
CHAPTER 6

COMPLETENESS AND COMPACTNESS

6.1 Introduction

In the previous chapter 5, the notion of covering L−locally uniform space is introduced

and then various important results of uniform spaces concerning characterisation of

L−topology, weakly uniform continuous functions and problem of metrization is also

considered in the same context. It is become pertinent to investigate the possible

role of notions of completeness, compactness and totally boundedness in the context

of covering L−locally uniform space. For this the notions of Cauchy filters, weakly

Cauchy Filter in the context of covering L−locally uniform spaces introduced, and

then studied convergence structures such as strongly completeness, hereditary prop-

erty, and isomorphic. Also established the equivalency of the compactness and com-

pleteness in the context of covering L−locally uniform spaces, and then the uniqueness

property in the same.
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6.2 Completeness

In this section, the notions of Cauchy filters, weakly Cauchy Filter, in the context

of covering L−locally uniform spaces introduced, and then studied strongly com-

pleteness, hereditary property, and isomorphic in the context of covering L−locally

uniform spaces.

Definition 6.2.1. Let (LX ,U) be a covering L−locally uniform spaces, then a filter

F is called cauchy filter for each A ∈ U, there exists F ∈ F and A ∈ A such that

F ⊆ A

Definition 6.2.2. A filter F to be weakly Cauchy if each A ∈ U, there is a filter G

containing F and G ∈ G such that G ⊂ A, for some A ∈ A .

Clearly, Cauchy filters are weakly Cauchy filters.

Definition 6.2.3. A covering L−locally uniform space (LX ,U) is said to be (strongly)

complete if every (weakly) Cauchy filter in (LX ,U) converges.

Definition 6.2.4. Let f→ : (LX ,U) → (LY ,V) be a function, then f→ is said to

be weakly uniform isomorphism iff f→ is bijective and both f→ and f← are weakly

uniform continuous.

Proposition 6.2.1. Let A and B be L−covers and let A ∈ LX be L−fuzzy subset,

then we have st(A,A
⋂

B) ⊆ st(A,A )
⋂
st(A,B)

Lemma 6.2.2. Let (LX ,U) be a covering L−locally uniform spaces, then the collec-

tion

{st(xα,A ) : A ∈ U} is the family of all Q-nbhd at xα in (LX ,U(F)).
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Proof. By regularity for xα ∈ LX and A ∈ U, there exists an L−fuzzy open set

G such that xα ⊆ G ⊆ cl(G) ⊆ st(xα,A ). Which implies xα ∈ cl(G) and then

by Theorem 2.2.16, xαqG ⊆ st(xα,A ). By Definition 2.2.16, we have st(xα,A ) is

Q−nbhd at xα in (LX ,F(U)).

Theorem 6.2.3. Convergent filter in covering L−locally uniform spaces is weakly

Cauchy filter.

Proof. Let (LX ,U) be a covering L−locally uniform space and F be a filter such

that for some xα ∈ LX ,F → xα in (LX ,F(U)). Let Q(xα) = {st(xα,A ) : A ∈ U},

then by Lemma 6.2.2, Q(xα) is Q−nbhd in F(U). Since F is convergent then by

Definition 2.3.6, for any U = st(xα,B) ∈ Q(xα), there exists F ∈ F such that

F ⊆ U . Now let G = {st(U,A ) : A ∈ U}, then G ̸= 0 and as by Proposition 6.2.1,

st(U,A
⋂

B) ⊆ st(U,A )
⋂
st(U,B). Again by Definition 5.2.1, (A

⋂
B) ∈ U, so

st(U,A
⋂

B) ∈ G , implies G is base for a filter. Also F ⊆ U = st(xα,A ) ⊆ st(U,A )

implies F is weakly Cauchy filter.

Definition 6.2.5. Let (LX ,U) be a covering L−locally uniform spaces and A ∈

LX . Let for each B ∈ U define UA = {A
⋂
B : B ∈ B ∈ U}. Then UA is a

covering L−locally uniform spaces on A which we call a sub covering L−locally

uniform spaces on A and (A,UA) said to be the subspace. UA is open or closed sub

covering L−uniform spaces according to A ∈ F(U) or A′ ∈ F(U).

