
CHAPTER 5

COVERING L-LOCALLY UNIFORM SPACES

5.1 Introduction

In the previous chapter 3 the notion of CLS-uniform space is developed in the category

of C-TOP.Various important results of uniform spaces concerning interior space,

topological interior space, metrizablity and uniformly continuous functions have been

developed and studied proximity relation in chapter 4 in the same context. It is,

however observed that generating spaces are interior spaces but not L−topological

spaces. So, it is become pertinent to investigate whether there are other generalised

uniform space in the same category weaker than covering L−uniform space could be

developed therein. While looking for an answer to the above question, the notion

of covering L−locally uniform space is introduced. The compatibility of covering

L−locally uniform spaces and L−topology is examined. Weakly uniform continuous

functions are introduced in the same context as a generalisation uniformly continuous

and for continuity with respect to the induced L−topological spaces. In other to
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show that the notion of covering L−locally uniform spaces lies between CLS-uniform

space and covering L−uniform spaces, suitable examples are provided. Further, the

problem of metrization of the introduced notion of covering L−locally uniform space

is considered and a satisfactory answer has been provided.

5.2 Covering L-locally uniform spaces

In this section, the study of covering L−locally uniform spaces, by generalising

covering L−uniform spaces. Covering L-uniform spaces shows that every covering

L−uniform space is covering L−locally uniform space, and every covering L−locally

uniform space is a CLS-uniform space. But the converse of the statement is not valid.

Hence, it founded that CLS-Uniform spaces are weaker than covering L−locally uni-

form spaces, and covering L−locally uniform spaces is weaker than covering L−locally

uniform spaces. Interior operator, closure operator, were studied in the context of

covering L−locally uniform spaces, and some significant results were obtained.

Definition 5.2.1. A CLS-Uniform spaces (LX ,U) is said to be a covering L− locally

uniformity on LX , if it satisfies SC1 and SC2 and the following axiom:

LC. For each A ∈ U and for all xα ∈ LX , there exists B ∈ U such that st(xα, st(B)) ⊆

st(xα,A ).

In that case we called the pair (LX ,U) as covering L− locally uniform space.

Let U1 and U2 be covering L−uniform spaces on LX . If U1 ⊂ U2, then U2 is called

finer than U1.

Theorem 5.2.1. Every covering L-locally uniform space is a covering CLS-uniform

space.
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Proof. It follows from the Definition 5.2.1.

Converse of above Theorem is not true, for this an example is given below.

Example 5.2.1. LetX = {a, b, c} with L = [0, 1]. Consider A = {{a}, {b}, {a, b}{c}}

and B = {{a}, {a, b}, {b, c}, {c}} are L−covers , then B = {A ,B} is a base for CLS-

uniform space. We have st(A ) = st(B) = {a, b, c}; st(a,A ) = st(a,B) = st(b,A ) =

{a, b}; st(b, B) = {a, b, c}; st(c,A ) = {c}; st(c,B) = {b, c}; st(a, st(A )) =

st(a, st(B)) = st(a, st(B)) = st(b, st(A )) = st(b, st(B)) = st(c, st(A )) = st(c, st(B))

= {a, b, c}; But for a and A , there is no B such that st(a, st(B)) ⊆ st(a,A ).

From Theorem 5.2.1, and Example 5.2.1, it may conclude that every CLS-unform

spaces is generalisation of covering L−locally uniform spaces. and also clearly, by

Definition 2.4.4, it follows that every covering L− uniform space is covering L−locally

uniform spaces. But the converse is not true for this an example is given below,

Example 5.2.2. Let X = {a, b, c, d} and L = [0, 1].

Let A = {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}},

B = {{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}.

Then A
⋂

B = {{a}, {b}, {c}, {d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}.

Let B = {A ,B,A
⋂

B}. Then clearly, B satisfies the axiom (SC2). Now we have

st(A ) = {a, b, c, d}; st(B) = {a, b, c, d}; st(A
⋂

B) = {a, b, c, d}; Also, st(a, st(A ))

= st(b, st(A )) = st(c, st(A )) = st(d, st(A )) = st(a, st(B)) = st(b, st(B)) = st(c, st(B))

= st(d, st(B)) = {a, b, c, d}; st(a, st(A
⋂

B))= st(b, st(A
⋂

B)) = st(c, st(A
⋂

B))

= st(d, st(A
⋂

B)) = {a, b, c, d} and st(a,A ) = st(a,B) = st(a,A
⋂

B) = st(b,A )

= st(b,B) = st(b,A
⋂

B) = st(c,A ) = st(c,B) = st(c,A
⋂

B) = st(d,A ) =

st(d,B) = st(d,A
⋂

B) = {a, b, c, d}. Thus B satisfies the axioms (LC) and conse-

quently, B is a base for some covering L−local uniformity on LX . But for A , there is

55



no B such that st(B) ⪯ A . This implies B is not a base for covering L−uniformity

on LX .

