CHAPTER 5

___COVERING *L*-LOCALLY UNIFORM SPACES

5.1 Introduction

In the previous chapter 3 the notion of CLS-uniform space is developed in the category of **C-TOP**.Various important results of uniform spaces concerning interior space, topological interior space, metrizablity and uniformly continuous functions have been developed and studied proximity relation in chapter 4 in the same context. It is, however observed that generating spaces are interior spaces but not L-topological spaces. So, it is become pertinent to investigate whether there are other generalised uniform space in the same category weaker than covering L-uniform space could be developed therein. While looking for an answer to the above question, the notion of covering L-locally uniform space is introduced. The compatibility of covering L-locally uniform spaces and L-topology is examined. Weakly uniform continuous functions are introduced in the same context as a generalisation uniformly continuous and for continuity with respect to the induced L-topological spaces. In other to show that the notion of covering L-locally uniform spaces lies between CLS-uniform space and covering L-uniform spaces, suitable examples are provided. Further, the problem of metrization of the introduced notion of covering L-locally uniform space is considered and a satisfactory answer has been provided.

5.2 Covering L-locally uniform spaces

In this section, the study of covering L-locally uniform spaces, by generalising covering L-uniform spaces. Covering L-uniform spaces shows that every covering L-uniform space is covering L-locally uniform space, and every covering L-locally uniform space is a CLS-uniform space. But the converse of the statement is not valid. Hence, it founded that CLS-Uniform spaces are weaker than covering L-locally uniform spaces, and covering L-locally uniform spaces is weaker than covering L-locally uniform spaces. Interior operator, closure operator, were studied in the context of covering L-locally uniform spaces, and some significant results were obtained.

Definition 5.2.1. A CLS-Uniform spaces (L^X, \mathfrak{U}) is said to be a covering L- locally uniformity on L^X , if it satisfies **SC1** and **SC2** and the following axiom:

LC. For each $\mathscr{A} \in \mathfrak{U}$ and for all $x_{\alpha} \in L^X$, there exists $\mathscr{B} \in \mathfrak{U}$ such that $st(x_{\alpha}, st(\mathscr{B})) \subseteq st(x_{\alpha}, \mathscr{A})$.

In that case we called the pair (L^X, \mathfrak{U}) as covering L- locally uniform space.

Let \mathfrak{U}_1 and \mathfrak{U}_2 be covering L-uniform spaces on L^X . If $\mathfrak{U}_1 \subset \mathfrak{U}_2$, then \mathfrak{U}_2 is called finer than \mathfrak{U}_1 .

Theorem 5.2.1. Every covering L-locally uniform space is a covering CLS-uniform space.

Proof. It follows from the Definition 5.2.1.

Converse of above Theorem is not true, for this an example is given below.

Example 5.2.1. Let $X = \{a, b, c\}$ with L = [0, 1]. Consider $\mathscr{A} = \{\{a\}, \{b\}, \{a, b\}, \{c\}\}\}$ and $\mathscr{B} = \{\{a\}, \{a, b\}, \{b, c\}, \{c\}\}$ are L-covers, then $\mathfrak{B} = \{\mathscr{A}, \mathscr{B}\}$ is a base for CLSuniform space. We have $st(\mathscr{A}) = st(\mathscr{B}) = \{a, b, c\}; st(a, \mathscr{A}) = st(a, \mathscr{B}) = st(b, \mathscr{A}) =$ $\{a, b\}; st(b, \mathscr{B}) = \{a, b, c\}; st(c, \mathscr{A}) = \{c\}; st(c, \mathscr{B}) = \{b, c\}; st(a, st(\mathscr{A})) =$ $st(a, st(\mathscr{B})) = st(a, st(\mathscr{B})) = st(b, st(\mathscr{A})) = st(b, st(\mathscr{B})) = st(c, st(\mathscr{A})) = st(c, st(\mathscr{B}))$ $= \{a, b, c\};$ But for a and \mathscr{A} , there is no \mathscr{B} such that $st(a, st(\mathscr{B})) \subseteq st(a, \mathscr{A})$.