Proposition 6.2.4. Let F be a filter on a subspace of (A,UA), then F is also filter

on (LX ,U).

Proof. Let (LX ,U) be a covering L−locally uniform space and let A ∈ LX be a
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L−fuzzy subset, then by Definition 6.2.5, (A,UA) is a subspace. Suppose F be filter

on (A,UA), then for any F ∈ F ⊂ LA implies F ∈ F ⊂ LX as A ∈ LX , so F is also

filter on LX .

Lemma 6.2.5. Let F be a weakly Cauchy filter in a covering L−locally uniform

space (LX ,U) and let A ∈ LX . Then FA = {A
⋂
F : F ∈ F} is weakly Cauchy filter

in (A,UA).

Proof. Let F be a weakly Cauchy in a covering L−locally uniform spaces (LX ,U).

Also let A ∈ LX , then FA = {A
⋂
F : F ∈ F}. Since F is weakly Cauchy filter

there exists another filter G (say) containing F . So, GA = {A
⋂
G : G ∈ G } and

A
⋂
F ⊆ A

⋂
G, as F ⊆ G, implies GA is filter containing FA, therefore FA is weakly

Cauchy filter in (A,UA).

Theorem 6.2.6. Every closed subspace in strongly complete covering L−locally uni-

form spaces is strongly complete.

Proof. Let (LX ,U) be a strongly complete covering L−locally uniform space. Let A

is closed subset of LX , and then by Definition 6.2.5, (A,UA) be a closed subspace

of (LX ,U). Let F be a weakly Cauchy filter on (A,UA), and then by proposition

6.2.4, F is weakly Cauchy filter on (LX ,U). Since (LX ,U) is strongly complete, so

F → xα ∈ LX . Since A is closed subset of LX so we must have xα ∈ A. So, F is

converges in (A,UA). Hence (A,UA) is strongly complete.

Theorem 6.2.7. Let (LX ,U) and (LY ,V) be covering L−locally uniform spaces and

f→ : (LX ,U) → (LY ,V) be weakly uniform continuous. If F is weakly filter in

(LX ,U), then f→(F ) is weakly cauchy filter in (LY ,V).
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Proof. Let F be a weakly Cauchy filter in (LX ,U) and let C ∈ V. Since f→ :

(LX ,U) → (LY ,V) be weakly uniform continuous, therefore f−1(C ) ∈ U, where

f−1(C ) = {f←(C) : C ∈ C }. As F is a weakly Cauchy filter on (LX ,U), then by

Definition 6.2.2, there exists a filter G containing F such that G ⊆ f←(A) for some

f←(A) ∈ f−1(C ) ⇒ f→(A) ∈ C .Since f→ is order preserving and hence f→(G) ⊆

f→(A). Hence f→(G ) is a filter containing f→(F ), with f→(G) ⊆ f→(A). Which

implies f→(F ) is weakly Cauchy filter on (LY ,V).

Theorem 6.2.8. Let (LX ,U) and (LY ,V) be two covering L−locally uniform spaces

and f→ : (LX ,U) → (LY ,V) be weakly uniform isomorphism, then (LX ,U) is strongly

complete iff (LY ,V) is strongly complete.

Proof. (⇒) Let (LY ,V) be a strongly complete and let F be a weakly Cauchy fil-

ter on (LX ,U). Then by Theorem 6.2.7, f→(F ) is weakly Cauchy filter on (LY ,V).

Therefore f→(F ) is converges to xα ∈ LY being (LY ,V) be a strongly complete i.e.,

f→(F ) → xα ∈ LY . Also f→ : (LX ,U) → (LY ,V) being weakly uniform isomor-

phism, then by Definition 6.2.4, f← is weakly uniform continuous, so f←(f→(F ))

is weakly Cauchy filter on (LX ,U). Since f→ is an L−fuzzy homeomorphism being

weakly uniform isomorphism and so, f←(f→(F )) → f←(xα) and being f→ bijective

as weakly uniform isomorphism, therefore by Theorem 2.2.7, f←(f→(F )) = F →

f←(xα) ∈ LX and hence (LX ,U) is strongly complete.