Thus this can be conclude that covering L−locally uniform spaces is a generalisa-

tion of covering L−uniform spaces in the sense of Garćia et at.[59].

In order to show that every covering L−local uniformity generates an L−topology

the following lemma is considered.

Lemma 5.2.2. Let (LX ,U) be covering L−locally uniform space. Then the mapping,

int : LX → LX defined by

int(A) =
⋃

{xα ∈ LX : st(xα,A ) ⊆ A for some A ∈ U},

for all A ∈ LX is an interior operator on LX .

Proof. Clearly, (IO1) int(1) = 1 and (IO2) For all A ∈ LX , int(A) ⊆ A satisfied

trivially.

(IO3) Since L is completely distributive complete lattice, therefore by Proposition

2.2.2(5), LX is also so. Hence, int(A
⋂
B) = int(A)

⋂
int(B) follows immedi-

ately form (LC2).

(IO4) For anyA ∈ LX , let xα ⊆ int(A), then there exists A ∈ U such that st(xα,A ) ⊆

A. Since U is a covering L-local uniformity, therefore for xα ∈ LX and A ∈ U,

there exists B ∈ U such that st(xα, st(B) ⊆ st(xα,A ). Now by Proposition
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2.4.2(5), we have

st(st(xα,B),B) ⊆ st(xα, st(B))

⊆ st(xα,A ) ⊆ A

∴ st(xα,B) ⊆ int(A)

So xα ⊆ int(int(A))

Thus by (IO2), int(A) = int(int(A)).

Now by Theorem 2.2.21 in [48], it we can conclude the following theorem

Theorem 5.2.3. Every covering L−locally uniformity U on LX , generates an L−topology

on LX .

In that case, the symbol F(U) to denote the respective generated L−topology on

LX .

Subsequently, int(A) is the interior of A in (LX , F(U)).

Theorem 5.2.4. Let U1 and U2 be two covering L− local uniformities on LX such

that U2 is finer than U1. Then F(U2) will finer than F(U1).

Proof. Straight forward.

Lemma 5.2.5. Let (LX ,U) be covering L−locally uniform space. Then the mapping,

cl : LX → LX defined by

cl(A) =
⋂

{st(A,A ) | A ∈ U}

for all A ∈ LX is a closure operator on LX .
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Proof. Clearly, (CO1) cl(0) = 0 and (CO2) For all A ∈ LX , A ⊆ cl(A) satisfied

trivially.

(CO3) For any A, B ∈ LX , we have

cl(A
⋃

B) =
⋂

A ∈U

st(A
⋃

B, A )

⇒ cl(A
⋃

B) =
⋂

A ∈U

[st(A, A )
⋃

st(B, A )] [By Proposition 2.4.2 (4)]

Also since L is completely distributive complete lattice, therefore by Proposition

2.2.2(5)

⇒ cl(A
⋃

B) = [
⋂

A ∈U

st(A, A )]
⋃

[
⋂

A ∈U

st(B, A )]

= cl(A)
⋃

cl(B)

(CO4) For any A ∈ LX , we have

cl(cl(A)) =
⋂

A ∈U

st(cl(A), A )

=
⋂

A ∈U

st(
⋂

A ∈U

st(A, A ), A )

=
⋂

A ∈U

st(st(A, A ), A )

⊆
⋂

A ∈U

st(A, st(A )) (By Proposition 2.2.2(5))

=
⋂

A ∈U

st(
⋃

xα∈A

xα, st(A )) Since for any (A ∈ LX , A =
⋃

xα∈A

xα)

=
⋂

A ∈U

⋃
xα∈A

st(xα, st(A )) (By Proposition 2.2.2(4))
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=
⋃

xα∈A

⋂
A ∈U

st(xα, st(A ))

⊆
⋃

xα∈A

⋂
A ∈U

st(xα, A ) (By LC)

=
⋂

A ∈U

⋃
xα∈A

st(xα, A )

=
⋂

A ∈U

st(
⋃

xα∈A

xα, A )

=
⋂

A ∈U

st(A, A )

= cl(A)

Hence, by (CO2), we have cl(cl(A)) = cl(A), for all A ∈ LX .

