CHAPTER 5

COVERING L-LOCALLY UNIFORM SPACES

5.1 Introduction

In the previous chapter 3 the notion of CLS-uniform space is developed in the category
of C-TOP.Various important results of uniform spaces concerning interior space,
topological interior space, metrizablity and uniformly continuous functions have been
developed and studied proximity relation in chapter 4 in the same context. It is,
however observed that generating spaces are interior spaces but not L—topological
spaces. So, it is become pertinent to investigate whether there are other generalised
uniform space in the same category weaker than covering L—uniform space could be
developed therein. While looking for an answer to the above question, the notion
of covering L—locally uniform space is introduced. The compatibility of covering
L—locally uniform spaces and L—topology is examined. Weakly uniform continuous
functions are introduced in the same context as a generalisation uniformly continuous

and for continuity with respect to the induced L—topological spaces. In other to
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show that the notion of covering L—locally uniform spaces lies between CLS-uniform
space and covering L—uniform spaces, suitable examples are provided. Further, the
problem of metrization of the introduced notion of covering L—locally uniform space

is considered and a satisfactory answer has been provided.

5.2 Covering L-locally uniform spaces

In this section, the study of covering L—locally uniform spaces, by generalising
covering L—uniform spaces. Covering L-uniform spaces shows that every covering
L—uniform space is covering L—locally uniform space, and every covering L—locally
uniform space is a CLS-uniform space. But the converse of the statement is not valid.
Hence, it founded that CLS-Uniform spaces are weaker than covering L—locally uni-
form spaces, and covering L—locally uniform spaces is weaker than covering L—locally
uniform spaces. Interior operator, closure operator, were studied in the context of

covering L—locally uniform spaces, and some significant results were obtained.

Definition 5.2.1. A CLS-Uniform spaces (L, ) is said to be a covering L— locally

uniformity on L, if it satisfies SC1 and SC2 and the following axiom:

LC. Foreach & € $land for all z, € L¥, there exists # € i such that st(x,, st(A)) C
st(xg, ).

In that case we called the pair (L%, ) as covering L— locally uniform space.
Let &, and 4y be covering L—uniform spaces on LX. If £{; C s, then 4y is called

finer than ;.

Theorem 5.2.1. Every covering L-locally uniform space is a covering CLS-uniform

space.
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Proof. It follows from the Definition 5.2.1. [

Converse of above Theorem is not true, for this an example is given below.

Example 5.2.1. Let X = {a,b, ¢} with L = [0, 1]. Consider & = {{a}, {b}, {a,b}{c}}
and B = {{a},{a,b},{b,c},{c}} are L—covers , then B = {7, B} is a base for CLS-
uniform space. We have st(«7) = st(%) = {a,b,c}; st(a, ) = st(a, B) = st(b, o) =
{a,b}; st(b, B) = {a,b,c}; st(c,d) = {c}; st(c,B) = {bc}; stla, si()) =
st(a, st(AB)) = st(a, st(AB)) = st(b, st()) = st(b, st(A)) = st(c, st()) = st(c, st(B))
= {a, b, c}; But for a and o7, there is no £ such that st(a, st(#)) C st(a, ).

From Theorem 5.2.1, and Example 5.2.1, it may conclude that every CLS-unform
spaces is generalisation of covering L—locally uniform spaces. and also clearly, by
Definition 2.4.4, it follows that every covering L— uniform space is covering L—locally
uniform spaces. But the converse is not true for this an example is given below,
Example 5.2.2. Let X = {a,b,c,d} and L = [0, 1].

Let o = {{a,b},{a,c},{a,d},{b,c}, {b,d},{c,d}},

B = {{a,b,c},{a,b,d},{a,c,d},{b,c,d}}.

Then o (1% = {{a},{b},{c}, {d},{a,b},{a, ¢}, {a, d}, {b, c}, {b, d}, {c, d}}.

