remark 2.2.1. The mapping A : X → L and B : X → L defined by A(x) = 1L, ∀x ∈

X and B(x) = 0L ,∀x ∈ X are denoted by 1 and 0 respectively. Clearly, 1 and 0 will

act as the largest and smallest element respectively on the fuzzy lattice LX .

Definition 2.2.3. Let X be a non-empty crisp set and L be a fuzzy lattice with

order reversing involution ′. Let ′ : L → L be an operation on LX is called pseudo

complementary operation, defined by

A′(x) = (A(x))′,∀x ∈ X, ∀A ∈ LX

.

Proposition 2.2.1. Let X be a crisp set and L be a fuzzy lattice with order reversing

involution ′. Then the pseudo-complementary operation ′ : LX → LX is an order

reversing involution.

Definition 2.2.4. For any A,B ∈ LX , then

1. A union B as A
⋃
B defined as A

⋃
B(x) = A(x)

∨
B(x), ∀x ∈ X.

2. A intersection B as A
⋂
B defined as A

⋂
B(x) = A(x)

∧
B(x), ∀x ∈ X

3. A is subset of B as A ⊆ B and defined as A ⊆ B iff A(x) ≤ B(x).

4. Complement of A denoted by A′ defined as A′(x) = A(x)′.
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Remark 2.2.2. For any xα ∈ Pt(LX) and A ∈ LX , xα ∈ A iff α < A(x) and xα ⊆ A

iff α ≤ A(x). Particularly for any yβ ∈ Pt(LX), xα ⊆ yβ iff x = y and α ≤ β.

Proposition 2.2.2. Let LX be an L−fuzzy space. Then

1. LX is a complete lattice for any A ⊆ LX , we have

∀x ∈ X (
∨
A∈A

A)(x) =
∨
A∈A

A(x)

∀x ∈ X (
∧
A∈A

A)(x) =
∧
A∈A

A(x)

2. L is distributive iff LX is distributive.

3. L satisfies IDF1 iff LX satisfies IDF1.

4. L satisfies IDF2 iff LX satisfies IDF2.

5. L is completely distributive iff LX is completely distributive.

Definition 2.2.5. For any ordinary mapping f : X → Y , the induced L-fuzzy

mapping f→ : LX → LY and its L-fuzzy reverse mapping f← : LY → LX respectively

are defined as:

f→(A)(y) =
∨
{A(x) | x ∈ X, f(x) = y}, ∀A ∈ LX , ∀ y ∈ Y.

f←(B)(x) = B(f(x)), ∀B ∈ LY , ∀x ∈ X.

Symbol f→ and f← always denote f→ to be the L-fuzzy mapping induced from an

ordinary mapping f and f← is the L-fuzzy reverse mapping of f→. Both the L-fuzzy

mappings f→ and f← are order preserving.

Theorem 2.2.3. Let LX and LY be L−fuzzy spaces, f : X → Y an ordinary mapping.

Then
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1. f→ is injective iff f is injective.

2. f→ is surjective iff f is surjective.

3. f→ is bijective iff f is bijective.

Theorem 2.2.4. Let LX , LY and LZ be L− fuzzy space, f : X → Y and g : Y → Z

are ordinary mappings. we have

1. g→f→ = (gf)→.

2. f←g← = (gf)←.

Theorem 2.2.5. Let LX and LY be L− fuzzy space, f : X → Y an ordinary mapping.

Then

1. A ⊆ f←f→(A), ∀A ∈ LX .

2. f→f←(B) ⊆ B, ∀B ∈ LY .

3. f→(A) = f→f←f→(A), ∀A ∈ LX .

4. f←f→f←(B) = f←(B), ∀B ∈ LY .

Proposition 2.2.6. Let X and Y be two non-empty sets, L be a fuzzy lattice and

f : X → Y be an ordinary mapping. Then ∀A ∈ LX , (f→(A))′ ⊆ f→(A′) and

f←(A′) = (f←(A))′. Where ′ is the pseudo complementary operation.