From Theorem 5.2.1, and Example 5.2.1, it may conclude that every CLS-unform spaces is generalisation of covering L-locally uniform spaces. and also clearly, by Definition 2.4.4, it follows that every covering L- uniform space is covering L-locally uniform spaces. But the converse is not true for this an example is given below,

Example 5.2.2. Let $X = \{a, b, c, d\}$ and L = [0, 1]. Let $\mathscr{A} = \{\{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}\},$ $\mathscr{B} = \{\{a, b, c\}, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}\}.$ Then $\mathscr{A} \cap \mathscr{B} = \{\{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\}\}.$ Let $\mathfrak{B} = \{\mathscr{A}, \mathscr{B}, \mathscr{A} \cap \mathscr{B}\}.$ Then clearly, \mathfrak{B} satisfies the axiom (SC2). Now we have $st(\mathscr{A}) = \{a, b, c, d\}; st(\mathscr{B}) = \{a, b, c, d\}; st(\mathscr{A} \cap \mathscr{B}) = \{a, b, c, d\}; Also, st(a, st(\mathscr{A}))$ $= st(b, st(\mathscr{A})) = st(c, st(\mathscr{A})) = st(d, st(\mathscr{A})) = st(a, st(\mathscr{B})) = st(b, st(\mathscr{B})) = st(c, st(\mathscr{B}))$ $= st(d, st(\mathscr{B})) = \{a, b, c, d\}; st(a, st(\mathscr{A} \cap \mathscr{B})) = st(b, st(\mathscr{A} \cap \mathscr{B})) = st(c, st(\mathscr{A} \cap \mathscr{B}))$ $= st(d, st(\mathscr{A} \cap \mathscr{B})) = \{a, b, c, d\} \text{ and } st(a, \mathscr{A}) = st(a, \mathscr{B}) = st(a, \mathscr{A} \cap \mathscr{B}) = st(b, \mathscr{A})$ $= st(b, \mathscr{B}) = st(b, \mathscr{A} \cap \mathscr{B}) = st(c, \mathscr{A}) = st(c, \mathscr{B}) = st(c, \mathscr{A} \cap \mathscr{B}) = st(d, \mathscr{A}) = st(d, \mathscr{A} \cap \mathscr{B}) = st(d, \mathscr{A}) =$

55

no \mathscr{B} such that $st(\mathscr{B}) \preceq \mathscr{A}$. This implies \mathfrak{B} is not a base for covering L-uniformity on L^X .

Thus this can be conclude that covering L-locally uniform spaces is a generalisation of covering L-uniform spaces in the sense of García et at.[59].

In order to show that every covering L-local uniformity generates an L-topology the following lemma is considered.

Lemma 5.2.2. Let (L^X, \mathfrak{U}) be covering L-locally uniform space. Then the mapping, int : $L^X \to L^X$ defined by

$$int(A) = \bigcup \{ x_{\alpha} \in L^X : st(x_{\alpha}, \mathscr{A}) \subseteq A \text{ for some } \mathscr{A} \in \mathfrak{U} \},\$$

for all $A \in L^X$ is an interior operator on L^X .

Proof. Clearly, (IO1) $int(\underline{1}) = \underline{1}$ and (IO2) For all $A \in L^X$, $int(A) \subseteq A$ satisfied trivially.