Let B = {7, &, o/ () #}. Then clearly, B satisfies the axiom (SC2). Now we have
st(e/) = {a,b,c,d}; st(AB) = {a,b,c,d}; st(/ (\B) = {a,b,c,d}; Also, st(a,st())
= st(b, st()) = st(c, st(H)) = st(d, st(<)) = st(a, st(AB)) = st(b, st(B)) = st(c, st(A))
= st(d, st(A)) = {a,b,c,d}; st(a, st( (B))= st(b,st( [B)) = st(c,st( () B))
= st(d, st(/ (A)) = {a,b,c,d} and st(a, ) = st(a, B) = st(a, o [\ B) = st(b, H)
= st(b,B) = st(b, o (\AB) = st(c, o) = st(c,B) = st(c, /' (\AB) = st(d, o) =
st(d, B) = st(d, o/ (B) = {a,b,c,d}. Thus B satisfies the axioms (LC) and conse-

quently, 9B is a base for some covering L—local uniformity on L*. But for o7, there is
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no % such that st(#) < /. This implies B is not a base for covering L—uniformity

on LX.

Thus this can be conclude that covering L—locally uniform spaces is a generalisa-
tion of covering L—uniform spaces in the sense of Garcia et at.[59).
In order to show that every covering L—local uniformity generates an L—topology

the following lemma is considered.

Lemma 5.2.2. Let (L%, ) be covering L—Ilocally uniform space. Then the mapping,

int : LY — LX defined by
int(A) = U{xa € LY : st(x,, /) C A for some o € U},
for all A € L* is an interior operator on L.

Proof. Clearly, (I01) int(1) = 1 and (I02) For all A € L¥, int(A) C A satisfied

trivially.

(IO3) Since L is completely distributive complete lattice, therefore by Proposition
2.2.2(5), LX is also so. Hence, int(A( B) = int(A)(int(B) follows immedi-

ately form (LC2).

(I04) Forany A € L*, let z, C int(A), then there exists & € U such that st(z,, o) C
A. Since il is a covering L-local uniformity, therefore for x, € L~ and & € 4,

there exists Z € 4 such that st(z,, st(#B) C st(z,, /). Now by Proposition
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2.4.2(5), we have

st(st(xy, B), B) C st(q, st(A))
C st(zq, o) C A
ost(xa, B) Cint(A)

So 1z, Cint(int(A))

Thus by (102), int(A) = int(int(A)).

Now by Theorem 2.2.21 in [48], it we can conclude the following theorem

Theorem 5.2.3. Every covering L—locally uniformity L on LX, generates an L—topology

on LX.

In that case, the symbol F(4) to denote the respective generated L—topology on
LX.

Subsequently, int(A) is the interior of A in (LX, F()).

Theorem 5.2.4. Let $4; and Uy be two covering L— local uniformities on L such

that Yy is finer than . Then F(Uy) will finer than F(LU;).
Proof. Straight forward. m

Lemma 5.2.5. Let (L%, ) be covering L—Ilocally uniform space. Then the mapping,
cl : LX — LX defined by

cl(A) = {st(A, o) | o € U}

for all A € L* is a closure operator on L~.

27



Proof. Clearly, (CO1) cl(0) = 0 and (CO2) For all A € L*, A C cl(A) satisfied

trivially.

(CO3) For any A, B € L, we have

(Al JB) = ) st(Al B, #)

EAS

= cl(A| JB) = (Ist(A, )| Jst(B, #)] [By Proposition 2.4.2 (4)]

Also since L is completely distributive complete lattice, therefore by Proposition

2.2.2(5)

= (Al JB) =[] st(A, /I st(B. @)

o el o el
= cl(A)| J(B)
(CO4) For any A € LX, we have
cl(cl(A)) = () st(cl(A), &)

of el

= () st([) st(A, &), &)
el o el

= () st(st(A, ), o)
o el

- ﬂ st(A, st(</)) (By Proposition 2.2.2(5))
o el

= m st( U T, st(/)) Since for any (A€ LY, A= U o)

of €Ml T €A TaEA

= () U st(za, st(«)) (By Proposition 2.2.2(4))
d e ro €A
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= |J ) st(@a, st(2))

T €A T

U ﬂ st(xq, o) (By LC)

T €A TN

= ﬂ U st(xo, <)

dedxa €A

= () st(|J 2a @)

el T €A

= () st(4, &)

R4S

=cl(A)

N

Hence, by (CO2), we have cl(cl(A)) = cl(A), for all A e L.