(⇐) It follows the other way implication.

Hence the theorem.
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6.3 Compactness and Totally boundedness

In this section, the study equivalency of compactness and completeness in the context

of covering L−locally uniform spaces, and then uniqueness of covering L−locally

uniform spaces is investigated.

Definition 6.3.1. Let (LX ,U)be a covering L−locally uniform space then it is said

to be totally bounded if for all A ∈ U there is a finite L−fuzzy set F ∈ Pt(LX) such

that st(F,A ) = 1.

Lemma 6.3.1. If f→ is weakly uniform continuous then A ∈ f→(U) iff f←(A ) ∈ U.

Proof. Straight forward.

Theorem 6.3.2. Let f→ : (LX ,U1) → (LY ,U2), weakly uniformly continuous. If

(LX ,U1) compact then (LY , f→(U1)) is compact.

Proof. Let C be an open covering of LY . Then f←(C ) = {f←(C) : C ∈ C } is open

covering of LX as f→ is weakly uniformly continuous. By compactness there exists

a finite subcover of f←(C ), i.e.,
⋃n

i=1 f
←(Ci) = 1, n ∈ N where f←(Ci) ∈ f←(C ).

Now, by Lemma 6.3.1,
⋃n

i=iCi = 1. Hence (LX , f→(U1)) is compact.

Theorem 6.3.3. Every compact covering L−locally uniform spaces is totally bounded.

Proof. Let (LX ,U) be a compact space. Then for any A ∈ U, the collection

{st(xα,A ) : xα ∈ Pt(LX)}

is an open cover of 1.

Now, since 1 is closed. Therefore, by compactness, there exists finite subcover of

{st(xα,A ) : xα ∈ Pt(LX)}
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For some finite L−fuzzy points xαi
, 1 ≤ i ≤ n, n ∈ N such that

⋃n
i=1 st(xαi

,A ) = 1

⇒ st(
⋃n

i=1 xαi
,A ) = 1 ⇒ st(F,A ) = 1, where

⋃n
i=1 xαi

= F . Since F is finite and

hence (LX ,U) is totally bounded.

Theorem 6.3.4. In covering L−locally uniform space every ultra-filter is a weakly

Cauchy filter.

Proof. Let F ∗ be ultra-filter on (LX ,U). Then the collection B = {st(xα,A ) : xα ∈

Pt(LX)} is base for U by totally boundedness there is finite L−fuzzy points xαi
,

1 ≤ i ≤ n, n ∈ N such that
⋃n

i=1 st(xαi
,A ) = 1. But 1 ∈ F ∗, then by Definition

2.3.5, F ∈ F ∗ such that F ⊆ st(xα,A ) for some xα ∈ Pt(LX). Hence B is filter

base containing F ∗, so F ∗ is a weakly Cauchy filter.

Remark 6.3.1. Every L−fuzzy filter has the finite intersection property.

Lemma 6.3.5. Let (LX ,U) be a compact L−locally uniform spaces, then every filter

has a cluster point.

Proof. Let (LX ,U) be compact and F be a filter. Then G = {cl(F ) : F ∈ F} is closed

filter. Then by Theorem 2.2.17 and Remark 6.3.1, G has a finite intersection property

with non-empty intersection, i.e.,
⋂

G ̸= 0. This implies there exists xα ∈ LX such

that xα ∈
⋂
cl(F ) ⇒ xα ∈ cl(F ), with F ∈ F . Hence xα is a cluster point of F .

Theorem 6.3.6. Every compact covering L−locally uniform spaces is a strongly com-

plete.

