
Chapter 1

General Introduction

1.1 Introduction

Introduction is the part where the whole thesis begins. All the important definitions

and terminology are mentioned in the introduction part.

We live in this universe and living on it is a great opportunity for the cosmolo-

gists to study about the universe. By forming different models using Einstein field

equation and its modified theories, the cosmologists can easily known about our

universe. By this inspiration, my thesis entitled “SOME PROBLEMS OF PHYSI-

CAL DISTRIBUTION IN RELATIVISTIC COSMOLOGY” is taken up. This thesis

comprises of eight chapters where first chapter and last chapter deals with gen-

eral introduction and conclusion including future aspects. The other chapters viz.,

Chapter 2 to Chapter 7 deals with some spatially homogeneous isotropic cosmo-

logical model of the universe in some modified theories of gravitation.

1.2 Einstein’s theory of gravitation

Einstein theory of gravitation is the most important theory in the context of modern

cosmology. First he developed special theory of relativity which relate to inertial

frame of reference. Due to the limitation that it cannot be application to all kinds

of motion, he developed general relativity, which is more popular and widely
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applicable to all types of motion. Basically Einstein was guided by the following

three principles:

(i) Principle of covariance

(ii) Principle of equivalence

(iii) Mach’s Principle.

1.2.1 Principle of covariance

This principle allows us to write the physical laws in covariant form so that their

structure stays the same in all coordinate systems.In tensor form all the physical

law should be expressed and so the spacetime metric can be expressed as

ds2 = c2dt2
− dx2

− dy2
− dz2, (1.2.1)

which is not invariant under general coordinate transformation, is replaced as

ds2 = gi jdxidx j; i, j = 1, 2, 3, 4, (1.2.2)

which is reasonable in any coordinate system. The transformation law satisfying

by gi j which is a symmetric tensor of rank two is given by

g
′i j =

∂xµ

∂x′i
∂xν

∂x′ j
gµν (1.2.3)

where dashed (’) quantities belong to the new coordinate system x′i.

1.2.2 Principle of equivalence

This principle brings in gravitational considerations into the development general

relativity. It says that no physical experiment can distinguish whether the acceler-

ation of a free particle is due to a gravitational field or due to the acceleration of a
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frame of reference. Thus, this leads to an intimate relationship between metric and

gravitation.

1.2.3 Mach’s Principle

This principle can be used to determine the geometry of the spacetime and there

by the inertial properties of a test particle from the information of the density and

mass energy distribution in its neighborhood. According to this principle:

(i) When masses are piled up in its neighbourhood, the inertia of a body must

increase.

(ii) When neighbouring masses are accelerated, the body must also experience

an accelerated force.

(iii) A "Coriolis field" deflects the moving bodies in the sense of rotation and a

radial centrifugal.

The gravitational phenomena has been successfully describe by Einstein’s general

theory of relativity. Also the spacetime is given as

ds2 = gi jdxidx j, ; i, j = 1, 2, 3 and 4 (1.2.4)

and the components of the symmetric tensor gi j act as gravitational potentials. The

gravitational field manifests through the curvature of the spacetime and the general

field equation’s which govern the gravitational field are given by

Gi j ≡ Ri j −
1
2

Rgi j + Λgi j = −8πTi j, (1.2.5)

where Gi j is the Einstein tensor, Ri j is the Ricci tensor, R is the scalar curvature

and Ti j is the energy-momentum tensor due to matter and Λ is the cosmological

constant . This cosmological constant was introduced by Einstein, while studying

static cosmological model and was later discarded by him saying “It is the greatest
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blunder of my life”. In this connection, it may be mentioned that, in recent years, the

cosmological constant is coming into lime light and attracting many researchers in

general relativity but comes as a variable and not as a constant.

1.3 Relativistic cosmology

Relativistic cosmology is the description of the expanding universe based on gen-

eral relativity. Cosmology has been transformed by dramatic progress in high-

precision observations and theoretical modeling. The physical universe is the

maximal set of physical objects which are locally casually connected to each other

and to the region of space time that is accessible to us by astronomical observation.

The scientific theory of cosmology is concerned with the study of the large-scale

structure of the observable region of the universe and its relation to local physics

on the one hand and to the rest of the universe on the other.

The recent astronomical data indicate that observable universe is currently

accelerating. This observation, in turn, indicates that the universe has a positive

cosmological constant. As a result it is likely that universe evolves into the future

(asymptotically) de Sitter phase.

1.4 Einstein’s field equations

The fact that the gravitational fields equations must locally reduce to those of New-

tonian gravity considered by Einstein’s, where the metric tensor components are

related to the gravitational potential in the weak field limit and the field equations

must reduce to Poisson equations.From the later, he imposed that the curvature

side of the equations must contain only up to second order derivatives of the

metric and must also be of the same tensor rank as the energy momentum ten-

sor.Therefore, Einstein was considered the Ricci tensor, derived from contracting

twice the Riemann curvature tensor, but there was a little bit more into it. He knew

that the equations must satisfy conservation laws and thus be divergence free. The
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vanishing of the divergence of matter energy source side of the equations, on the

curvature side, the Ricci tensor is not divergence free. For that, Einstein built pre-

cisely the tensor that holds his name which is divergence free and hence complies

with conservation laws. Einstein (1915a) has proposed his gravitational field equa-

tions by taking into account the requirements coordinate invariance, conservation

laws, and limits that must be consistent with Newtonian gravity. This field equa-

tions describe how space time reacts to the presence of mass energy. Hence , the

Einstein’s field equations becomes

Gi j ≡ Ri j −
1
2

Rgi j = −KTi j, (1.4.1)

where Gi j is the Einstein tensor, Ri j is the Ricci Tensor, R = gi jRi j is the Scalar

curvature and Ti j is the energy momentum tensor due to matter and and K = 8πG
c4 ,

c is the velocity of light in vacuum and G is the Newtonian Gravitational constant.

Einstein’s explained his general theory of relativity in a series of lectures (Ein-

stein, 1915b, 1916). This theory connects space and time with matter, energy and

gravitation. The theory itself is couched in the language of differential geometry

and was a pioneer for the use of applied mathematics in physical theories, leading

the way for the gauge theories that have followed.Einstein’s field equations reduce

to ordinary differential equations, because the inhomogenous degrees of freedom

have been frozen out. They are thus different special terms in geometrical; nev-

ertheless, they form a rich set of models where one can study the exact dynamics

of the full nonlinear field equations. The solutions to Einstein’s field equation will

depend on the matter in the space time. Einstein (1917) resulted in a non statical

universe when it was supposed a normal content of matter for the universe.

The idea of a non statical universe seemed senseless to Einstein and inconvenient

for him, as addressed to the astronomer Willem de Sitter when he deduced the

equations of an empty Universe which could be expanding. This fact persuaded

Einstein to modify his field equations by introducing a new term proportional to

a constant Lambda, the so called cosmological constant, which was interpreted
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as the energy density of the vacuum. The new Einstein’s field equations took

the following form which is obtained by adding a constant term to the Einstein’s

equations

Gi j + Λgi j = −KTi j, (1.4.2)

here Gi j = Ri j −
1
2Rgi j is an Einstein tensor which is divergence free and Λ is the

cosmological constant. This was indeed done by Einstein in order to permit a static

solution for the cosmology. As a modification on the left hand side of the equations,

the cosmological constant Λ is presaging a class of modification of gravity.