- (IO3) Since L is completely distributive complete lattice, therefore by Proposition 2.2.2(5), L^X is also so. Hence, $int(A \cap B) = int(A) \cap int(B)$ follows immediately form (LC2).
- (IO4) For any $A \in L^X$, let $x_{\alpha} \subseteq int(A)$, then there exists $\mathscr{A} \in \mathfrak{U}$ such that $st(x_{\alpha}, \mathscr{A}) \subseteq A$. *A*. Since \mathfrak{U} is a covering *L*-local uniformity, therefore for $x_{\alpha} \in L^X$ and $\mathscr{A} \in \mathfrak{U}$, there exists $\mathscr{B} \in \mathfrak{U}$ such that $st(x_{\alpha}, st(\mathscr{B}) \subseteq st(x_{\alpha}, \mathscr{A})$. Now by Proposition

2.4.2(5), we have

$$st(st(x_{\alpha},\mathscr{B}),\mathscr{B}) \subseteq st(x_{\alpha},st(\mathscr{B}))$$
$$\subseteq st(x_{\alpha},\mathscr{A}) \subseteq A$$
$$\therefore st(x_{\alpha},\mathscr{B}) \subseteq int(A)$$
So $x_{\alpha} \subseteq int(int(A))$

Thus by (IO2), int(A) = int(int(A)).

Now by Theorem 2.2.21 in [48], it we can conclude the following theorem

Theorem 5.2.3. Every covering L-locally uniformity \mathfrak{U} on L^X , generates an L-topology on L^X .

In that case, the symbol $\mathbb{F}(\mathfrak{U})$ to denote the respective generated L-topology on L^X .

Subsequently, int(A) is the interior of A in $(L^X, \mathbb{F}(\mathfrak{U}))$.

Theorem 5.2.4. Let \mathfrak{U}_1 and \mathfrak{U}_2 be two covering L- local uniformities on L^X such that \mathfrak{U}_2 is finer than \mathfrak{U}_1 . Then $\mathbb{F}(\mathfrak{U}_2)$ will finer than $\mathbb{F}(\mathfrak{U}_1)$.

Proof. Straight forward.

Lemma 5.2.5. Let (L^X, \mathfrak{U}) be covering L-locally uniform space. Then the mapping, $cl: L^X \to L^X$ defined by

$$cl(A) = \bigcap \{ st(A, \mathscr{A}) \mid \mathscr{A} \in \mathfrak{U} \}$$

for all $A \in L^X$ is a closure operator on L^X .

Proof. Clearly, (CO1) $cl(\underline{0}) = \underline{0}$ and (CO2) For all $A \in L^X$, $A \subseteq cl(A)$ satisfied trivially.

(CO3) For any $A, B \in L^X$, we have

$$cl(A \bigcup B) = \bigcap_{\mathscr{A} \in \mathfrak{U}} st(A \bigcup B, \mathscr{A})$$
$$\Rightarrow cl(A \bigcup B) = \bigcap_{\mathscr{A} \in \mathfrak{U}} [st(A, \mathscr{A}) \bigcup st(B, \mathscr{A})] \text{ [By Proposition 2.4.2 (4)]}$$

Also since L is completely distributive complete lattice, therefore by Proposition 2.2.2(5)

$$\Rightarrow cl(A \bigcup B) = [\bigcap_{\mathscr{A} \in \mathfrak{U}} st(A, \mathscr{A})] \bigcup [\bigcap_{\mathscr{A} \in \mathfrak{U}} st(B, \mathscr{A})]$$
$$= cl(A) \bigcup cl(B)$$

(CO4) For any $A \in L^X$, we have

$$cl(cl(A)) = \bigcap_{\mathscr{A} \in \mathfrak{U}} st(cl(A), \mathscr{A})$$

$$= \bigcap_{\mathscr{A} \in \mathfrak{U}} st(\bigcap_{\mathscr{A} \in \mathfrak{U}} st(A, \mathscr{A}), \mathscr{A})$$

$$= \bigcap_{\mathscr{A} \in \mathfrak{U}} st(st(A, \mathscr{A}), \mathscr{A})$$

$$\subseteq \bigcap_{\mathscr{A} \in \mathfrak{U}} st(A, st(\mathscr{A})) \text{ (By Proposition 2.2.2(5))}$$

