CHAPTER 2

PRELIMINARIES

In this chapter, the basic definitions and results are utilized in the subsequent chap-
ters. Most of the definitions and results can be found in [10, 33, 48]. Some brief

notions were used such as nbhd means neighbourhood and iff means if and only if.

2.1 Lattice Structures

Definition 2.1.1. Let P be a set and “ < 7 is a relation on P. Then P is called
partially ordered set (briefly poset) with respect to the relation “ <7, if it satisfies

the following conditions

PO1. Reflexive: a < a for all a € P

PO2. Antisymmetric: For any a,b € P with a < b and b < a implies a = b.
PO3. Transitive: For any a,b,c € P with a < b and b < ¢ implies a < c.

Definition 2.1.2. Let L be a poset and A C L.
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1. An element x € L is called he join of A, denoted by \/ A or sup A, if,

(a) z is upper bound of A,

(b) if another y is upper bound for A, then z <y

If A is finite, we shall call \/ A(if it exists) a finite join. For two elements a and

b the join is denoted by a\/b.
2. An element = € L is called the meet of A, is denoted by A A or inf A, if,

(a) z is a lower bound of A

(b) if y is lower bound for A, then y < x

If A is finite, is call A A(if it exists) a finite meet. For two elements a and b the

meet is denoted by a A b.
Definition 2.1.3. Let L be a poset. Then,

1. Join-semilattice: Every join for a finite subset of L exists; particulary, the

smallest element exists as the join of non-empty subset.

2. Meet-semilattice: Every meet for a finite subset of L exists; particulary, the

largest element exists as the meet of non-empty subset.
3. Lattice: It is both join-semilatice and meet-semilattice

Remark 2.1.1. A lattice will always be non-empty. Every lattice is always assumed

to possess at least two elements, the smallest element 0, and largest element 1.

Definition 2.1.4. Let L be a poset. Then,
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1. Complete join-semilattice: Every join for arbitrary subset of L exists, i.e.,

smallest element exists as the join of non-empty subset.

2. Complete meet-semilattice: Every meet for arbitrary subset of L exists, i.e.,

largest element exists as the meet of non-empty subset.

3. Complete lattice: It is both complete join-semilattice and complete meet-

semilattice.
Proposition 2.1.1. Let L be a poset, then the following conditions are equivalent:
1. L 1s a complete lattice.
2. L has the smallest element and¥ A C L, A# ¢, \/ A exists in L.
3. L has the largest element and ¥V A C L, A# ¢, N\ A exists in L.
4. L is a lattice and VA C L, A # ¢,\| A exists in L
5. L is a lattice and VA C L, A # ¢, \ A exists in L

Definition 2.1.5. Let L be a complete lattice. Then L is called infinitely distributive

if it satisfies the following conditions
IFD1. Foralla€ L, VBC L, a A\ B =\, 5(a/\D).
IFD2. Forallac L, VBC L, a\/ AB = \,c5(a\ D)

where IFD1 and IFD2 is called 1st infinitely distributive law and 2nd infinitely

distributive law respectively.

Remark 2.1.2. The 1st infinitely distributive law is not equivalent to 2nd infinitely

distributive law.
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Proposition 2.1.2. Let L be a complete lattice. Then,
1. L satisfies the IFD1 if and only if VA, B C L, NA\V \B =V ,capepla \D).
2. L satisfies theIFD2 if and only if VA, B C L, | ANV B = A ,cspep(aV D).

Definition 2.1.6. Let L be a complete lattice. Then L is called completely distribu-

tive lattice if it satisfies the following conditions:
V{{aijlj e Jitie I} © P(L)\ ¢, 1 # ¢
CD1. /\iel(vjer ai;) = \/cbel_[iEIJi(/\ieI i (7))
CDh2. vz’el(/\jejj ai;) = /\fbel_[iE[Ji(viEI i)
where CD1 and CD2 are called completely distributive law.

Remark 2.1.3. For I = {0,1}, Jo = {0} in CD1 and CD2. So CD1 implies IFD1 and
CD2 implies IFD2 and hence completely distributive lattice is infinitely distributive.

But converse is not true in general.