1.5 Cosmology and cosmological models

The study of large scale structure is deal within the Cosmology. Stars, star clusters

and galaxies or the nebulae, pulsars, quasars as well as cosmic rays and back-

ground radiation are within the universe. The basic problem in cosmology is the

dynamics of the system. The fundamental force keeping solar systems, stars and

galaxies together is the force of gravity. The other long range interactions such as

electromagnetic forces may be disregarded because the galaxies, which are major

constituents of the universe as well as the intergalactic medium, are known to be

electrically neutral.

It is well known that Einstein’s general theory of relativity is a satisfactory

theory of gravitation, correctly predicting the motion of test particles and photons

in curved spacetime; but in order to apply to the universe one has to introduce

simplifying assumptions and approximations. The first approximation that is

usually made is that of continuous matter distribution. We assume that the universe

is filled with a simple macroscopic perfect fluid (devoid of shear-viscous, bulk-

viscous and heat conductive properties). Its energy momentum tensor Ti j is, then

given by

Ti j = (ρ + p)uiu j − pgi j, (1.5.1)
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where ρ is its proper energy density p is the isotropic pressure and ui is four-velocity

of the fluid particles (stars etc.)

The study of the large scale structure of the physical universe is the main aim of

cosmology. Cosmologists construct mathematical model of the universe and they

compare these model with the present day universe as observed by astronomers.

The theory of cosmological model began with Einstein’s development of the static

universe in 1917. In 1922, Hubble published his famous law relating to apparent

luminosities of distant galaxies to their red shifts.

i.e., V = HD, (1.5.2)

where V is the speed of recession of galaxy at a distance D from us and H is

Hubble’s constant. Because of this observed red shift of spectral lines from distant

galaxies and static model of the universe were ruled out and non-static model

gained importance.

Friedmann (1922) was the first to investigate the most general non-static, ho-

mogeneous and isotropic spacetime described by the Robertson-Walker metric

ds2 = dt2
− R2(t)

{
dr2

1 − kr2 − r2dθ2
− r2 sin2 θdθ2

}
, (1.5.3)

where R(t) is the scale factor, k is a constant which is by a suitable choice of

r can be chosen to have values +1, 0 or -1 according as the universe is closed,

flat or open respectively. The evolution of the function R(t) using Einstein field

equations for all three curvatures is also discussed by him with great interest. The

present day universe is both spatially homogeneous and isotropic and therefore

can be well described by a Friedmann-Robertson-Walker (FRW) model (Patricge

and Wilkinson, 1967; Ehlers et al., 1968) which was proved both experimentally

and theoritically. However, there is evidence for a small amount of anisotropy

(Boughn et al., 1981) and a small magnetic field ever cosmic distant scales (Sofue

et al., 1979).
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1.6 Cosmological principle

The cosmological principle states that on a sufficiently large scale structure of the

distribution of galaxies, the universe is both homogeneous and isotropic.

(i) The homogeneity of space: It is the property of matter and energy which are

distributed uniformly over the large distance scales.

(ii) The isotropy of space: It is the property of looking the same in very direction

i.e., there is no preferred direction in space.

There is quite good observational evidence that the universe does have these prop-

erties, although this evidence is not completely watertight. Isotropy does not

necessarily imply homogeneity without the additional assumption that the ob-

server is not in a special place the so-called Copernican Principle. One would

observe isotropy in any spherically symmetric distribution of matter, but only if

one were in the middle of the pattern observed isotropy, together with the Coperni-

can Principle, implies the cosmological principle. The cosmological principle was

introduced by Einstein. He was particularly motivated by ideas associated with

Ernst Mach in advocating the principle. There are many approaches one can take

to this principle. Bondi, Gold and Hoyle in the 1940s together with the work of

Milne in the 1930s developed the philosophical approach regarding this principle.

The problem then arises as to how one explains the observation that the universe

appears homogeneous on scales much larger than the scale one expect to have been

in causal contact up to the present time.

1.7 Cosmological constant

In physical cosmology especially Einstein general relativity, Albert Einstein in-

troduces a term called the cosmological constant (usually denoted by the Greek

capital letter Lambda: Λ ) for achieving a stationary universe .But due to the result
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obtained by Hubble red shift that the universe might not be stationary, he left the

concept of introducing his new term.

However, the discovery of cosmic acceleration in the 1990s has renewed interest

in a cosmological constant. So it is an extra term in Einstein’s equations of general

relativity. The cosmological constant is thought to represent the energy density

of empty space and is taken as a constant density even as space expands. It has

the same effect as an intrinsic energy density of the vacuum. A positive vacuum

energy density resulting from a cosmological constant implies a negative pressure,

and vice versa. If the energy density is positive, the associated negative pressure

will drive an accelerated expansion of empty space. In lieu of the cosmological

constant, cosmologists often quote the ratio between the energy density due to the

cosmological constant and the current critical density of the universe. This ratio is

usually called ΩΛ. In a flat universe ΩΛ corresponds to the fraction of the energy

density of the universe which is associated with the cosmological constant. For

ΩΛ less than 1, the universe has negatively curved or hyperbolic geometry i.e. the

universe is open. For ΩΛ = 1, the universe has Euclidean or flat geometry. For

ΩΛ greater than 1, the universe has positively curved or spherical geometry i.e.,

the universe is closed. The critical density changes with cosmological time, but the

energy density due to the cosmological constant remains unchanged throughout

the history of the universe. Deceleration parameter (observable) now depends

on both matter content and Λ. By incorparating this cosmological constant to

Einstein’s field equation in order to get a static universe, Einstein felt that he com-

mited a Himalayan Blunder by introducing this term as he predicted a non-static

universe.Also he felt a bad conscience because of the contradictory observation

made by Edwin Hubble thet the universe is eapnading which is consistent with

Friedmann. . Since it no longer seemed to be needed, Einstein abandoned the

cosmological constant and called it the “biggest blunder” of his life.
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1.8 Hubble’s law and Hubble’s constant

Hubble’s law states that the galaxies recede with a velocity proportional to their

distance from the earth. Thus, Recessional velocity = Hubble’s constant times

distance.

i.e., V = HD (1.8.1)

where V is the observed velocity of the galaxy away from us, usually in km/sec. H

is Hubble’s constant in km/sec/MPc. D is the distance of the galaxies in MPc. We

know that the Hubble parameter or Hubble constant H defines the rate of cosmic

expansion. The recession velocity of V of an object situated at a distance D given

by H = V/D . Also, it is the logarithmic derivative of the scale factor R(t)

H =
Ṙ(t)
R(t)

. (1.8.2)

Bret from the latest source the Hubble space telescope key project team came up

with the answer.