Lemma 5.2.6. For every L−covers A and for each A ∈ LX , we have

st(A, A ) =
⋂

{B | st(B′,A ) ⊆ A′}

Proof. It follows from the fact that for any B ∈ LX , B ⊆ st(A, A ) if and only if

A ⊆ st(B, A ) as A
⋂
B ̸= 0 if and only if B

⋂
A ̸= 0.

Lemma 5.2.7. Let (LX ,U) is covering L−locally uniform space, then (cl(A))′ =

int(A′).

Proof. For any A ∈ LX , we have
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int(A′) =
⋃

{xα ∈ LX | st(xα,A ) ⊆ A′ for some A ∈ U}.

=
⋃

{
⋃

{xα ∈ LX | st(xα,A ) ⊆ A′},A ∈ U}.

=
⋃

{st(A, A )′ | A ∈ U} [By Lemma 5.2.6].

Hence, int(A′)′ =
⋂

{st(A, A ) | A ∈ U}.

= cl(A).

Now by Lemma 5.2.5 and Lemma 5.2.7, it has the following theorem:

Theorem 5.2.8. Let (LX ,U) be covering L−locally uniform space. Then for any

A ∈ LX , cl(A) =
⋂
{st(A,A ) | A ∈ U}, is the closure of A in (LX , F(U)).

Theorem 5.2.9. Let (LX ,U) be covering L−locally uniform space. Then the topology

(X,F(U)) generated by covering L−locally uniform space is regular.

Proof. Let (X,U) be a covering L−locally uniform space. Now for any xα ∈ LX and

A ∈ U there exists B such that st(xα, st(B)) ⊆ st(xα, A ). Again for xα ∈ LX

and B ∈ U there exists C ∈ U such that st(xα, st(C )) ⊆ st(xα, B). Then by

(CO3), we have cl(st(xα, st(C ))) ⊆ cl(st(xα, B)). But by definition of cl, we have

cl(st(xα, B)) ⊆ st(st(xα, B), B). We have cl(st(xα, st(C ))) ⊆ st(st(xα, st(B))

[ So, by the Proposition 2.2.2(5)]. This implies cl(st(xα, st(C ))) ⊆ st(xα, A ), as

st(xα, st(B)) ⊆ st(xα, A ). Hence for each xα ∈ LX there exists a neighbourhood

base at xα consisting of closed sets and consequently the space is regular.

Theorem 5.2.10. Any regular L−topology is generated by a covering L−locally uni-

form space.
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Proof. Let (LX , F) be a regular L−topology and U be the collection of all open covers

in LX , then it follows easily (LC1) and (LC2). The only thing left is for every A ∈ U

there exists B ∈ U such that st(xα, st(B)) ⊆ st(xα, A ). Now by regularity of LX ,

we have for xα ∈ LX and A ∈ U there exists an L−fuzzy open set G such that xα ⊆

G ⊆ cl(G) ⊆ st(xα, A ). Again since G is open and xα ⊆ G, therefore there exists

an open cover B such that, st(xα, B) ⊆ G. But then st(xα, st(B)) ⊆ st(G, B) (as

xα ⊆ G). Thus st(xα, st(B)) ⊆ st(G, B) = G (as G is open) ⊆ cl(G) ⊆ st(xα, A ).

Also, by the construction of U, it follows from Lemma 5.2.2 that the L−topologies

F(U) and F are identical. Hence the result.

By Theorem 2.2.13, It has the following Corollary.

Corollary 5.2.11. Let {(LXt , Ft) | t ∈ Λ} be a family of L-topological spaces. Then

the product topology of L-topologies {Ft | t ∈ Λ} on LX is generated by a covering

L-local uniformity if and only if for each t ∈ Λ, (LXt , Ft) is generated by a covering

L-local uniformity.

5.3 Weakly Uniformly Continuous Functions

This section establishes that every weakly uniform continuous function on covering

L−locally uniform spaces is continuous for the induced L−topologies. Towards the

end of this section, we have shown that the products of L− regular topologies are

generated by the product covering L−locally uniform spaces.

Definition 5.3.1. Let (LX ,U1) and (LY ,U2) be two covering L−locally uniform

spaces. Then a function f→ : (LX ,U1) → (LY ,U2), is called weakly uniformly continu-

ous if and only if f−1(C ) ∈ U1, whenever C ∈ U2, where f
−1(C ) = {f←(C) : C ∈ C }.
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Theorem 5.3.1. Every weakly uniform continuous function is continuous.