Theorem 2.1.3. A complete lattice satisfies CD1 if and only if CD2.

Proposition 2.1.4. Let {P, :i € I} be a family of posets then the relation “ <7 on

[Lic; P defined by

a,Be][P, a<BeViel al)<p()

el

1s reflexive, antisymmetric and transitive.

Theorem 2.1.5. Let {L; : i € I} be a family of posets. Then [[..; Li is a completely

il

distributive lattice if and only if Vi € I, L; is completely distributive lattice.
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Definition 2.1.7. Let L be a lattice, a € L. « is called join-irreducible, if @ < 1,
and Va,b € L,a =a\/b=a=aor a =b.
A join-irreducible element of L is called molecule in L.

The set of all molecules in L is denoted by M (L).

Remark 2.1.4. Every element in a completely distributive lattice can be represented

as a join of molecules.

Definition 2.1.8. Let L be a complete lattice. Define a relation < in L as follows:
For all a,b € L,a < biff VS C L,b < \/S = Js € S such that a < s, Va € L,
denoted by Br(a) ={be€ L:b=a}, fi(a) = M(5.(a)) or denoted by them (a) and
f*(a) in briefly.

Va € L,D C f(a) is called a minimal set of a if \/ D = a.

Theorem 2.1.6. Let L be a complete lattice,then the following are equivalent:

1. L is completely distributive lattice.
2. Ya € L, B(a) is minimal set of a.

3. Ya € L, p*(a) is minimal set of a.
Theorem 2.1.7. Let L be a complete lattice. Then

1. B: L — P(L) is an arbitrary join-preserving mapping, i.e., for every A C L,
B\ 4) =\ 8(a)
a€A
2. 5% L — P(M(L)) is an arbitrary join-preserving mapping, i.e., for every
ACL,

s\ A=\ 5

acA
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where P (L) and P (M (L)) are power sets of L and M (L) respectively.

Definition 2.1.9. A set D equipped with a relation “ <7 is called down directed, if

for any finite set Dy C D, there exists dy € D such that dy < d for all d € D.

Definition 2.1.10. Let L be a lattice, then a map ' : L — L is called order reversing
involution if

Va,be L, a<b=10V <d and () =a
Proposition 2.1.8. Let L be a lattice with order reversing involution '. Then
1. (\/z a;) = ia;'
2. (/\2 a;) = ia;

Definition 2.1.11. A completely distributive lattice L is called a fuzzy lattice or an

F—lattice (in briefly), if L has an order reversing involution ' : L — L.

2.2 L—fuzzy sets and L—Topological Spaces

Throughout the thesis, the notion (L, <, A,\/, ) as a fuzzy lattice with order reversing
involution ’; inf L = 0 and sup L = 1, (in briefly L for the simplicity). The basic
definition and results of L—fuzzy sets and L—topological space can be found in [26,

34, 35, 48]

Definition 2.2.1. Let X be an arbitrary set and L a complete lattice. Let LX will
denote the collection of all mapping A : X — L . Then any member of L¥ is called

an L—fuzzy set. LX is called an L—fuzzy space.
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Definition 2.2.2. The L—fuzzy sets x, : X — L, where o € L defined by

a ifz=y
Ta(y) =
0, ifx#y

are called the L—fuzzy points. The set of all fuzzy point of X is denoted by Pt(L¥).

Remark 2.2.1. The mapping A: X — L and B : X — L defined by A(x) = 1., Vz €
X and B(z) =0 ,Vz € X are denoted by 1 and 0 respectively. Clearly, 1 and 0 will

act as the largest and smallest element respectively on the fuzzy lattice L.

Definition 2.2.3. Let X be a non-empty crisp set and L be a fuzzy lattice with
order reversing involution ’. Let ' : L — L be an operation on L¥ is called pseudo

complementary operation, defined by

Al(x) = (A(z)),Vor € X,VA € L

Proposition 2.2.1. Let X be a crisp set and L be a fuzzy lattice with order reversing
involution '. Then the pseudo-complementary operation ' : L* — L* is an order

reversing tnvolution.