H = 75 + / − 8kmS − 1MPc − 1.

And finally, WMAP came up with

H = 71 + / − 3.5kmS − 1MPc − 1.

where 1MPc = 3.26 million light years.

1.9 Equation of state parameter

In cosmology, the equation of state (EoS) parameter ω of a perfect fluid is equal to

the ratio of its pressure p and its energy density ρ. Thus

ω =
p
ρ
, (1.9.1)
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were ω may be a constant or a function of the cosmic time t. It plays a significant

role to describe the evolution and the ultimate fate of the universe.

• If ω = 1, then the universe is stiff fluid dominated

• If ω = 1
3 , then the universe is radiation dominated

• If ω = 0, then the universe is dust dominated

• Ifω = −1, then the universe is vacuum energy dominated (negative pressure)

• Ifω = −1
3 , then the universe is dark energy dominated (accelerated expansion)

• If −1 < ω < −1
3 , then the universe is quintessence dominated

• If ω < −1, then the universe is phantom energy dominated and it expands

exponentially to reach Big rip.

1.10 Deceleration parameter

The deceleration parameter is a dimensionless measure of the acceleration of the

expansion of the universe, which is denoted by q and is defined by

q = −
RR̈
Ṙ2
. (1.10.1)

Here R denote the scale factor of the universe and the dots indicating the derivatives

with respect to cosmic time t. The expansion of the universe is accelerating if R̈ > 0

or q < 0 and decelerating if R̈ < 0 or q < 0.

Again from the Hubble parameter H = Ṙ
R , we have

d
dt

( 1
H

)
= −

Ḣ
H2 =

Ṙ2
− RR̈
Ṙ2

= 1 −
RR̈
Ṙ2
. (1.10.2)

Therefore q can be expressed in terms of H as

q =
d
dt

( 1
H

)
− 1 = −

Ḣ
H2 − 1. (1.10.3)
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1.11 Expansion scalar

The expansion scalar is denoted by θ and is defined by

θ = 3H = 3
Ṙ
R
. (1.11.1)

This measures the relative rate of expansion or contraction of the universe.

1.12 Anisotropy parameter

The anisotropy parameter is denoted by Am and is defined by

Am =
1
3

3∑
i=1

(Hi −H)2

H
, (1.12.1)

where Hi (i = 1, 2, 3) are directional Hubble parameters. If Am, then the universe

becomes isotropic.

1.13 Shear scalar

The shear scalar is denoted by σ and is defined by

σ2 =
1
2

 3∑
i=i

H2
i −

1
3
θ2

 = 3
2

AmH2 =
1
6

Amθ
2. (1.13.1)

If σ = 0, then the universe becomes isotropic.

1.14 Perfect fluid and energy-momentum tensor

A perfect fluid is a friction-less homogeneous and in-compressible fluid which is

incapable of sustaining any tangential stress or action in the form of a shear but the

normal force acts between the adjoining layers of fluid. The energy-momentum
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tensor describing matter is given by

Ti j = ρuiu j + Si j, (1.14.1)

where ρ is the mass density, ui is the four-velocity ui = dxi

ds of the individual particles,

and Si j is the stress tensor where the speed of the light c = 1. If the matter consists

of perfect fluid, namely, one whose pressure is isotropic the stress tensor can be

expressed as

Si j = p(uiu j
− gi j), (1.14.2)

where p is the pressure. Thus the energy-momentum tensor becomes

Ti j = (ρ + p)uiu j
− pgi j, (1.14.3)

Thus for pressure, its equation of state is

p =
1
3
ρ. (1.14.4)

1.15 Bulk viscosity

Since bulk viscosity leads to the accelerated expansion phase in the early Universe,

there has been a considerable interest in cosmological models with bulk viscosity.

The possibility of bulk viscosity leading to inflationary like solution in general

relativistic FRW models has been discussed by several researchers like Barrow

(1986); Lima et al. (1993). It contributes a negative pressure term giving rise to

an effective total negative pressure term giving rise to an effective total negative

leading to an repulsive gravity. This overcomes the attractive gravity and gives

an impetus for rapid expansion of the Universe. Barrow (1986), Padmanabhan

and Chitre (1987), Pavon et al. (1991), Lima et al. (1993) are some of the authors

who have investigated the possibility of bulk viscosity leading to inflationary like

solution in general relativistic FRW models. Shri Ram and Singh (1997) have

13



discussed early cosmological models with bulk viscosity in Brans-Dicke theory.

Mahanthy and Pattanaik (1991); Bali and Pradhan (2007); Tripathy et al. (2009);

Katore et al. (2010) and Saadat and Pourhassan (2013) are some of the authors

who have studied cosmological models with bulk viscosity in different context.

Rao et al. (2011) have obtained anisotropic universe with cosmic strings and

bulk viscosity in a scalar tensor theory of gravitation. Samatha et al. (2013)

have discussed five-dimensional bulk viscous cosmological model with wet dark

fluid in general relativity. Katore and Shaik (2014) have studied various string

cosmological models in the presence of bulk viscosity. Khadekhar et al. (2015)

have discussed FRW viscous cosmology with inhomogenous equation of state

and future singularity. Rao et al. (2015a, 2015b) have analysed FRW bulk viscous

cosmological model in some scalar tensor theories of gravitation. Santhi et al. (2017)

have investigated bulk viscous string cosmological models in modified theory of

gravity. Santhi et al. (2018) have discussed bulk viscous string cosmological models

in the framework of modified theory of gravity. Mishra et al. (2019) have studied

bulk viscous embedded hybrid dark energy models. Yadav et al. (2020) have

investigated existence of bulk viscous Universe in modified theory of gravity and

confrontation with observational data. They have estimated thepresent values of

Hubble and deceleration parameters with observational Hubble data and SN la

data sets. Sanjay et al. (2021) have discussed stability analysis of viscous fluid

models in modified theory of gravity.

1.16 Strings and string cosmology

The concept of string theory was developed to describe events of the early stages of

the evolution of the universe. It can give rise to various forms of topological defects

as the symmetry of the universe is broken during phase transition. A defect is a dis-

continuity in the vacuum (Kibble, 1976; Pando et al., 1998) have proposed that the

topological defects are responsible for structure formation of the universe. Among

the above topological defects strings have important astrophysical consequences,
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namely, double quasar problem and galaxy formation can well, be explained by

strings (Vilenkin and Shellard, 1994). Vilenkin (1985) has shown that the strings

can act as a gravitational lense and hence astronomical observations may detect

these objects. String theory is also considered the promising candidate for unifi-

cation of all forces. Schwarz (2001) presented a brief chronology of some of the

major developments that has taken place in string theory. The general relativistic

treatment of strings was initiated by Stachel (1980) and Letelier (1983). According

to Letelier (1983), the massive strings are nothing but geometric strings (massless)

with particles attached along its extension. So, the total energy-momentum tensor

for a cloud of massive strings can be written as a detailed derivation of energy-

momentum tensor for a cloud of strings one can refer (Letelier, 1979,1983; Stachel,

1980)

Ti j = ρuiu j, (1.16.1)

where ρ is the rest energy density for a cloud of strings with particles attached to

them. So, we can write

ρ = ρp + λ, (1.16.2)

ρp being the particle energy density and λ being the tension density of the string.