Lemma 5.2.6. For every L—-covers &/ and for each A € L, we have
st(A, ) =B | st(B', o) C A'}

Proof. 1t follows from the fact that for any B € LX, B C st(A, &) if and only if

AC st(B, o) as A(\B #0if and only if B[ A # 0. O

Lemma 5.2.7. Let (L*,4) is covering L—Ilocally uniform space, then (cl(A)) =
int(A").

Proof. For any A € L*, we have
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int(A') = | J{za € L | st(zq, o) C A for some o € 81},
= | J{ Nz € LY | st(zq, o) C A}, o € U}
= | J{st(A, @) | & € 4} [By Lemma 5.2.6].
Hence, int(A') = [{st(A, o) | o € U}.

= cl(A).

Now by Lemma 5.2.5 and Lemma 5.2.7, it has the following theorem:

Theorem 5.2.8. Let (LX,4) be covering L—Ilocally uniform space. Then for any
Ae LX, c(A) =N {st(A, ) | o € s}, is the closure of A in (LX, F(LL)).

Theorem 5.2.9. Let (L~ ,4) be covering L—Ilocally uniform space. Then the topology

(X, F(L) generated by covering L—Ilocally uniform space is reqular.

Proof. Let (X,4) be a covering L—locally uniform space. Now for any z, € L* and
o/ € U there exists % such that st(x,,st(B)) C st(za, ). Again for z, € LX
and # € 4 there exists € € U such that st(z,,st(€¢)) C st(ry, #). Then by
(CO3), we have cl(st(xq, st(€))) C cl(st(xq, A)). But by definition of cl, we have
cl(st(xy, B)) C st(st(xy, B), ). We have cl(st(zy, st(€))) C st(st(zy, st(A))
[ So, by the Proposition 2.2.2(5)]. This implies cl(st(zq, st(€))) C st(xa, ), as
st(xq, st(B)) C st(xs, ). Hence for each z, € LX there exists a neighbourhood

base at x, consisting of closed sets and consequently the space is regular. O]

Theorem 5.2.10. Any reqular L—topology is generated by a covering L—locally uni-

form space.
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Proof. Let (L*, F) be a regular L—topology and 4l be the collection of all open covers
in LX, then it follows easily (LC1) and (LC2). The only thing left is for every & € i
there exists # € U such that st(z,,st(B)) C st(ra, «). Now by regularity of L¥X,
we have for 7, € L~ and & € U there exists an L—fuzzy open set G such that z, C
G C c(G) C st(zq, o). Again since G is open and z, C G, therefore there exists
an open cover Z such that, st(x,, #) C G. But then st(z,, st(#)) C st(G, B) (as
ZTo € G). Thus st(z,,st(AB)) C st(G, B) = G (as G is open) C cl(G) C st(xy, o).
Also, by the construction of 4, it follows from Lemma 5.2.2 that the L—topologies

F(4) and F are identical. Hence the result. O
By Theorem 2.2.13, It has the following Corollary.

Corollary 5.2.11. Let {(LXt, F,) |t € A} be a family of L-topological spaces. Then
the product topology of L-topologies {F; | t € A} on L~ is generated by a covering
L-local uniformity if and only if for each t € A, (LXt, F;) is generated by a covering

L-local uniformity.

5.3 Weakly Uniformly Continuous Functions

This section establishes that every weakly uniform continuous function on covering
L—locally uniform spaces is continuous for the induced L—topologies. Towards the
end of this section, we have shown that the products of L— regular topologies are

generated by the product covering L—locally uniform spaces.