$$= \bigcap_{\mathscr{A} \in \mathfrak{U}} st(\bigcup_{x_{\alpha} \in A} x_{\alpha}, st(\mathscr{A})) \text{ Since for any } (A \in L^{X}, A = \bigcup_{x_{\alpha} \in A} x_{\alpha})$$

$$= \bigcap_{\mathscr{A} \in \mathfrak{U}} \bigcup_{x_{\alpha} \in A} st(x_{\alpha}, st(\mathscr{A})) \text{ (By Proposition 2.2.2(4))}$$

$$= \bigcup_{x_{\alpha} \in A} \bigcap_{\mathscr{A} \in \mathfrak{U}} st(x_{\alpha}, st(\mathscr{A}))$$

$$\subseteq \bigcup_{x_{\alpha} \in A} \bigcap_{\mathscr{A} \in \mathfrak{U}} st(x_{\alpha}, \mathscr{A}) (By LC)$$

$$= \bigcap_{\mathscr{A} \in \mathfrak{U}} \bigcup_{x_{\alpha} \in A} st(x_{\alpha}, \mathscr{A})$$

$$= \bigcap_{\mathscr{A} \in \mathfrak{U}} st(\bigcup_{x_{\alpha} \in A} x_{\alpha}, \mathscr{A})$$

$$= \bigcap_{\mathscr{A} \in \mathfrak{U}} st(A, \mathscr{A})$$

$$= cl(A)$$

Hence, by (CO2), we have cl(cl(A)) = cl(A), for all $A \in L^X$.

Lemma 5.2.6. For every L-covers \mathscr{A} and for each $A \in L^X$, we have

$$st(A,\mathscr{A}) = \bigcap \{B \mid st(B',\mathscr{A}) \subseteq A'\}$$

Proof. It follows from the fact that for any $B \in L^X$, $B \subseteq st(A, \mathscr{A})$ if and only if $A \subseteq st(B, \mathscr{A})$ as $A \bigcap B \neq \underline{0}$ if and only if $B \bigcap A \neq \underline{0}$.

Lemma 5.2.7. Let (L^X, \mathfrak{U}) is covering L-locally uniform space, then (cl(A))' = int(A').

Proof. For any $A \in L^X$, we have

$$int(A') = \bigcup \{ x_{\alpha} \in L^{X} \mid st(x_{\alpha}, \mathscr{A}) \subseteq A' \text{ for some } \mathscr{A} \in \mathfrak{U} \}.$$
$$= \bigcup \{ \bigcup \{ x_{\alpha} \in L^{X} \mid st(x_{\alpha}, \mathscr{A}) \subseteq A' \}, \mathscr{A} \in \mathfrak{U} \}.$$
$$= \bigcup \{ st(A, \mathscr{A})' \mid \mathscr{A} \in \mathfrak{U} \} \quad [By \text{ Lemma 5.2.6}].$$
Hence, $int(A')' = \bigcap \{ st(A, \mathscr{A}) \mid \mathscr{A} \in \mathfrak{U} \}.$
$$= cl(A).$$

Now by Lemma 5.2.5 and Lemma 5.2.7, it has the following theorem:

Theorem 5.2.8. Let (L^X, \mathfrak{U}) be covering L-locally uniform space. Then for any $A \in L^X$, $cl(A) = \bigcap \{ st(A, \mathscr{A}) \mid \mathscr{A} \in \mathfrak{U} \}$, is the closure of A in $(L^X, \mathbb{F}(\mathfrak{U}))$.

Theorem 5.2.9. Let (L^X, \mathfrak{U}) be covering L-locally uniform space. Then the topology $(X, \mathbb{F}(\mathfrak{U}))$ generated by covering L-locally uniform space is regular.