The four-velocity ui for the cloud of particles and the four-vector xi the direction of

string, satisfy

uiu j = 1 = −xix j and uixi = 0. (1.16.3)

Recently, there has been a lot of interest in cosmic strings and string cosmological

models. The gravitational effects of cosmic strings have been extensively discussed

by Vilenkin (1981), Gott (1985), Letelier (1983), Stachel (1980) in general relativity.

Relativistic string models in the context Bianchi spacetime have been obtained by

Krori et al. (1990), Banerjee et al. (1990), and Tikekar and Patel (1990) while Tikekar

et al. (1994) have presented a class of cylindrically symmetric models in string cos-

mology. The string cosmological models with magnetic field are investigated by

Chakraborty (1991) and Tikekar and Patel (1992). Yavus and Tarhan (1996), Baysal
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(2001) have also investigated Bianchi type string cosmological models which are

exact solutions of Einstein’s field equations, the curvature source being a cloud

of strings which are one dimensional objects. They have also discussed the effect

of cosmic strings on the cosmic microwave background (CMB) anisotropies. Re-

cently, Rajbali et al. (2005) has investigated Bianchi type-I string dust magnetized

cosmological model in general relativity. There has been a considerable progress in

our understanding of string theory over the past few decades. The recent attempts

to bring string theory closer to cosmology which have been reviewed here, are

only a preview of things to come. As string theory develops further, a meaningful

dialogue with cosmology will ensure leading to much more excitement in this field.

1.17 Higher dimensional cosmology

In the general relativistic physics, our present universe seems to be four dimen-

sional of which three are used to denote usual spatial dimensions and the fourth

dimension represents time. But many researchers established their theories about

the universe in higher dimensional spacetime mainly due to the significant achieve-

ment in solving long-standing problems relating to the stability of the results in

general relativity and quantum mechanics. Before Einstein, two mathematicians

namely, Herman Weyl (1918) and Theodor Kaluza (1921) attempted to unify grav-

ity with the electromagnetic force. In the standard four dimensional spacetimes,

the first unified theory was suggested by Herman Weyl on the basis of generaliz-

ing the Riemannian geometry. But in the five-dimensional spacetimes, a unified

theory of gravitation and electromagnetic force was established the first time by

the mathematician Kaluza. Also in the year 1926, Oskar Klein, Swedish physicist,

suggested the unification law of the gravitational force and the electromagnetic

force by using the fifth dimension. This theory is known as Kaluza-Klein theory.

Later on, it was established that their approaches where to some extent erroneous,

but this theory provides a basis to the researchers for further investigation over the

last few decades. Einstein (1927), later on, showed that in general relativity, the
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Kaluza’s idea gives a rational foundation for Maxwell’s electromagnetic equations

and combines them with gravitational equations to a formal whole.

1.18 Robertson-Walker metric

Around our galaxy, the extra-galactic nebular clusters in space is isotropic and

hence we assume the matter is distributed homogeneously. Einstein took the time

coordinate t as in (Narlikar, An Introduction to Cosmology) as

ds2 = c2dt2
− gi jdxidx j, (1.18.1)

where gi j are functions of space coordinates xi(i, j = 1, 2, 3). Also, in cartesian

coordinates , we have x1, x2, x3, x4 by

x2
1 + x2

2 + x2
3 + x2

4 = R2.

Therefore the spatial line element on the surface is given by

dσ2 = (dx1)2 + (dx2)2 + (dx3)2 + (dx4)2

= R2[dχ2 + sin2 χ(d sin2 θdϕ2)],

where x1 = R sinχ cosθ, x2 = R sinχ cosθ cosϕ, x3 = R sinχ cosθ sinθ, x4 = Ra cosχ

and the ranges of θ, ϕ and χ are given by 0 ≤ χ ≤ π, 0 ≤ θ ≤ π, 0 ≤ ϕ ≤ 2π.

Another way to express dσ2 through coordinates r, θ, ϕ with r = sinχ, (0 ≤ r ≤ 1) is

dσ2 = R2

[
dr2

1 − r2 + r2(dθ + sin2 θdϕ2)
]
. (1.18.2)

The line element for the Einstein universe is therefore given by

ds2 = c2dt2
− dσ2 = c2dt2

− R2

[
dr2

1 − r2 + r2(dθ + sin2 θdϕ2)
]
. (1.18.3)
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This line element is for positive curvature only.

In general we have,

ds2 = c2dt2
− R2

[
dr2

1 − kr2 + r2(dθ + sin2 θdϕ2)
]
, (1.18.4)

where, k = 0,+1,−1 for zero, positive, negative curvatures respectively and are

also known as flat, closed, open models and R(t) is known as the scale factor or

expansion factor. Thus for c = 1, FRW line element reduces to

ds2 = dt2
− R2(t)

[
dr2

1 − kr2 + r2(dθ + sin2 θdϕ2)
]
. (1.18.5)

Thus FLRW five-dimensional line element is

ds2 = dt2
− R2(t)

[
dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
]
− S2(t)dψ2, (1.18.6)

where R(t) is the scale factor of the universe, k = 1, 0,−1 for space of positive,

vanishing and negative curvature representing closed, flat and open models of

the universe respectively. The fifth co-ordinate ψ is also assumed to be space like

coordinate.

1.19 Literature review of relevant works on Friedmann-

Lemaitre-Robertson-Walker metric

Lemaitre (1931) has independently derived similar results as Friedmann.

Robertson (1935) and Walker (1937) independently have shown the non-static

cosmological metric known as the Robertson-Walker metric.

Bondi and Gold (1948) studied the steady state model of the universe. They have

shown that the separation of the matter increases exponentially and the continuous

matter creation is necessary to clarify the density of matter.

Buchdahl (1972) considered the time-like geodesics of the Robertson-Walker
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spaces from the Lagrangian point of view. He obtained the characteristic function

V of an arbitrary Robertson-Walker space from the Hamiltonian point of view by

integrating the differential equations that govern V.

Heller and Suszycki (1974) have studied dust model of FRW universe with bulk

viscosity and shown that initial singularity may be avoided for suitable conditions.

Barrow and Matzner (1977) have studied the homogeneity and isotropy of the

universe and found that the chaotic cosmology is essentially ruled out.

Starobinsky (1980) recognized a new kind of isotropic cosmological models with

no singularity.

Berman (1983) provide a constant value for deceleration parameter by consid-

ering a variation law for Hubble’s parameter in an evolutionary model. Beesham

(1986) have considered a FRW universe with a time-varying gravitational constant

G as variable and has shown that there is no creation even though the rest mass of

matter particles is constant in a universe with variable G and Λ.