Theorem 2.2.7. Let LX and LY be L−fuzzy spaces, f : X → Y an ordinary mapping.

then f← is bijective iff f← ◦ f→ = idLX , f→ ◦ f← = idLY .
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Definition 2.2.6. Let F be a subset of LX , then F is called L−fuzzy topology on LX

(in briefly L−topology), if F is closed under finite intersection and arbitrary union.

The members of F is called L−fuzzy open sets and its complements are called the

L−fuzzy closed sets. The pair (LX ,F) is called L−topological space.

Remark 2.2.3. Let F1 and F2 are two L−topologies on LX . The F2 is called finer

than F1, if F1 ⊆ F2.

Definition 2.2.7. Let (LX ,F) be an L−topological space. Then a non-empty sub-

family B of F is called base for F if

F = {
⋃

A |A ⊆ B}.

Definition 2.2.8. Let (LX ,F) be an L−topological spaces and let A ∈ LX .

1. The interior of A, denoted by int(A) is defined as int(A) = {G : G ∈ F and G ⊆

A}.

2. The closure of A, denoted by cl(A) is defined as cl(A) =
⋂
{F : F ′ ∈ F and A ⊆

F}.

Theorem 2.2.8. Let (LX ,F) be an L−topological spaces. Then

1. int(0) = 0, int(1) = 1 and cl(0) = 0, cl(1) = (1).

2. int(A) ⊆ A and A ⊆ cl(A) ∀A ∈ LX .

3. int(int(A)) = int(A) and cl(cl(A)) = cl(A) ∀A ∈ LX .

4. A ⊆ B, then int(A) ⊆ int(B) and cl(A) ⊆ cl(B), ∀A,B ∈ LX .

5. int(A
⋂
B) = int(A)

⋂
int(B) and cl(A

⋃
B) = cl(A)

⋃
cl(B) ∀A,B ∈ LX .
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6. int(A)′ = cl(A′), int(A′) = cl(A)′, int(A) = cl(A′)′ and cl(A) = int(A′)′ ∀A ∈

LX .

Proposition 2.2.9. Let X be a non-empty set and LX be a fuzzy lattice. Let cl :

LX → LX is called closure operator if it satisfies the following properties

CO1. cl(0) = 0

CO2. A ⊆ cl(A) ,∀A ∈ LX .

CO3. cl(A
⋃
B) = cl(A)

⋃
cl(B), ∀A,B ∈ LX

Then the pair (LX , cl) is called closure space.

Proposition 2.2.10. The closure space is topological if it satisfies CO1,CO2, CO3

and the following

CO4. cl(cl(A)) = cl(A), ∀A ∈ LX

then it is called topological closure operator. Also F = {A ∈ LX : cl(A′) = A′} is an

L−topology.

Proposition 2.2.11. Let X be a non-empty set and LX be a fuzzy lattice. Let

int : LX → LX is called interior operator if

IO1. int(1) = 1

IO2. int(A) ⊆ A , ∀A ∈ LX .

IO3. int(A
⋂
B) = int(A)

⋃
int(B), ∀A,B ∈ LX

Then the pair (LX , int) is called interior space.
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Proposition 2.2.12. The interior space is topological if it satisfies IO1,IO2,IO3

and the following

IO4. int(int(1)) = int(1), ∀A ∈ LX .

then it is called topological interior operator. Also F = {A ∈ LX : int(A) = A} is an

L−topology.

Definition 2.2.9. Let (LX ,F1) and (LY ,F2) be two L−topological spaces. The

mapping f→ : LX → LY is called L− fuzzy continuous mapping iff for any V ∈ F2

implies f←(V ) ∈ F1.

Definition 2.2.10. Let (LX ,F1) and (LY ,F2) be two topological spaces and f→ :

LX → LY be a mapping. Then

1. f→ is called open map, if for any G ∈ F2 we have f→(G) ∈ F2.

2. f→ is called closed map, if for any F ∈ F′1 we have f→(F ) ∈ F′2.

Definition 2.2.11. Let (LX ,F1) and (LY ,F2) be two topological spaces, then f→ :

LX → LY is called an L−fuzzy homeomorphism, if it is bijective, continuous and

open mapping.