Proof. Let (X, \mathfrak{U}) be a covering L-locally uniform space. Now for any $x_{\alpha} \in L^{X}$ and $\mathscr{A} \in \mathfrak{U}$ there exists \mathscr{B} such that $st(x_{\alpha}, st(\mathscr{B})) \subseteq st(x_{\alpha}, \mathscr{A})$. Again for $x_{\alpha} \in L^{X}$ and $\mathscr{B} \in \mathfrak{U}$ there exists $\mathscr{C} \in \mathfrak{U}$ such that $st(x_{\alpha}, st(\mathscr{C})) \subseteq st(x_{\alpha}, \mathscr{B})$. Then by (CO3), we have $cl(st(x_{\alpha}, st(\mathscr{C}))) \subseteq cl(st(x_{\alpha}, \mathscr{B}))$. But by definition of cl, we have $cl(st(x_{\alpha}, \mathscr{B})) \subseteq st(st(x_{\alpha}, \mathscr{B}), \mathscr{B})$. We have $cl(st(x_{\alpha}, st(\mathscr{C}))) \subseteq st(st(x_{\alpha}, st(\mathscr{B})))$ [So, by the Proposition 2.2.2(5)]. This implies $cl(st(x_{\alpha}, st(\mathscr{C}))) \subseteq st(x_{\alpha}, \mathscr{A})$, as $st(x_{\alpha}, st(\mathscr{B})) \subseteq st(x_{\alpha}, \mathscr{A})$. Hence for each $x_{\alpha} \in L^{X}$ there exists a neighbourhood base at x_{α} consisting of closed sets and consequently the space is regular. \Box

Theorem 5.2.10. Any regular L-topology is generated by a covering L-locally uniform space.

Proof. Let (L^X, \mathbb{F}) be a regular L-topology and \mathfrak{U} be the collection of all open covers in L^X , then it follows easily (LC1) and (LC2). The only thing left is for every $\mathscr{A} \in \mathfrak{U}$ there exists $\mathscr{B} \in \mathfrak{U}$ such that $st(x_\alpha, st(\mathscr{B})) \subseteq st(x_\alpha, \mathscr{A})$. Now by regularity of L^X , we have for $x_\alpha \in L^X$ and $\mathscr{A} \in \mathfrak{U}$ there exists an L-fuzzy open set G such that $x_\alpha \subseteq$ $G \subseteq cl(G) \subseteq st(x_\alpha, \mathscr{A})$. Again since G is open and $x_\alpha \subseteq G$, therefore there exists an open cover \mathscr{B} such that, $st(x_\alpha, \mathscr{B}) \subseteq G$. But then $st(x_\alpha, st(\mathscr{B})) \subseteq st(G, \mathscr{B})$ (as $x_\alpha \subseteq G$). Thus $st(x_\alpha, st(\mathscr{B})) \subseteq st(G, \mathscr{B}) = G$ (as G is open) $\subseteq cl(G) \subseteq st(x_\alpha, \mathscr{A})$. Also, by the construction of \mathfrak{U} , it follows from Lemma 5.2.2 that the L-topologies $\mathbb{F}(\mathfrak{U})$ and \mathbb{F} are identical. Hence the result.

By Theorem 2.2.13, It has the following Corollary.

Corollary 5.2.11. Let $\{(L^{X_t}, \mathbb{F}_t) \mid t \in \Lambda\}$ be a family of L-topological spaces. Then the product topology of L-topologies $\{\mathbb{F}_t \mid t \in \Lambda\}$ on L^X is generated by a covering L-local uniformity if and only if for each $t \in \Lambda$, (L^{X_t}, \mathbb{F}_t) is generated by a covering L-local uniformity.

5.3 Weakly Uniformly Continuous Functions

This section establishes that every weakly uniform continuous function on covering L-locally uniform spaces is continuous for the induced L-topologies. Towards the end of this section, we have shown that the products of L- regular topologies are generated by the product covering L-locally uniform spaces.