Ozer and Taha (1987) have introduced a cosmological model with an additional

term Λ(x), gµν in the energy-momentum tensor and found that the whole universe

is causally connected slightly after Planck time. There exists a period of phase

transition during part of which pressure is negative. This model indicated an

energy flow from the curvature to the matter such that the entropy of the matter is

not conserved.

Johri and Sudharsan (1988) conclude that the presence of little time independent

bulk viscosity play an important role steady state universe through the effect of

bulk viscosity on the evolution of the Friedmann models.

Tarachand and Ibotombi (1989) carried out a study of imperfect fluid interacting

with the gravitational field for spherically symmetric Robertson-Walker metric and

found that the Big Bang does not take place when the viscous fluid interact with

the gravitational field at the early stages.

Abdel-Rahman (1990) considered a cosmological model wherein the universe

has its critical density and the gravitational G and cosmological constantΛ are time-

dependent. The horizon and monopole problems may be solved by this model.
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Moreover, it predicted an expanding universe wherein G increases andΛ decreases

with time in a way dependable with the conservation of the energy-momentum

tensor.

Sistero (1991) studied about the cosmology with the gravitational and Gravi-

tational constants generalized as coupling scalars in Einstein’s theory. He found

exact solutions for zero pressure models satisfying certain condition.

Beesham (1991) confirmed that the scale covariant theory of gravity admits the

possibility of a time varying gravitational constant with a gauge function wherein

there is no independent equation. He also investigated the situation of obtain-

ing the explicit forms of the gauge function in the Friedmann-Robertson-Walker

cosmological models.

Ibotombi and Biren (1992) found an exact solution of the Einstein’s field equa-

tions for a conformally invariant scalar field with the trace free energy-momentum

tensor for the Robertson-Walker models with k = +1,−1 and discussed the physical

properties of the solution.

Beesham (1993) derived exponenetially expanding solutions by discussing the

stability of the models by considering non-Flat variable- Lambda cosmological

models with bulk viscosity.

Johri and Desikan (1994) investigated cosmological models by considering the

constant deceleration parameter in Brans-Dicke theory and studied each singular

and non-singular models of the universe. They explained that the growth of

singular models supported big-bang impulse and also the growth of non-singular

models because of creation of matter particles.

Abdussattar and Vishwakarma (1997) studied some Robertson-Walker models

considering a contracted Ricci collineation with the fluid flow vector and having

time-varying G and Λ. They obtained the character of the growth of the models

within the cases k = ±1 and located to be interchanged from the corresponding

standard FRW models.

Banerjee and Sen (1998) investigated the character of the potential function V

(ϕ) relevant to power law inflation in an exceedingly minimally coupled scalar
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field cosmology together with a perfect or causal viscous fluid and discovered that

if the coefficient of viscosity is proportional to the square root of the density of the

fluid, the desired potential is an exponential function of the scalar field ϕ.

Friedmann (1999) has deduced some necessary results of the Friedmann- Lemaitre-

Robertson-Walker (FLRW) model.

Vishwakarma (2001) considered four variableΛ-models to investigate the magnitude-

redshift relation and angular size-redshift relation for the Type Ia supernovae and

updated compact radio sources data respectively.

Kremer and Devecchi (2003) shown that a present acceleration with a past

deceleration may be a possible solution to the Friedmann equation by considering

the universe as a combination of a scalar with a matter field and by together

with a non equilibrium pressure term within the energy-momentum tensor. They

additionally concluded that the dark energy density decays a lot of slowly with

reference to the time than the matter energy density does.

Debnath and Paul (2006) thought-about the evolution of a flat Friedmann-

Roberstson-Walker universe in higher derivative theories, together with αR2 terms

to the Einstein-Hilbert action within the presence of variable gravitational and cos-

mological constants. They additionally studied the evolution of the gravitational

and cosmological constants within the presence of radiation and matter domination

era of the universe.

Akbar and Cai (2007) shown that the differential form of a Friedmann equations

may be derived by applying the first law of thermodynamics at the apparent

horizon of an FRW universe with entropy.

Singh et al. (2007) thought-about Einstein field equations with variable grav-

itational and cosmological constants within the presence of bulk viscosity for a

spatially flat homogenized and isotropic universe. They also studied the cosmo-

logical model with the constant and time-dependent bulk viscosity.

Akbar (2008) shown that the differential type of Friedmann equations of Friedman-

Robertson-Walker (FRW) universe may be recast as the same type of the first law of

thermodynamics at the apparent horizon of FRW universe full of the viscous fluid.
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Arbab (2008) studied a cosmological model of phantom energy using a variable

cosmological constant Λ that depend on the energy density (ρ). He thought-about

the cosmological constant in such the way that it varies reciprocally proportional

the energy density of the universe.

Copeland et al. (2009) investigated the dynamics of a particular scalar field

within the Friedmann-Robertson-Walker universe through the spatial curvature

and obtained the fixed point solutions that are indicated to be late time at trac-

tors. They additionally determined the corresponding scalar field potentials that

correspond to those stable solutions.

Ibotombi et al. (2009) investigated FRW models of universe in presence of

viscous fluid within the cosmological theory supported Lyra’s Manifold. They

obtained exacts solutions by considering the deceleration parameter to be a variable

and the viscosity coefficient of bulk viscous fluid to be a constant and investigated

the physical properties of the models.

Leon and Saridakis (2010) studied various varying-mass models of dark matter

particle within the framework of phantom cosmology and investigated whether

or not there exist late-time cosmological solutions, equivalent to an accelerating

universe and having the dark energy and dark matter densities of a similar order.

They ended that the coincidence problem cannot be solved or may be relieved.

El-Nabulsi (2010a) studied a new cosmological model of the universe supported

a spatially flat FRW metric. He created a new kind of extended modified gravity

theory to explain a dark energy dominated accelerating universe employing a

Gauss–Bonnet invariant term and a new Einstein-Hilbert term.

El-Nabulsi (2010b) presented a four-dimensional dilaton-Brans-Dicke cosmo-

logical situation related to the multiverse occupied by dark energy or phantom

energy with a positive cosmological constant containing countless without end big

rip singularities.

Jamil and Debnath (2011) thought-about a cosmological model of variable G

andΛ for the FRW universe and obtained the solutions in the form of cosmological

constant for the flat model. They additionally found the cosmological parameters
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for dust, radiation and stiff matter. The state finder parameters analyzed and

shown that this depends only on ω and ϵ.

Mostafapoor and Gron (2011) studied the flat Λ cold dark matter models

through the bulk viscosity and investigated the role of the bulk viscosity in case

of evolution of the universe. They obtained the dynamical equations for these

models and resolved for a few cases of bulk viscosity. They additionally obtained

the differential equations for the Hubble parameter and also the energy density of

dark matter.

Akarsu and Dereli (2012) planned a cosmological model for the deceleration

parameter that varies linearly with time and covers Berman’s law wherever it’s

constant and it provides an improved work with information (from SNIa, BAO

and CMB), particularly regarding the late time behavior of the universe. They

thought-about the models for the spatially closed and flat universe and located

that the cosmological fluid behaves like quintom and also the universe ends with

a big-rip in each the cases.