Definition 2.2.12. Let {(LXt ,Ft) : t ∈ Λ} be a family of L−topological spaces,

where Λ is the index set. Denote X =
∏

t∈ΛXt. For every t ∈ Λ, let πt : X → Xt be

an ordinary projection define the projection from LX to LY as

π→t : LX → LY

The product topology of L−topologies {Ft : t ∈ Λ} on X is denoted by
∏

t∈Λ Ft, as

the L− topology F on LX generates by the subbase

{π←t (Gt) : Gt, t ∈ Λ}
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and called the L−topological spaces (LX ,F), the product space of L−topological

spaces {(LXt ,F) : t ∈ Λ}, denoted by
∏

t∈Λ(L
Xt ,Ft).

Definition 2.2.13. Let (LX ,F) be an L−topological space. Then (LX ,F) is said to be

regular if for every G ∈ F and xα ⊆ G, there is A ∈ F such that xα ⊆ A ⊆ cl(A) ⊆ G.

Theorem 2.2.13. Product of regular L−topology is regular iff each of L− topology

is regular.

Definition 2.2.14. [48] Let (X,F) be an L− topological space.(LX ,F) is regular, if

every U ∈ F, there exists V ⊆ F such that
⋃

V = U and cl(U) ⊆ U for every V ∈ V .

Definition 2.2.15. For any xα, A,B ∈ LX , xα is said to be quasi-coincident with A,

denoted as xαqA if xα ⊈ A′, i.e., α ≰ A′(x).

A is called quasi-coincident with B at y if A(y) ̸= B′(y), denoted by Aq̂B, if A is

quasi-coincident with B at some y ∈ X.

Corollary 2.2.14. If A and B are quasi coincident at x, both A(x) and B(x) are

not zero and hence A and B intersect x.

Definition 2.2.16. Let xα ∈ Pt(LX). Then an L−fuzzy set U is said to be a quasi-

coincident neighbourhood (Q-nbhd) at xα in an L−topological space (LX ,F), if there

is G ∈ F such that xαqG ⊆ U .

The family of all Q-nbhd at xα in an L−topological space (LX ,F) is denoted by

Q(xα)

Definition 2.2.17. A subfamily A ⊆ Q(xα) is called a Q-nbhd base of xα, if for

every U ∈ Q(xα), there exists V ∈ A such that V ⊆ U .
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Theorem 2.2.15. Let (LX ,F) be an L−topological space. Then for any xα ∈M(LX),

Q(xα) is a down-directed set in LX and 0 /∈ Q(xα).

Theorem 2.2.16. Let (LX ,F) be an L-topological space and A ∈ LX . Then an

L-fuzzy point xα ∈ Ā iff each Q−nbhd at xα is quasi-coincident with A.

Definition 2.2.18. [52] A family A of LX has the finite intersection property if the

intersection of the members of each finite subfamily of A is non-empty.

Definition 2.2.19. [48] An L−topology (LX ,F) is called compact, if every open

cover of (LX ,F) has a finite subcover.

Theorem 2.2.17. [35] Let(LX ,F) be an L−topology, then (LX ,F) is compact iff

1. Every open cover C of closed subset A of LX has a finite subcover.

2. Every closed collection with finite intersection property has non-empty intersec-

tion.

2.3 Convergence structures in L− Topology

In this section, some basic definitions and results regarding net and filters in L−topology

that will necessary in our subsequent chapters. All definition and results can be found

in [35, 36, 37, 48].

Definition 2.3.1. An L−fuzzy space LX , a net S : D → Pt(LX) a net in LX , where

D a directed set . In particular a net S : D →M(LX) a molecule net in LX .

For A ⊆ Pt(LX) and a net S = {S(n) : n ∈ D} such that S(n) ∈ A∀ n ∈ D, we say

S consists of points in A.
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Definition 2.3.2. Let S be a net in an L−topological space (LX ,F) and xα ∈

Pt(LX). Then S is said to be convergent to xα, denoted by S → xα, if for any

U ∈ Q(xα) there is n0 ∈ D such that S(n)q̂U∀n ≥ n0.

Definition 2.3.3. A non-empty sub collection F of LX is said to be a filter in an

L-topological space, if

(F1) 0 ̸= F .

(F2) U1, U2 ∈ F ⇒ U1

⋂
U2 = F .