Proof. Let f→ : (LX ,U1) → (LY ,U2) be a weakly uniformly continuous functions and

A ∈ LY be any member.

Then by definition of int, we have int(A) =
⋃
{xα : st(xα,A ) ⊆ A, for someA ∈ U2}.

This implies

f←(int(A)) =
⋃

{f←(xα) : st(xα,A ) ⊆ A for someA ∈ U2}.

[Since by Theorem 2.1.17 (i) in [48], f←is arbitrary join preserving ]. (5.3.1)

Since f← is order preserving, therefore

st(xα,A ) ⊆ A implies f←(st(xα,A )) ⊆ f←(A) (5.3.2)

Then by Proposition 2.2.2(5) and Line (5.3.2) we have

st(f←(xα, f
−1(A )) ⊆ f←(st(xα,A )) ⊆ f←(A).

Now from line (5.3.1), we have

f←(int(A)) ⊆
⋃

{f←(xα) : st(f←(xα), f−1(A )) ⊆ f←(A) for someA ∈ U2}.

(5.3.3)

But since f→ is weakly uniformly continuous, therefore A ∈ U2 implies f−1(A ) ∈ U1.

So by Line (5.3.3), we have f←(int(A)) ⊆ int(f←(int(A))).

This implies f←(int(A)) ∈ F(U1).

Hence f→ : (LX ,F(U1)) → (LY ,F(U2)) is continuous.

Theorem 5.3.2. The composition of weakly uniformly continuous function is weakly

uniformly continuous.

Proof. Let f→ : (LX ,U1) → (LY ,U2) and g→ : (LY ,U2) → (LZ ,U3) be two weakly

uniformly continuous functions. Let C ∈ U3 be any member. Then by Theorem
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2.1.23(ii) in [48], we have (g ◦ f)←(C ) = f←(g←(C )). Since g→ is weakly uniformly

continuous, therefore C ∈ U3 implies g←(C ) ∈ U2. This further implies f←(g←(C )) ∈

U1 as f→ is weakly uniformly continuous. Hence (g ◦ f)←(C ) ∈ U1 for every C ∈ U3.

Hence the result.

Definition 5.3.2. Let {(LXt , Ut) | t ∈ Λ} be a family of covering L-locally uniform

spaces, where Λ is the index set.

Let X = Πt∈ΛXt.

The product covering L-local uniformity on LX is defined as the coarsest covering

L-local uniformity such that for every t ∈ Λ, projection π→t : LX → LXt is weakly

uniformly continuous.

By Theorem 5.2.4, the following Theorem is now obvious.

Theorem 5.3.3. The L-topology generated by the product covering L-local uniformity

is the product topology and conversely product of regular L−topologies is generated by

product covering L-local uniformity.

5.4 Metrization for Covering L-locally Uniform space

In this section, the problem of metrization of covering L−locally uniform spaces were

considered and successfully obtained significant result on metrization.

Lemma 5.4.1. If (LX ,U) is covering L-locally uniform space with countable base,

then (X,F(U)) has countable base.

Proof. Let U∗ = {An : n ∈ N} be countable base for the covering L−locally uniform

space.
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For fixed n, let us define,

Bn = st(st(xα,An),Am), for some m ∈ N, xα ∈ LX

By Lemma (5.2.2) it is clear that int(Bn) = Bn.

Let us denote the collection B = {Bn : Bn = st(st(xα,An),Am),m ∈ N}. Let

xα ∈ B ⊆ LX be any open set. Then int(B) = B, and since U ∗ is base for U . By

Covering L−locally uniform space, for Aj there exists Ak such that st(xα, st(Ak)) ⊆

st(xα,Aj). Again by Proposition 2.4.2(5)

st(st(xα,Ak),Ak) ⊆ st(xα, st(Ak))

⇒ st(st(xα,Ak),Ak) ⊆ st(xα,Aj)

⇒ st(st(xα,Ak),Ak) ⊆ B

⇒ xα ∈ st(st(xα,Ak),Ak) ⊆ B

⇒ xα ∈ Bk ⊆ B.

On the other hand, each Bn is assign to some member of U∗, U∗ is countable implies

B is countable.

Now by Theorem 2.5.3, the following result holds.

Theorem 5.4.2. Every covering L−locally uniform with countable base is pointwise

pseudo-metrizable.

******
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