Mohajan (2013) established Friedmann, Robertson-Walker (FRW) models on

the premise of the idea that the universe is homogeneous and isotropic altogether

epochs to explain the FRW models with easier mathematical calculations, physical

interpretations and diagrams wherever necessary.

Amirhashchi et al. (2014) examined the evolution of the equation of state pa-

rameter of the dark energy for the spatially homogeneous and isotropic Friedmann-

Robertson-Walker (FRW) model containing the barotropic fluid. They additionally

discovered that in each interacting and non-interacting cases, the equation of state

parameter for dark energy is decreasing function of time and forever variable in

quintessence region for all open, closed and flat models.

Singh and Bishi (2015) studied the FRW metric for the universal gravitational

constant G and cosmological constant Λ within the f (R,T) gravity using the mod-

ified Chaplygin gas equation of state. By using hybrid exponential law (HEL) for

the scale factor they obtained the field equation’s solution and also talk over about

some physical behaviour of the model.
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Chand et al. (2016) established the exact solution for spatially homegenous

and isotrpic FRW spacetime within the Brans-Dicke scalar tensor theory of gravity.

Tiwari et al. (2017) concluded for the spatially homogeneous FRW model together

with barotropic fluid by studying the equation of state parameter of dark energy.

Zhang and Kuang (2018) studied the quantum effect of the modified Friedmann

equation within the Friedmann-Robertson-Walker universe. They also investigated

the bounce cosmological solution for the spatially flat geometry in the modified

Friedmann equation.

Archana et al. (2019) investigated Tsallis holographic dark energy in flat FRW

universe considering IR cutoff as Hubble horizon with time-varying deceleration

parameter for the evolution of the universe. From the study of statefinder, They

observed that THDE model is in good agreement with a flat ΛCDM model.

Taser (2020) investigated conformal symmetric Freidmann–Robertson–Walker

(FRW) universe with perfect fluid in the framework of f (R,T) gravitational theory.

The exact solutions of conformal FRW universe with perfect fluid are attained for

matter part of the f (R,T) model in the case of h(T) = λT. Energy conditions are

investigated.

Bochniak and Andrzej (2021) motivated by the models of geometry with discrete

spaces as additional dimensions we investigate the stability of cosmological solu-

tions in models with two metrics of the Friedmann-Lemaître-Robertson-Walker

type. They proposed an effective gravity action that couples the two metrics in

a similar manner as in bimetric theory of gravity and analyze whether standard

solutions with identical metrics are stable under small perturbations.

1.20 Modified theories of gravitation

Since Einstein published his first theory of gravitation there has been many criti-

cisms. Brans and Dicke (1961), Saez and Ballester (1986), Nordtvedt (1970), Ross

(1972), Dunn (1974) and scale covariant theory of gravitation proposed by Canuto

et al. (1977), Schmidt et al. (1981) are the most important modified theories for the
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substitute of the Einstein’s theory. In the scale covariant theory Einstein field equa-

tions are valid in gravitational units whereas physical quantities are measured in

atomic units. The metric tensor in the two systems of units is related by a conformal

transformation

ḡi j = ϕ
2(xk)gi j, (1.20.1)

where bar denotes gravitational units and unbar denotes atomic units.

Another recent modification of Einstein theory is the generalized f (R,T) gravity

proposed by Harko et al. (2011) to explain dark energy and accelerated expan-

sion of the universe. In this thesis we concentrate on the investigation of some

cosmological models in scalar-tensor theories of gravitation proposed by Saez and

Ballester (1986), scale covariant theory of gravitation formulated by Canute et al.

(1977) and f (R,T) gravity proposed by Harko et al. (2011). We now present a

detailed discussion of the above modified theories of gravitation.

1.21 Brans-Dicke scalar-tensor theory of gravitation

A theory of gravitation in which the gravitational field is described by the tensor

field of general relativity and by a new scalar field, which is determined by the

distribution of mass-energy in the universe and replaces the gravitational constant.

scalar-tensor theories of gravitation have great appreciation for the community

academic in the 1960s, when the first version was established. In this theory, a

scalar field has a dynamic that affects the structure of space time. The Brans-

Dicke theory was first proposed as an alternative to general relativity, however,

require testing in the solar system a lower limit of the Brans-Dicke parameter is

around 4000, as a result ended up putting the theory into sensitive positions. On

the other hand, an analysis of the dynamics of the scalar field of Brans-Dicke in

a cosmological context presents a clear-cut result: the usual general relativity is

an attractor of a natural gravitation of Brans-Dicke cosmology evolved, i.e., the

dynamics of the scalar field is gradually suppressed. Now we propose the study
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of gravitation of Brans-Dicke. We believe that the study of such a generalization of

general relativity, and provide a better perspective on the area in question, allows

a better understanding of gravitation, as well as their own general relativity itself.

In theoretical physics, the Brans–Dicke theory of gravitation (sometimes called the

Jordan-Brans-Dicke theory) is a theoretical framework to explain gravitation. It is

a well-known competitor of Einstein’s more popular theory of general relativity.

It is an example of a scalar-tensor theory, a gravitational theory in which the

gravitational interaction is mediated by a scalar field as well as the tensor field

of general relativity. The gravitational constant G is not presumed to be constant

but instead G is replaced by a scalar field which can vary from place to place and

with time. The theory was developed in 1961 by Robert H. Dicke and Carl H.

Brans building upon, among others, the earlier 1959 work of Pascual Jordan. At

present, both Brans–Dicke theory and general relativity are generally held to be in

agreement with observations.

As usually formulated, Mach’s principle requires that the geometry of spacetime

and hence the inertial properties of every infinitesimal test particle be determined

by the distribution of mass-energy throughout the universe (Wheeler, 1964). Al-

though being one of the foundation stones of Einstein’s philosophy, this principle

is contained only to a limited extent in general relativity (Dicke, 1964). Some exam-

ples of ‘non-machian’ solutions are (Heckmann and Schucking, 1962), Minkowski

space which has inertial properties but no matter, the Godel (1949) universe which

contains such unphysical as closed time-like curves and the closed but empty Taub

(1951) model. Wheeler (1964) has suggested that these unsatisfactory solutions

might be excluded by means of boundary conditions. Brans and Dicke (1961)

have argued against this possibility by considering a static massive shell. The

inertial properties of test particles inside shell are according to general relativity,

unchanged even if the mass of the shell is increased.

In the hope of extending general relativity in such a way as to incorporate

Mach’s principle, Brans and Dicke (1961) have proposed a theory which includes

a long range scalar field interacting equally with all forms of matter ( with the
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exception of electromagnetism). They noted, following Dirac (1938) and Sciama

(1959), that the Newtonian gravitational constant G is related to the mass M and

radius R of the visible universe by

G ∼
Rc2

M
. (1.21.1)

(The numbers are approximate). This suggests that G is a (scalar) function deter-

mined by the matter distribution. Their theory is formally equivalent to the one

previously considered by Jordan (1955).