(F3) U ∈ F and V ∈ LX such that U ⊆ V then V ∈ F .

F is said to be proper in (LX ,F), if F ̸= LX .

Definition 2.3.4. A subfamily B of LX is called a filter base in an L−topological

spaces, if

(B1) 0 /∈ B

(B2) for any U, V ∈ B, there exists W ∈ B such that W ⊆ U
⋂
V .

Definition 2.3.5. If F ∗ be a L−fuzzy ultrafilter on LX , then

(U1) For every A ∈ LX , either A ∈ F ∗ or A′ ∈ F ∗.

(U2) A
⋃
B ∈ F ∗ implies that either A ∈ F ∗ or B ∈ F ∗.

An L−fuzzy filter F is L−fuzzy ultrafilter iff every A ∈ LX , either A ∈ F or A′ ∈ F .

Definition 2.3.6. Let xα ∈ LX and F be a filter in L−topology, then F is said to

be convergent to xα, denoted by F → xα if for any U ∈ Q(xα) there exists F ∈ F

such that F ⊆ U , i.e., Q(xα) ⊆ F .
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An L−fuzzy point xα is called a cluster point of F , denoted by F ∝ xα if every

U ∈ Q(xα) and F ∈ F , U
⋂
F ̸= 0

2.4 Covering L−uniform spaces

In this section, the basic definitions and results of the theory of covering L−uniform

spaces which requires in the subsequent chapters. Most of the definition and results

can be found in [59, 60, 75].

Definition 2.4.1. Let X be a non-empty set. Let A ⊆ LX is called L−fuzzy cover

of X if and only if
⋃

A = 1.

Remark 2.4.1. 1. The set of all L−covers of X is denoted by L− Cov(X), a pre-

ordered set.

2. Let A ,B be L−covers of X, then A
⋃

B = {A
⋃
B : A ∈ A and B ∈ B}.

3. Let A ,B be L−covers of X, then A
⋂

B = {A
⋂
B : A ∈ A and B ∈ B}.

Definition 2.4.2. For any A ,B ⊆ LX . Then A is refinement of B denoted by

A ≼ B if for all A ∈ A , there exists some B ∈ B such that A ⊆ B.

Proposition 2.4.1. Let A ,B be L−covers of X, then

1. A
⋂

B ≼ A and A
⋂

B ≼ B

2. A
⋃

B ≼ A and A
⋃

B ≼ B

Definition 2.4.3. Let xα, A ∈ LX and A ⊆ LX be a L−cover, then
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1. star of A with respect to cover A is denoted by st(A,A ) and defined as

st(A,A ) =
⋃

{B ∈ A : A
⋂

B ̸= 0}

2. star of xα with respect to cover A is denoted by st(xα,A ) and defined as

st(xα,A ) =
⋃

{A ∈ A : xα ∈ A}

3. star of L−cover A is denoted by st(A ) and defined as

st(A ) = {st(A,A ) : A ∈ A }

Proposition 2.4.2. Let A ,B ⊆ LX and A,B ∈ LX , then

1. If A is L− cover then A ⊆ st(A,A ) and consequently, A ≼ st(A ).

2. If A ⊆ B, then st(A,A ) ⊆ st(B,A ).

3. If A ≼ B, then st(A,A ) ⊆ st(A,B).

4. st(
⋃

B,A ) =
⋃

B∈B st(B,A ).

5. If A is an L−cover then st(st(A,A ),A ) ⊆ st(A, st(A )).

6. st(A
⋂
B,C ) ⊆ st(A,C )

⋂
st(B,C ).

7. Let f : X → Y , B ⊆ LY , f−1(B) = {f←(B) : B ∈ B} and let C ∈ LY , then

st(f←(C), f−1(B)) ⊆ f←(st(C,B)).

Remark 2.4.2. Let A and B be two L−covers of LX such that st(A ) ≼ B, then

st(A, st(A )) ⊆ st(A,B) for all A ∈ LX .
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Definition 2.4.4. Let X be a non-empty set. Let U be a family of L−covers of X is

called covering L−uniform space if it satisfies the following conditions

C1. A ≼ B,A ∈ U ⇒ B ∈ U.