Definition 2.2.4. For any A, B € LY, then
1. A union B as A B defined as A|J B(x) = A(z)\/ B(z), Vz € X.
2. A intersection B as A() B defined as A(B(z) = A(z) A B(x), Vo € X
3. Aissubset of B as A C B and defined as A C B iff A(x) < B(xz).

4. Complement of A denoted by A’ defined as A'(z) = A(z)".
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Remark 2.2.2. For any x, € Pt(LX) and A € LX, x, € Aiff « < A(z) and z, C A

iff @ < A(z). Particularly for any yg € Pt(LX), 2, C yp iff z =y and o < .
Proposition 2.2.2. Let L~ be an L—fuzzy space. Then

1. LX is a complete lattice for any o/ C L, we have

veeX (\/ A) =\ A®)

VeeX () A)= )\ A)

2. L is distributive iff L is distributive.

3. L satisfies IDF1 iff LX satisfies IDF1.

4. L satisfies IDF2 iff LX satisfies IDF2.

5. L is completely distributive iff LX is completely distributive.

Definition 2.2.5. For any ordinary mapping f : X — Y, the induced L-fuzzy
mapping [~ : L — LY and its L-fuzzy reverse mapping f< : LY — L respectively
are defined as:

f7(A)y) = V{A@) |z € X, f(z) =y}, VAeL¥, VyeY.

f(B)(x) = B(f(z)), VBe LY, Vz € X.

Symbol f7 and f< always denote f~ to be the L-fuzzy mapping induced from an
ordinary mapping f and f< is the L-fuzzy reverse mapping of f~. Both the L-fuzzy

mappings f~ and f< are order preserving.

Theorem 2.2.3. Let L* and LY be L—fuzzy spaces, f : X — Y an ordinary mapping.
Then
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1. f7 is injective iff f is injective.
2. 7 is surjective iff f is surjective.
3. f7 is bijective iff f is bijective.

Theorem 2.2.4. Let LX, LY and L? be L— fuzzy space, f : X =Y and g:Y — Z

are ordinary mappings. we have
1g7f7=(9f)""
2. [T9= =(9f)".

Theorem 2.2.5. Let LX and LY be L— fuzzy space, f : X — Y an ordinary mapping.
Then

1. AC fof(A), VA e LX.
2. f2f~(B)C B, VBe LY,
3. f7(A) = ffof7(A), VA € LX,
4 fCf7f0(B) = f(B), VBe LY.

Proposition 2.2.6. Let X and Y be two non-empty sets, L be a fuzzy lattice and
f: X = Y be an ordinary mapping. Then YA € L*, (f7(A)) C f7(A) and

f(A) = (fT(A)). Where' is the pseudo complementary operation.

Theorem 2.2.7. Let LX and LY be L—fuzzy spaces, f : X — Y an ordinary mapping.
then f< is bijective iff f< o f7 =idrx, f7 o [T =idpy.
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Definition 2.2.6. Let IF be a subset of L*, then F is called L—fuzzy topology on L*
(in briefly L—topology), if F' is closed under finite intersection and arbitrary union.
The members of F is called L—fuzzy open sets and its complements are called the

L—fuzzy closed sets. The pair (L*,F) is called L—topological space.

Remark 2.2.3. Let F; and F, are two L—topologies on LX. The F, is called finer

than Fl) if Fl g IFQ.

Definition 2.2.7. Let (L*,F) be an L—topological space. Then a non-empty sub-
family £ of F is called base for F if

F={Jo|e C %}
Definition 2.2.8. Let (LX,F) be an L—topological spaces and let A € L¥.

1. The interior of A, denoted by int(A) is defined as int(A) = {G : G € Fand G C
A}

2. The closure of A, denoted by cl(A) is defined as cl(A) = ({F : F' € Fand A C

Theorem 2.2.8. Let (LX) be an L—topological spaces. Then
£ int(0) =0, int(1) =1 and d(0)=0, cl(1)= (1)
2. int(A) C A and ACcl(A) VAeLX.
3. int(int(A)) = int(A) and cl(cl(A)) =cl(A) VAe L¥.
4. AC B, then int(A) C int(B) and cl(A) C cl(B), VA, B € L*.