In order to generalize the equations of general relativity, Brans and Dicke (1961)

formulated their variational principle, which differs from that of general relativity,

namely,

δ

∫
{R + (16G)}

√
−gd4x = 0. (1.21.2)

In that G is replaced by ϕ−1 which now comes inside the action integral. There are

also additional terms to take account of the scalar nature of ϕ

δ

∫ {
ϕR + 16RL −

ωϕ,iϕ,i

ϕ

}
√
−gd4x = 0. (1.21.3)

where ϕ is the scalar field, R is the usual scalar curvature, L is a function of

matter variables and metric tensor components (not of scalar field ϕ ) and ω is a

dimensionless constant.

The field equations obtained by the variation of gi j and ϕ take the form

Ri j −
1
2

Rgi j = −8πϕ−1Ti j − ωϕ
−2

(
ϕ,iϕ, j −

1
2

gi jϕ,kϕ
,k
)
− ϕ−1

(
ϕi; j −

1
2

gi jϕ
,k
;k

)
(1.21.4)

and

ϕ,k;k = 8π(3 + 2ω)−1T, (1.21.5)

where T = gi jTi j. Here, the metric has signature +2, a comma denotes partial

differentiation, a semi colon (;) denotes covariant differentiation and the velocity of

light ‘c′ is taken to be unity. The main difference between the Brans-Dicke theory
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and Einstein theory lies in the gravitational field equations, which determine the

metric field gi j, rather than in the equations of motion. The energy momentum

tensor of matter Ti j satisfies the local matter-energy conservation law

Ti j
; j = 0, (1.21.6)

which also represents equation of motion and is a consequence of the field equations

(1.2.5).

A comparison of the above equations with Einstein’s equations shows that the

Brans-Dicke theory goes over to general relativity in the limit , constant G = 1. The

above modification of Einstein’s theory involves violation of ‘strong principle of

equivalence’ on which Einstein’s theory is based. But this does not violate ‘weak

principle of equivalence’ for example, the paths of test particles in a gravitational

field are still independent of their masses. Thus, Brans-Dicke theory now can be

described as a theory for which the gravitational force on an object is partially

due to the interaction with a scalar field, and partially due to a tensor interaction.

Further discussions, by Brans and Dicke (1961), of the field equations (1.2.5) have

included and analysis of the weak field equations, study of the three standard tests,

comparison with the work of Jordan (1955), discussions of boundary conditions for

, investigations of cosmology and the general relationship to Mach’s principle. At

present there is no evidence to preclude the validity of the Brans-Dicke scalar-tensor

theory. While this theory doesn’t predict an anomalous gravitational red shift, it

gives values for the gravitational deflection of light rays and the perihelion advance

of planetary orbits different from those of Einstein’s theory (Dicke, 1964; Brans and

Dicke, 1961). But in view of the relatively large discrepancies in the measurements

of the deflection of star light near the sun’s limb during a total eclipse (Dicke, 1967)

and the measurements of the oblate ness of the sun (Dicke and Goldenberg, 1967),

it is concluded that Brans-Dicke theory is not a conflict with observations.

Very recently, this theory has been applied to more interesting problems in

astrophysics in order to appreciate fully the implications of the addition of along
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range scalar interaction. By comparing the predictions of this theory with those

of Einstein’s theory, one may hope to obtain important differences which might

be used to decide between the two theories. For example, while Solmona (1967)

has shown that certain gross features of a cold neutron star remain unchanged by

the presence of the strength of the scalar field, Morganstern and Chiu (1967) have

shown that if a neutron star is observed to exhibit symmetric radial pulsation, then

the existence of the scalar field may be ruled out.

As a consequence of the recent lunar ranging experiments (Williams et al., 1976,

Shapiro et al., 1976) one can conclude that Brans-Dicke parameter 500. It has been

pointed out that there is no theoretical reason to restrict to positive values (Smalley

and Eby, 1976). In view of this one might well conclude that Brans-Dicke theory

with some large values of is the correct theory.

1.21.1 Review on the work related to Brans-Dicke theory

In this thesis, some of our works is related to the Brans-Dicke scalar-tensor theory

of gravitation and Quintessence. We are highlighting here the work carried out by

various authors.

Chauvet (1982) found general solutions of the Friedmann vacuum universe by

rescaling the scalar ϕ of the Jordan-Brans and Dicke cosmology. Each solution

is characterised by the sign of the second order derivative of the rescaled field

Robertson-Walker line element. ϕ(= ϕR3), R being the scale factor.

Banerjee (1995) studied an isotropic homogeneous cosmological models with

Robertson-Walker line element in general scalar tensor where the coupling pa-

rameter is a function of the scalar field. Exact solutions are obtained in Dicke’s

conformally transformed units for stiff fluid and radiation universe.

Liddle and Scherrer (1998) have obtained scaling attractor solutions with power

law potentials in non-minimally coupled theories.

Bertolo and Pietroni (1999) have investigated an approach to find tracking so-

lutions in general scalar tensor theories with inverse power law potentials.
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Amendola (1999) have obtained an accelerated expanding solutions at present

time, the so-called scaling attractor in some theories of gravity with non-minimal

coupling of the form [1 + ϵ f (ϕ)] and V(ϕ) = A f (ϕ)M, where f (ϕ) is a power-law or

exponential function of the scalar field and A and M are constants.

Uzan, Holden and Wands (1999) have studied the self-interacting Brans-Dicke

theory by considering a scalar field coupled non-minimally with gravity. Although

accelerated solutions can be obtained in non-minimally coupled gravity theories

the constraint on the variability of the gravitational coupling is quite strong and

that it implies a universe that is considerably older than H−1. Uzan (1999) have

found scaling attractor solutions in the literature with exponential potentials in

non-minimally coupled theories.

Banergee and Pavon (2000) investigated the possibility of obtaining a non-

decelerating expansion for the universe for open, flat and closed Friedmann Robertson-

Walker models in Brans-Dicke theory with the help of scalar field which is mini-

mally coupled to gravity and serves as the Bertolami and Martins (2000) analysed

the conditions under which the dynamics of a self-interacting Brans-Dicke field

can account for the accelerated expansion of the universe. They have shown that

accelerated expanding solutions can be achieved with a quadratic self-coupling of

the Brans-Dicke field and a negative coupling constant ω.

Faraoni (2000) have studied different potentials with a non-minimal coupling

term ψR ϕ2

2 .

Saini, Raychaudhury and Starobinsky (2000) have reconstructed the potential

from the luminosity-redshift relation available from the observations in context of

scalar tensor theory.

Chimento, Jakubi and Pavon (2000) have shown that a combination of dissipa-

tive effects such as a bulk viscous stress and a quintessence scalar field gives an

accelerated expansion for an open universe (k = −1) as well.

Lopez and Matos (2000) proposed a quintessence model with the potential

V(ϕ) = V0[sin h(α
√

k0)∆ϕ] which asymptotic behaviour corresponds to an inverse

power law potential at early times and to an exponential one at late time. They
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demonstrate that this is an tracker solution and that it could have driven the

universe into its current inflationary stage.