C2. For every A ,B ∈ U,A
⋂

B ∈ U

C3. For each A ∈ U, there exists B ∈ U such that st(B) ≼ A .

the pair (LX ,U) is called covering L−uniform space.

Definition 2.4.5. A base for the covering L−uniformity U is any sub-collection of U

from which U can be obtained by applying condition C1.

Proposition 2.4.3. Let (LX ,U) be a covering L−uniform spaces, then {A ∈ LX :

A =
⋃
{B ∈ LX : st(B,A ) ⊆ A for some A ∈ U}} is L−topology on LX and denoted

by F(U).

Definition 2.4.6. Let (LX ,U1) and (LY ,U) be a covering L−uniform spaces. A map-

ping f→ : (LX ,U1) → (LX ,U2) is called covering uniformly continuous if f−1(C ) ∈ U1

for every C ∈ U2

2.5 Fuzzy Metric Spaces

In this section, a few basic definition and results of Fuzzy metric spaces that are used

in the subsequent chapters. Most of the these can be found in [32, 49, 51, 56].

Definition 2.5.1. A mapping P : LX ×LX → [0,+∞] is called an L−pseudo quasi-

metric on LX , if P satisfies the following conditions
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EM1. A ̸= 0 ⇒ P (0, A) = +∞

P (A, 0) = P (A,A) = 0.

EM2. P (A,B) ≤ P (A,C) + P (C,B)

EM3. 1. A ⊆ B ⇒ P (B,C) ≤ P (A,C)

2. P (A,
⋃

λ∈ΛBλ) =
⋃

λ∈Λ P (A,Bλ)

EM4. If P (Aλ, C) < r ⇒ C ⊆ B for every λ ∈ Λ, then for every D ∈ LX :

P (
⋃

λ∈ΛAλ, D) < r ⇒ D ⊆ B.

Definition 2.5.2. A pointwise pseudo-metric on LX is a map d :M(LX)×M(LX) →

[0,+∞] satisfying:

M1. For all A ∈M(LX), d(A,A) = 0;

M2. For all A,B,C ∈M(LX), d(A,C) ≤ d(A,B) + d(b, c);

M3. For all A,B ∈ LX , d(A,B) =
⋂

C<<D d(a, c);

M4. For all A,B,C ∈M(LX), A ⊆ B implies d(A,C) ≤ d(B, c);

M5. Given A,B ∈ M(LX), there exists a point xα ≰ A′ such that d(xα, B) < r iff

there exists xγ ≰ B′ such that d(xγ, A) < r

A pointwise pseudo metric d is said to be pointwise metric if d satisfies

M6. d(A,B) = 0 iff A ⊆ B.

Theorem 2.5.1. An Erceg’s pseudo metric on LX is equivalent to a family of maps

{Dr : Dr : L
X → LX , r > 0} satisfying the following conditions:
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D1. ∀A ∈ LX , Dr(A) ⊇ A;

D2. Dr(
⋃

i∈ΛAi) =
⋃

i∈ΛDr(Ai)

D3. Dr ◦Ds ⊆ Dr+s

D4. Dr =
⋃

s<rDs

D5. D−1 = D.

Theorem 2.5.2. If (LX , d) is a pointwise pseudo metric spaces, then F(d) = d(F).

Theorem 2.5.3. Let (LX ,F) be a countable base, then (LX ,F) is pointwise metrizable

if and only if it is a regular Space.

Theorem 2.5.4. [48] A mapping P : LX × LX → [0,+∞] is an L−pseudo quasi-

metric( L−pseudo metric, respectively) on LX if P satisfies the following conditions

(SEMI1)-(SEM3)((SEM1)-(SEM4), respectively:

(SEM1) B ⊆ A⇒ P (A,B) = 0, B ̸= 0 ⇒ P (0, B) = +∞

(SEM2) P (A,B) ≤ P (A,C) + P (C,B)

(SEM3) A,B ̸= 0 ⇒ P (A,B) =
⋃

xα∈β∗(B)

⋂
yβ∈β∗(A) P (yβ, xα).