5. int(AN B) = int(A)(int(B) and cl(AJB) = cl(A)Jcl(B) VA,B e LX.
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6. int(A) = cl(A), int(A") = cl(A), int(A) = cl(A") and cl(A) = int(A") VAe
Lx.

Proposition 2.2.9. Let X be a non-empty set and L* be a fuzzy lattice. Let cl :

LX — LX is called closure operator if it satisfies the following properties
COLl. cl(0) =0

CO2. ACcl(A) VA e L*.

CO3. cl(AUB) =cl(A)Jcl(B), VA, B € L

Then the pair (L™, cl) is called closure space.

Proposition 2.2.10. The closure space is topological if it satisfies CO1,C0O2, CO3

and the following
CO4. cl(cl(A)) = cl(A), VA e L

then it is called topological closure operator. Also F = {A € L* : cl(A") = A’} is an

L—topology.

Proposition 2.2.11. Let X be a non-empty set and L* be a fuzzy lattice. Let

int : LY — LX is called interior operator if
I01. int(1) =1

102. int(A) C A VA € LX.

103. int(A( B) = int(A)Jint(B), VA, B € L*

Then the pair (L, int) is called interior space.
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Proposition 2.2.12. The interior space is topological if it satisfies 101,102,103

and the following

104. int(int(1)) = int(1), VA € L¥.

then it is called topological interior operator. Also B = {A € L* :int(A) = A} is an
L—topology.

Definition 2.2.9. Let (LX,F;) and (LY,F,) be two L—topological spaces. The
mapping f~ : LX — LY is called L— fuzzy continuous mapping iff for any V € F,

implies f< (V) € IFy.

Definition 2.2.10. Let (L% F;) and (LY,F,) be two topological spaces and f~ :

LX — LY be a mapping. Then

1. f7 is called open map, if for any G € Fy we have f7(G) € F,.

2. f7 is called closed map, if for any F' € F| we have f7(F) € F,.

Definition 2.2.11. Let (LX,F;) and (LY, Fy) be two topological spaces, then f~ :
LX — LY is called an L—fuzzy homeomorphism, if it is bijective, continuous and

open mapping.

Definition 2.2.12. Let {(L**,F,) : t € A} be a family of L—topological spaces,
where A is the index set. Denote X = HteA X;. For every t € A, let m; : X — X, be

an ordinary projection define the projection from L* to LY as
7 LY = LY
The product topology of L—topologies {F; : t € A} on X is denoted by [[,., Fy, as
the L— topology F on L* generates by the subbase
{n7(Gy) : G, t € A}
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and called the L—topological spaces (L, F), the product space of L—topological
spaces {(L*,F) : t € A}, denoted by [[,c,(L*, Fy).

Definition 2.2.13. Let (L*,F) be an L—topological space. Then (L*,TF) is said to be

regular if for every G € F and x, C G, there is A € F such that x, C A C cl(A) C G.

Theorem 2.2.13. Product of reqular L—topology is reqular iff each of L— topology

18 reqular.

Definition 2.2.14. [48] Let (X,F) be an L— topological space.(LX,F) is regular, if

every U € I, there exists 7" C F such that | J ¥ = U and cl(U) C U for every V € 7.

Definition 2.2.15. For any z,, A, B € L*, x, is said to be quasi-coincident with A,
denoted as xoqA if 2, € A’ L., a £ A'(z).
A is called quasi-coincident with B at y if A(y) # B'(y), denoted by A¢B, if A is

quasi-coincident with B at some y € X.

Corollary 2.2.14. If A and B are quasi coincident at x, both A(x) and B(z) are

not zero and hence A and B intersect x.

Definition 2.2.16. Let 2, € Pt(L*). Then an L—fuzzy set U is said to be a quasi-
coincident neighbourhood (Q-nbhd) at z,, in an L—topological space (LX), if there
is G € F such that x,qG C U.

The family of all Q-nbhd at x, in an L—topological space (LX,F) is denoted by
D(xq)

Definition 2.2.17. A subfamily &/ C 2(x,) is called a Q-nbhd base of z,, if for

every U € 2(z,), there exists V € & such that V C U.
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Theorem 2.2.15. Let (L*,TF) be an L—topological space. Then for any xo € M(LY),
D(x,) is a down-directed set in L* and 0 ¢ 2(x,).