Definition 5.3.1. Let (LX,4;) and (LY,%y) be two covering L—locally uniform
spaces. Then a function f= : (LX) — (LY, 4y), is called weakly uniformly continu-

ous if and only if f~1(%) € U;, whenever € € iy, where f~1(€) = {f(C): C € €}.
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Theorem 5.3.1. Every weakly uniform continuous function is continuous.

Proof. Let f7 : (LX) — (LY, 4,) be a weakly uniformly continuous functions and
A € LY be any member.
Then by definition of int, we have int(A) = (J{zq : st(za, o) C A, for some o7 € Ls}.

This implies

[T (int(A)) = U{f“(:ca) : st(2q, o) C Afor some .o € Uy}

[Since by Theorem 2.1.17 (i) in [48], fTis arbitrary join preserving |. (5.3.1)
Since f< is order preserving, therefore
st(xq, o) C A implies [ (st(zqy, ) C fT(A) (5.3.2)

Then by Proposition 2.2.2(5) and Line (5.3.2) we have
st(f< (2o, f7HA)) C [ (st(xa, o))  [7(A).

Now from line (5.3.1), we have

Fint(A)) € () - st (), S7(57)) € £ (A) for some o/ € 1y},
(5.3.3)
But since f~ is weakly uniformly continuous, therefore & € 81, implies f~1(#) € 4.
So by Line (5.3.3), we have f< (int(A)) C int(f* (int(A))).
This implies < (int(A)) € F(Ll).
Hence f : (L%, F()) — (LY, F(4ly)) is continuous. O

Theorem 5.3.2. The composition of weakly uniformly continuous function is weakly

uniformly continuous.
Proof. Let f= : (LX,4;) — (LY, 4y) and g7 : (LY, 4y) — (LZ,43) be two weakly
uniformly continuous functions. Let 4 € i3 be any member. Then by Theorem
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2.1.23(ii) in [48], we have (go )" (%) = f*(¢*(¥)). Since g~ is weakly uniformly
continuous, therefore ¢ € 3 implies g (€’) € Ly. This further implies f< (¢ (%)) €
iy as f7 is weakly uniformly continuous. Hence (go )< (%) € U, for every € € 4s.
Hence the result.

]

Definition 5.3.2. Let {(LXt, %) | t € A} be a family of covering L-locally uniform
spaces, where A is the index set.

Let X = [;ep X;.

The product covering L-local uniformity on L¥ is defined as the coarsest covering
L-local uniformity such that for every ¢t € A, projection 7;* : L* — Lt is weakly

uniformly continuous.
By Theorem 5.2.4, the following Theorem is now obvious.

Theorem 5.3.3. The L-topology generated by the product covering L-local uniformity
1s the product topology and conversely product of reqular L—topologies is generated by

product covering L-local uniformaity.

5.4 Metrization for Covering L-locally Uniform space

In this section, the problem of metrization of covering L—locally uniform spaces were

considered and successfully obtained significant result on metrization.

Lemma 5.4.1. If (L% ) is covering L-locally uniform space with countable base,

then (X,F(L)) has countable base.

Proof. Let * = {7, : n € N} be countable base for the covering L—locally uniform

space.
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For fixed n, let us define,
B, = st(st(xa, 4,), ), for some m € N,z, € L~

By Lemma (5.2.2) it is clear that int(B,) = B,.

Let us denote the collection B = {B, : B, = st(st(va, ), %m),m € N}. Let
1, € B C L be any open set. Then int(B) = B, and since % * is base for % . By
Covering L—locally uniform space, for 7; there exists o7, such that st(z,, st(<%)) C

st(zq, ;). Again by Proposition 2.4.2(5)

st(st(a, k), i) C st(a, st())
= 5t($H(Tar ), ) C 5H(Tar ;)
= st(st(Ta, %), ) C B
= x, € st(st(zy, ), ) C B

= x, € B, C B.

On the other hand, each B, is assign to some member of {*, {[* is countable implies

B is countable. O
Now by Theorem 2.5.3, the following result holds.

Theorem 5.4.2. Fvery covering L—locally uniform with countable base is pointwise

pseudo-metrizable.

kokkokokok
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