Definition 5.3.1. Let (L^X, \mathfrak{U}_1) and (L^Y, \mathfrak{U}_2) be two covering *L*-locally uniform spaces. Then a function $f^{\rightarrow} : (L^X, \mathfrak{U}_1) \rightarrow (L^Y, \mathfrak{U}_2)$, is called weakly uniformly continuous if and only if $f^{-1}(\mathscr{C}) \in \mathfrak{U}_1$, whenever $\mathscr{C} \in \mathfrak{U}_2$, where $f^{-1}(\mathscr{C}) = \{f^{\leftarrow}(C) : C \in \mathscr{C}\}$. **Theorem 5.3.1.** Every weakly uniform continuous function is continuous.

Proof. Let $f^{\rightarrow} : (L^X, \mathfrak{U}_1) \to (L^Y, \mathfrak{U}_2)$ be a weakly uniformly continuous functions and $A \in L^Y$ be any member.

Then by definition of *int*, we have $int(A) = \bigcup \{x_{\alpha} : st(x_{\alpha}, \mathscr{A}) \subseteq A, \text{ for some } \mathscr{A} \in \mathfrak{U}_2\}.$ This implies

$$f^{\leftarrow}(int(A)) = \bigcup \{ f^{\leftarrow}(x_{\alpha}) : st(x_{\alpha}, \mathscr{A}) \subseteq A \text{ for some } \mathscr{A} \in \mathfrak{U}_2 \}.$$

[Since by Theorem 2.1.17 (i) in [48], f^{\leftarrow} is arbitrary join preserving]. (5.3.1)

Since f^{\leftarrow} is order preserving, therefore

$$st(x_{\alpha},\mathscr{A}) \subseteq A \text{ implies } f^{\leftarrow}(st(x_{\alpha},\mathscr{A})) \subseteq f^{\leftarrow}(A)$$
 (5.3.2)

Then by Proposition 2.2.2(5) and Line (5.3.2) we have

$$st(f^{\leftarrow}(x_{\alpha},f^{-1}(\mathscr{A}))\subseteq f^{\leftarrow}(st(x_{\alpha},\mathscr{A}))\subseteq f^{\leftarrow}(A).$$

Now from line (5.3.1), we have

$$f^{\leftarrow}(int(A)) \subseteq \bigcup \{ f^{\leftarrow}(x_{\alpha}) : st(f^{\leftarrow}(x_{\alpha}), f^{-1}(\mathscr{A})) \subseteq f^{\leftarrow}(A) \text{ for some } \mathscr{A} \in \mathfrak{U}_2 \}.$$
(5.3.3)

But since f^{\rightarrow} is weakly uniformly continuous, therefore $\mathscr{A} \in \mathfrak{U}_2$ implies $f^{-1}(\mathscr{A}) \in \mathfrak{U}_1$. So by Line (5.3.3), we have $f^{\leftarrow}(int(A)) \subseteq int(f^{\leftarrow}(int(A)))$. This implies $f^{\leftarrow}(int(A)) \in \mathbb{F}(\mathfrak{U}_1)$. Hence $f^{\rightarrow} : (L^X, \mathbb{F}(\mathfrak{U}_1)) \rightarrow (L^Y, \mathbb{F}(\mathfrak{U}_2))$ is continuous. \Box

Theorem 5.3.2. The composition of weakly uniformly continuous function is weakly uniformly continuous.