(SEM4) “P (A,C) < r ⇒ C ⊆ B” ⇔ “P (B′, D) < r ⇒ D ⊆ A′”

Definition 2.5.3. Let P be a L−semi-pseudo-metric on LX . The for any xα ∈ LX

and ϵ > 0, Bϵ(xα) =
⋃
{yβ : d(xα, yβ) < ϵ is a fuzzy set, which is called ϵ−open ball

of xα.
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2.6 Fuzzy Proximity spaces

In this section, a few basic definition and results of Fuzzy proximity spaces that are

used in the subsequent chapters. Most of these can be found in [41, 42].

Definition 2.6.1. [41] Let δ be binary relation on LX , i.e., δ ⊆ LX × LX . The fact

that (A,B) ∈ δ, (A,B) /∈ δ are denoted by the symbols AδB,A��δB respectively. A

binary relation δ on LX is called an L−fuzzy proximity iff

(LFP1) AδB ⇒ BδA;

(LFP2) A and B are L−quasi-coincident ⇒ AδB;

(LFP3) AδB,A ⊆ C,C ⊆ D ⇒ CδB;

(LFP4) 0��δ1;

(LFP5) A��δC,B��δC ⇒ (A
⋃
B)��δC;

(LFP6) A��δB there exists a C ∈ LX such that A��δC and B��δC ′

The Pair (LX , δ) is called an L− fuzzy proximity space.

Remark 2.6.1. The condition (LFP6) equivalent to the following condition:

(LFP6’) A��δB there exists a δ−nbhd C of A and D of B such that C
⋂
D = 0

Definition 2.6.2. A binary relation δ on LX is said to be an L−fuzzy basic proximity

if it satisfies the four conditions

(PB1) AδB ⇒ BδA;

(PB2) Aδ(B
⋃
C) iff AδB or AδC;

33



(PB3) 0��δA for every A ∈ LX ;

(PB4) A and B are L−quasi-coincident ⇒ AδB

Remark 2.6.2. Every L−fuzzy proximity spaces is L−fuzzy basic proximity space.

But converse is not be true.

Definition 2.6.3. Let (LX , δ) be an L−fbps and let A,B ∈ LX , then B is said to be

a δ−neighbourhood of A if A��δB′. The set of all δ−neighbourhoods of A is denoted

by N (A). If A = 0, then N (A) = LX .

Theorem 2.6.1. If (LX , δ) be an L−fbps, then

(N1) B ∈ N (A) ⇒ A ⊆ B;

(N2) B ∈ N (A) ⇔ A′ ∈ N (B′)

(N3) N (A
⋃
B) = N (A)

⋃
N (B)

Theorem 2.6.2. Let X be a non-empty set and let there be assigned to each A ∈ LX

a subset N (A) of LX satisfying (N1),N(2) and (N3). Then:

(N4) B,C ∈ N (A) implies B
⋂
C ∈ N (A)

(N5) A ⊆ B ⇒ N (A) ⊆ N (B)

(N6) B ∈ N (A), B ⊆ C ⇒ C ∈ N (A)

(N7) N (1) = 1

(N8) 1 ∈ N (A) for all A ∈ LX .

(N9) N (0) = LX
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(N10) N (A
⋂
B) ⊆ N (A)

⋂
N (B)

Theorem 2.6.3. Let X be a non-empty set and let there be assigned to each A ∈ LX

a subset N (A) of LX satisfying (N1),N(2) and (N3). Then the binary relations δ on

LX defined by

A��δB ⇔ B′ ∈ N (A)

is an L−fbp on X.

Definition 2.6.4. Let (LX , δ1) and (LX , δ2) be two L−fuzzy proximity spaces. A

function f→ : (LX , δ1) → (LX , δ2) is said to be proximally continuous iff

Aδ1B ⇒ f→(A)δ2f
→(B)

Theorem 2.6.4. A function f→ : (LX , δ1) → (LY , δ2) is proximally continuous iff

for every A,B ∈ LY , A��δ2B implies f←(A)��δ1f
←(B).

Theorem 2.6.5. Let (LX , δ) be an L−fbps. Define a map uδ : L
X → LX as follows:

for A ∈ LX , uδ =
⋂
{B ∈ LX : A��δB′} =

⋂
{B ∈ LX : B ∈ N (A)}

Then uδ is an L−fuzzy closure operator on LX .

******
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