Theorem 2.2.16. Let (L*X,F) be an L-topological space and A € L*. Then an

L-fuzzy point x4 € A iff each Q—nbhd at x, is quasi-coincident with A.

Definition 2.2.18. [52] A family </ of L~ has the finite intersection property if the

intersection of the members of each finite subfamily of ./ is non-empty.

Definition 2.2.19. [48] An L—topology (L*,TF) is called compact, if every open

cover of (LX) has a finite subcover.
Theorem 2.2.17. [35] Let(L™X,F) be an L—topology, then (LX,F) is compact iff
1. Every open cover € of closed subset A of L~ has a finite subcover.

2. Fvery closed collection with finite intersection property has non-empty intersec-

tion.

2.3 Convergence structures in L— Topology

In this section, some basic definitions and results regarding net and filters in L—topology
that will necessary in our subsequent chapters. All definition and results can be found

in [35, 36, 37, 48].

Definition 2.3.1. An L—fuzzy space L*, anet S: D — Pt(L*) anet in LX, where
D a directed set . In particular a net S : D — M (LX) a molecule net in L.
For A C Pt(L¥) and a net S = {S(n) : n € D} such that S(n) € AY n € D, we say

S consists of points in A.
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Definition 2.3.2. Let S be a net in an L—topological space (LX,F) and z, €
Pt(L*). Then S is said to be convergent to z,, denoted by S — z,, if for any
U € 2(z,) there is ng € D such that S(n)qUVn > ny.

Definition 2.3.3. A non-empty sub collection .# of L is said to be a filter in an

L-topological space, if

(F1) 047

(F2) U,,U, € # = U Uy =

(F3) U e Z and V € L¥ such that U CV then V € .Z
Z is said to be proper in (LX), if # # L*.

Definition 2.3.4. A subfamily % of L¥ is called a filter base in an L—topological

spaces, if
(B1) 0¢ %
(B2) for any U,V € A, there exists W € £ such that W C U (V.

Definition 2.3.5. If .7* be a L—fuzzy ultrafilter on LX, then
(U1) For every A € LX, either A € F* or A’ € F*.
(U2) AU B € " implies that either A € .Z* or B € Z*.

An L—fuzzy filter .7 is L—fuzzy ultrafilter iff every A € LX, either A € .F or A’ €

Definition 2.3.6. Let z, € LX and .% be a filter in L—topology, then .Z is said to
be convergent to z,, denoted by # — z, if for any U € 2(z,) there exists F € %

such that FF C U, i.e., 2(z,) C .Z.
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An L—fuzzy point z, is called a cluster point of .%#, denoted by .#  x, if every

Ue 2(x,)and Fe F, UNF#0

2.4 Covering L—uniform spaces

In this section, the basic definitions and results of the theory of covering L—uniform
spaces which requires in the subsequent chapters. Most of the definition and results

can be found in [59, 60, 75].

Definition 2.4.1. Let X be a non-empty set. Let &/ C L¥ is called L—fuzzy cover

of X if and only if |J &/ = 1.

Remark 2.4.1. 1. The set of all L—covers of X is denoted by L — Cov(X), a pre-

ordered set.
2. Let &7, % be L—covers of X, then &/ |J# ={AUB: A€ o/ and B € A}.
3. Let &7, % be L—covers of X, then &/ (1A ={A(B: A€ < and B € £#}.