Proof. Let $f^{\rightarrow} : (L^X, \mathfrak{U}_1) \rightarrow (L^Y, \mathfrak{U}_2)$ and $g^{\rightarrow} : (L^Y, \mathfrak{U}_2) \rightarrow (L^Z, \mathfrak{U}_3)$ be two weakly uniformly continuous functions. Let $\mathscr{C} \in \mathfrak{U}_3$ be any member. Then by Theorem 2.1.23(ii) in [48], we have $(g \circ f)^{\leftarrow}(\mathscr{C}) = f^{\leftarrow}(g^{\leftarrow}(\mathscr{C}))$. Since g^{\rightarrow} is weakly uniformly continuous, therefore $\mathscr{C} \in \mathfrak{U}_3$ implies $g^{\leftarrow}(\mathscr{C}) \in \mathfrak{U}_2$. This further implies $f^{\leftarrow}(g^{\leftarrow}(\mathscr{C})) \in$ \mathfrak{U}_1 as f^{\rightarrow} is weakly uniformly continuous. Hence $(g \circ f)^{\leftarrow}(\mathscr{C}) \in \mathfrak{U}_1$ for every $\mathscr{C} \in \mathfrak{U}_3$. Hence the result.

Definition 5.3.2. Let $\{(L^{X_t}, \mathscr{U}_t) \mid t \in \Lambda\}$ be a family of covering *L*-locally uniform spaces, where Λ is the index set.

Let $X = \prod_{t \in \Lambda} X_t$.

The product covering *L*-local uniformity on L^X is defined as the coarsest covering *L*-local uniformity such that for every $t \in \Lambda$, projection $\pi_t^{\rightarrow} : L^X \to L^{X_t}$ is weakly uniformly continuous.

By Theorem 5.2.4, the following Theorem is now obvious.

Theorem 5.3.3. The L-topology generated by the product covering L-local uniformity is the product topology and conversely product of regular L-topologies is generated by product covering L-local uniformity.

5.4 Metrization for Covering L-locally Uniform space

In this section, the problem of metrization of covering L-locally uniform spaces were considered and successfully obtained significant result on metrization.

Lemma 5.4.1. If (L^X, \mathfrak{U}) is covering L-locally uniform space with countable base, then $(X, \mathbb{F}(\mathfrak{U}))$ has countable base.

Proof. Let $\mathfrak{U}^* = \{ \mathscr{A}_n : n \in N \}$ be countable base for the covering *L*-locally uniform space.

For fixed n, let us define,

$$B_n = st(st(x_\alpha, \mathscr{A}_n), \mathscr{A}_m), \text{ for some } m \in N, x_\alpha \in L^X$$

By Lemma (5.2.2) it is clear that $int(B_n) = B_n$.

Let us denote the collection $\mathfrak{B} = \{B_n : B_n = st(st(x_\alpha, \mathscr{A}_n), \mathscr{A}_m), m \in N\}$. Let $x_\alpha \in B \subseteq L^X$ be any open set. Then int(B) = B, and since \mathscr{U}^* is base for \mathscr{U} . By Covering *L*-locally uniform space, for \mathscr{A}_j there exists \mathscr{A}_k such that $st(x_\alpha, st(\mathscr{A}_k)) \subseteq st(x_\alpha, \mathscr{A}_j)$. Again by Proposition 2.4.2(5)

$$st(st(x_{\alpha},\mathscr{A}_{k}),\mathscr{A}_{k}) \subseteq st(x_{\alpha},st(\mathscr{A}_{k}))$$

$$\Rightarrow st(st(x_{\alpha},\mathscr{A}_{k}),\mathscr{A}_{k}) \subseteq st(x_{\alpha},\mathscr{A}_{j})$$

$$\Rightarrow st(st(x_{\alpha},\mathscr{A}_{k}),\mathscr{A}_{k}) \subseteq B$$

$$\Rightarrow x_{\alpha} \in st(st(x_{\alpha},\mathscr{A}_{k}),\mathscr{A}_{k}) \subseteq B$$

$$\Rightarrow x_{\alpha} \in B_{k} \subseteq B.$$

On the other hand, each B_n is assign to some member of \mathfrak{U}^* , \mathfrak{U}^* is countable implies \mathfrak{B} is countable.

Now by Theorem 2.5.3, the following result holds.

Theorem 5.4.2. Every covering L-locally uniform with countable base is pointwise pseudo-metrizable.