Proof. Let (LX ,U) be a compact covering L−locally uniform spaces. Let F be a

weakly Cauchy filter on (LX ,U), then for each A ∈ U there exists a filter G containing

F with G ∈ G such that G ⊂ A for some A ∈ A . Also for A ∈ A there exists
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F ∈ F such that F ⊆ A as F is Cauchy filter. By Theorem 6.3.5, G is has a

cluster point, i.e., there exists xα ∈ LX such that xα ∈
⋂
cl(G), G ∈ G . This implies

xα ∈ cl(G), then by Theorem 5.2.9, st(xα,A )q̂G [ Since the family of Q-nbhd at xα

is Q(xα) = {st(xα,A ) : A ∈ U} ]. Also st(xα,A )
⋂
G ̸= 0, there exists yβ ∈ LX

such that yβ ∈ st(xα,A )
⋂
G ⇒ yβ ∈ st(xα,A ) and yβ ∈ G. Now also we have,

yβ ∈ st(yβ, st(A )) ⇒ G ⊆ st(yβ, st(A )) ⊆ (xα,A ) [as yβ ∈ st(xα,A )]. Now since F

is weakly Cauchy filter for each F ∈ F with F ⊆ G, F ⊆ G ⊆ st(xα,A ) ∈ Q(xα).

Which implies F converges at xα. Hence strongly complete.

Theorem 6.3.7. Let (LX ,U) be a covering L−locally uniform space, then the space

is compact iff

1. (LX ,U) is totally bounded, and

2. (LX ,U) is strongly complete.

Proof. (⇒) Let (LX ,U) be a compact covering L−locally uniform spaces then by

Theorem (6.3.3) (i) (LX ,U) is totally bounded and

Theorem (6.3.6) (ii) (LX ,U) is strongly complete.

(⇐) Let (LX ,U) be a totally bounded and strongly complete covering L−locally

uniform space. Let A ∈ U be an open cover, then by totally boundedness there

exists finite L− fuzzy set F such that st(F,A ) = 1. For each xαi
∈ F we consider

one Ai for some xα ∈ Ai ∈ A . Then it is clear that
⋃
Ai = 1 implies {Ai} is a

finite subcover of A as F is finite L−fuzzy set. Hence (LX ,U) is compact covering

L−locally uniform space.
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Thus in a totally bounded covering L−locally uniform spaces, compactness and

strong completeness are equivalent.

Lemma 6.3.8. Let (X,F) be a regular L− topological space. For each open cover U

such that there exists an open cover V such that cl(V ) ≼ U

Proof. Straight forward.

Theorem 6.3.9. Let (LX ,F) compact regular L−topolgy. Then the L−topology gen-

erates a unique covering L−uniform space.

Proof. Let U and U∗ two covering L−locally uniform spaces on (LX ,F) for the com-

pact regular L−topological spaces. Let A ∈ U, then there exists finite subcover say

{Ai : 1 ≤ i ≤ n} also by Lemma 6.3.8 there exists a covering B ∈ U such that

cl(B) ≼ {Ai : 1 ≤ i ≤ n} i.e, for each i there exists some cl(B) ∈ cl(B) such that

cl(B) ⊆ Ai. Let k be a positive integer such that k ≤ n. For each xα ∈ cl(B) ⊆ Ak

there exists A ∗ ∈ U∗ with st(xα, st(B∗)) ⊆ st(xα,A ∗) for some B∗ ∈ U∗. Put

A ∗
k = {st(xα,A ∗) : xα ∈ cl(B) ⊆ Ak}, since cl(B) is compact so, A ∗

k has finite

sub cover C ∗k . For each A ∗ ∈ U∗ there is a A ∗
k such that st(xα,A ) ∈ D∗k for each

xα ∈ cl(B) ⊆ Ak. which implies st(xα,C ∗k ) ⊆ Ak for each xα ∈ cl(B) ⊆ Ak.

Next we choose A ∗ ∈ U∗ such that A ∗ ≼ A ∗
k for each k = 1, 2, 3 . . . n. Let

xα ∈ LX , then xα ∈ cl(B) ⊆ Aj for some j ≤ n. Therefore xα ∈ st(xα,A ∗
k ) ⊆ Ak.

Consequently A ∗ ≼ {Ai : 1 ≤ i ≤ n}. But then A ∈ U, we conclude that U ⊂ U∗.

Similarly U∗ ⊂ U. Hence the theorem.

******
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