Definition 2.4.2. For any &/, % C LX. Then & is refinement of % denoted by

g <X A if for all A € o, there exists some B € %4 such that A C B.
Proposition 2.4.1. Let o/, A be L—-covers of X, then

1. dNAB <A and o (B B

2. A UB < A and A\ B < B

Definition 2.4.3. Let z,, A € L* and &/ C L be a L—cover, then
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1. star of A with respect to cover o is denoted by st(A, o) and defined as
st(A, o) =| J{Be o : A[\|B#0}
2. star of x, with respect to cover 7 is denoted by st(z,, %7) and defined as

st(zeq, o) :U{AEM:J;Q € A}

3. star of L—cover & is denoted by st(<7) and defined as

st(of) ={st(A, ) : Ae o}

Proposition 2.4.2. Let o7, C L~ and A, B € LX, then
1. If o is L— cover then A C st(A, o) and consequently, of < st(<7).
2. If AC B, then st(A, o) C st(B, o).
3. If of <X B, then st(A, o) C st(A, B).
4. st(UAB, o) =Upey st(B, ).
5. If & is an L—cover then st(st(A, o), o) C st(A, st()).
6. st(ANB,%€) C st(A,€)()st(B,%).

7. Let f: X =Y, BCLY, fYPB) = {f(B): B B} and let C € LY, then
st(f(C), 7)) € [ (st(C, A)).

Remark 2.4.2. Let &/ and % be two L—covers of L™ such that st(«/) < 4, then
st(A,st()) C st(A, B) for all A e L*.
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Definition 2.4.4. Let X be a non-empty set. Let L be a family of L—covers of X is

called covering L—uniform space if it satisfies the following conditions
Cl. & X B, o €= A el

C2. For every of , B € M, o/ (% € U

C3. For each &7 € 4, there exists & € 4 such that st(B) < .

the pair (LX,4) is called covering L—uniform space.

Definition 2.4.5. A base for the covering L—uniformity 4 is any sub-collection of i

from which 4 can be obtained by applying condition C1.

Proposition 2.4.3. Let (LX) be a covering L—uniform spaces, then {A € L* :
A=U{B e L :st(B,o) C A for some o € UU}} is L—topology on L* and denoted
by F(L1).

Definition 2.4.6. Let (L~,4l;) and (LY, ) be a covering L—uniform spaces. A map-
ping £~ : (LX) — (LX, 4y) is called covering uniformly continuous if f~1(%) €

for every € € U,

2.5 Fuzzy Metric Spaces

In this section, a few basic definition and results of Fuzzy metric spaces that are used

in the subsequent chapters. Most of the these can be found in [32, 49, 51, 56].

Definition 2.5.1. A mapping P : L* x LX — [0, +-00] is called an L—pseudo quasi-

metric on L~ if P satisfies the following conditions
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EMI1. A#0= P(0,A) = 00

P(A,0) = P(A, A) = 0.

EM2. P(A, B) < P(A,C) + P(C, B)

EMS3.

1. AC B= P(B,C) < P(A,C)

2. P(A,Uyen Br) = Uyen P(A, By)

EMA4. If P(A),C) < r = C C B for every A\ € A, then for every D € L*:

P(U,ep Ax, D) <7 = D C B.

Definition 2.5.2. A pointwise pseudo-metric on L~ is amap d : M (L*) x M (L*) —

0, +-00] satisfying:

M1.

M2.

Ma3.

M4.

MS5.

For all A € M(LX),d(A, A) = 0;

For all A, B,C € M(LY), d(A,C) < d(A, B) +d(b, c);

For all A, B € L%, d(A, B) = N¢._pd(a,c);

For all A, B,C € M(LX), A C B implies d(A, C) < d(B, ¢);

Given A, B € M(L¥), there exists a point z, £ A’ such that d(z,, B) < r iff

there exists x, £ B’ such that d(z,, A) <r

A pointwise pseudo metric d is said to be pointwise metric if d satisfies

MS6.

d(A,B) =0 iff AC B.

Theorem 2.5.1. An Erceg’s pseudo metric on L~ is equivalent to a family of maps

{Dr

: D, LY — LX r > 0} satisfying the following conditions:
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D1. VA € LX D, (A) D A;

D2. Dy (Uiea Ai) = Uiea Dr(Ai)

D3. D,oD, C D, ,

D4. D, =J,_, Ds

D5. D! =D.

Theorem 2.5.2. If (LX,d) is a pointwise pseudo metric spaces, then F(d) = d(FF).

Theorem 2.5.3. Let (LX,F) be a countable base, then (L, F) is pointwise metrizable

if and only if it is a regqular Space.

Theorem 2.5.4. [/8] A mapping P : LX x LX — [0,+00] is an L—pseudo quasi-
metric( L—pseudo metric, respectively) on L if P satisfies the following conditions

(SEMI1)-(SEMS3)((SEM1)-(SEM}), respectively:

(SEM1) BC A= P(A,B) =0, B#0= P(0,B) = +00
(SEM2) P(A,B) < P(A,C)+ P(C,B)

(SEM3) A,B# 0= P(A B) =U,.csm myﬁeg*(A) P(ys, xa).
(SEM4) “P(A,C)<r=CCB & “P(B',D)<r=DCA"”

Definition 2.5.3. Let P be a L—semi-pseudo-metric on LX. The for any z, € L¥
and € > 0, Be(za) = Hys : d(xa,ys) < € is a fuzzy set, which is called e—open ball

of x,.
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2.6 Fuzzy Proximity spaces

In this section, a few basic definition and results of Fuzzy proximity spaces that are

used in the subsequent chapters. Most of these can be found in [41, 42].

Definition 2.6.1. [41] Let § be binary relation on LY, i.e., § € L* x L*. The fact
that (A, B) € 6,(A, B) ¢ § are denoted by the symbols AdB, AJB respectively. A

binary relation 6 on L¥ is called an L—fuzzy proximity iff

(LFP1) A0B = BJA;

(LFP2) A and B are L—quasi-coincident = AdB;

(LFP3) A6B,AC C,C C D = COB;

(LFP4) 041

(LFP5) AfC, BFC = (AU B)JC;

(LFP6) AFB there exists a C' € LX such that AJC and BFC’

The Pair (L, 6) is called an L— fuzzy proximity space.

Remark 2.6.1. The condition (LFP6) equivalent to the following condition:
(LFP6’) AJB there exists a d—nbhd C of A and D of B such that C(\D =0

Definition 2.6.2. A binary relation § on L is said to be an L—fuzzy basic proximity

if it satisfies the four conditions
(PB1) AéB = BiA;

(PB2) A6(BUC) iff AdB or AdC,
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(PB3) 0§A for every A € L¥;
(PB4) A and B are L—quasi-coincident = AJB

Remark 2.6.2. Every L—fuzzy proximity spaces is L—fuzzy basic proximity space.

But converse is not be true.

Definition 2.6.3. Let (L, §) be an L—fbps and let A, B € L, then B is said to be
a d—neighbourhood of A if AJB’. The set of all §—neighbourhoods of A is denoted
by A (A). If A= 0, then A (A) = L*.

Theorem 2.6.1. If (LX,5) be an L—fbps, then
(N1) Be ¥ (A)= AC B;

(N2) Be ¥ (A) e A e (B

(N3) A4 (AUB) = A4 (A)UA(B)

Theorem 2.6.2. Let X be a non-empty set and let there be assigned to each A € L
a subset N (A) of L satisfying (N1),N(2) and (N3). Then:

(N4) B,C € N (A) implies BN C € N (A)
(N5) AC B = 4 (A) C.¥(B)

(N6) Be ¥ (A), BCC = Cc.N¥(A)
(NT) (1) =1

(N8) 1€ A (A) for all A€ LX.

(N9) #(0) = LX
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(N10) A (AN B) € A (A) A (B)

Theorem 2.6.3. Let X be a non-empty set and let there be assigned to each A € L
a subset N (A) of L satisfying (N1),N(2) and (N3). Then the binary relations § on
LX defined by

AJB & B' € 4 (A)

1s an L—fbp on X.

Definition 2.6.4. Let (LX,6,) and (L*,d,) be two L—fuzzy proximity spaces. A

function f~ : (LX,8;) — (LY, d,) is said to be proximally continuous iff

Theorem 2.6.4. A function f~ : (LX,8,) — (LY, 8y) is proximally continuous iff

for every A, B € LY, A}%B implies f~(A)}f(B).

Theorem 2.6.5. Let (LX,5) be an L—fbps. Define a map us : L* — L as follows:
for Ae LX us=({BeLX:AfB'}=(\{Becl*:Be V(A)}

Then us is an L—fuzzy closure operator on L.

Kokoskokoksk
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