Banerjee and Pavon (2001a) have shown that with ω(ϕ) one can have a deceler-

ating radiation dominated era in the early time and accelerated matter dominated

era in the late time. They have also shown that in BD theory the nucleosynthesis

problem can be avoided by considering ω to be a function of ϕ.

Banerjee and Pavon (2001b) investigates the possibility of obtaining a non-

decelerating expansion for the universe in Brans-Dicke theory with the help of

another scalar field which is minimally coupled to gravity and serves as the

quintessence matter.

Sen and Sen (2001) have found an accelerating solutions in Brans-Dicke cosmol-

ogy with a potential which has a time dependent mass squared term which has

recently become negative.

Sen and Seshadri (2003) investigated the nature of the potential relevant to the

power law expansion of the universe in a self interacting Brans-Dicke cosmology

with a perfect fluid distribution. The density perturbation is also studied to check

the consistency of the structure formation scenario.

Chakraborty et al. (2008) have shown that minimally coupled scalar field in

Brans-Dicke theory with varying speed of light can solve the quintessence problem

and it is possible to have a non-decelerated expansion of the present universe with

Brans-Dicke theory for anisotropic models without any matter.

Sotiriou and Faraoni (2010) reviewed f (R) theories of gravity in an attempt to

comprehensively present their most important aspects and cover the largest possi-

ble portion of the relevant literature. All known formalisms are presented—metric,

Palatini, and metric affine—and the following topics are discussed: motivation; ac-

tions, field equations, and theoretical aspects; equivalence with other theories;

cosmological aspects and constraints; viability criteria; and astrophysical applica-

tions.

Shobhan Babu et al., (2013) investigated a five-dimensional Kaluza-Klein space-

time in the frame work of Brans-Dicke scalar-tensor theory of gravitation when
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the source of energy momentum tensor is a bulk viscous fluid containing one

dimensional cosmic strings. They have obtained a determinate solution of the field

equations using the special law of variation for Hubble’s parameter proposed by

Bermann. They have also used a barotropic equation of state for the pressure and

density. They further discussed some physical properties of the model.

Das and Mamon (2014) show that in non-minimally coupled Brans-Dicke the-

ory containing a self-interacting potential, a suitable conformal transformation

can automatically give rise to an interaction between the normal matter and the

Brans-Dicke scalar field. Considering the scalar field in the Einstein frame as the

quintessence matter, they had shown that such a non-minimal coupling between

the matter and the scalar field can give rise to a late time accelerated expansion

for the universe preceded by a decelerated expansion for very high values of the

Brans-Dicke parameter ω. They have also studied the observational constraints on

the model parameters considering the Hubble and Supernova data.

Kiran, Reddy and Rao (2015) studied the anisotropic and homogeneous Bianchi

type-V universe filled with two minimally interacting fields, matter and holo-

graphic dark energy components in the frame work of Brans and Dicke theory of

gravitation. To obtain a determinate solution of the field equations they have used

(i) the scalar expansion is proportional to the shear scalar and (ii) special law of

variation for Hubble’s parameter proposed by Berman. They also discussed some

physical and kinematical properties of the model.

Chand, Mishra and Anirudh Pradhan (2016) considered exact solution of mod-

ified Einstein’s field equations within the scope of spatially homogeneous and

isotropic Fraidmann-Robertson-Walker (FRW) space-time filled with perfect fluid

in the frame work of Brans-Dicke scalar-tensor theory of gravity. They have investi-

gated the flat, open and closed FRW models and the effect of dynamic cosmological

term on the evolution of the universe. Two types of FRW cosmological models are

obtained by setting the power law between the scalar field ϕ and the scale factor a

and deceleration parameter (DP) q as a time dependent.

Goswami (2017) investigated late time acceleration for a spatially flat dust filled
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universe in Brans-Dicke theory in the presence of a positive cosmological constant

Λ. They have obtained the expressions for Hubble’s constant, luminosity distance

and apparent magnitude of the model.

Aditya and Reddy (2018) investigate non-Ricci, non-compact Friedmann-Robertson-

Walker type Kaluza-Klein cosmology in the presence of pressureless matter and

modified holographic Ricci dark energy in the frame work of Brans and Dicke

scalar-tensor theory of gravitation. They solve the field equations of this theory

using a hybrid expansion law for the five-dimensional scale factor. They have also

used a power law and a form of logarithmic function of the scale factor for the

Brans-Dicke scalar field. Consequently, they obtain two interesting cosmological

models of the Kaluza-Klein universe. They have evaluated the cosmological pa-

rameters, namely, the equation of state parameter, the deceleration parameter, and

the density parameters. To check the stability of the models they use the squared

speed of sound. Some well-known cosmological (ωde-ω′de and statefinder) planes

are constructed for our models. They have also analyzed the physical behavior of

these parameters through graphical representation. They observed that the FRW

type Kaluza-Klein dark energy models presented are compatible with the present

day cosmological observations.

Jawad, Aslam and Rani (2019) Tsallis entropy has been widely applied to an-

alyze the gravitational and cosmological setups. They discuss the dark energy

(DE) model by its cosmological consequences using Tsallis holographic entropy in

the framework of modified Brans–Dicke (BD) gravity. They consider the Hubble

horizon as infrared cutoff to study the nature of DE that is responsible for current

cosmic acceleration. They focus on flat FRW universe in interacting and non in-

teracting scenarios between DE and dark matter (DM). In this framework, they

discuss the cosmological parameters like equation of state parameter, deceleration

parameter, Om-diagnostic, squared speed of sound and planes like evolving equa-

tion of state parameter and statefinders. They discuss graphical presentation of

these parameters and planes. They compare the results with observation data to

check the consistency of results.
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Tripathy et al. (2020) constructed some dark energy cosmological models in the

framework of a generalized Brans–Dicke theory which contains a self interacting

potential and a dynamical coupling parameter. The models are constructed in the

background of an anisotropic metric. The dark sector of the universe is considered

through a unified linear equation of state. Also, on the basis of the generalised

Brans–Dicke theory, they have estimated the time variation of the Newtonian grav-

itational constant.

Mukhopadhyay, Saha and Chaudhury (2021) study the generalized Brans-Dicke

theory of gravity, time dependence of various cosmological parameters for a spa-

tially flat, homogeneous and isotropic universe filled with pressure-less matter.

Mathematical formulations have been carried out with the help of two models,

based upon two different expressions for the scale factor. In the first model, the

entire matter content (dark matter + baryonic matter) of the universe has been as-

sumed to be conserved. A smooth transition from a state of decelerated expansion

to a state of accelerated expansion of the universe has been obtained from an exact

solution of the field equations, without incorporating any parameter in the theo-

retical formulation that represents the dark energy. Time dependence of the scalar

field has been determined from this solution with the help of astrophysical char-

acteristics of the expanding universe. They found the nature of dependence of the

Brans-Dicke parameter upon time and also upon the scalar field. The Brans-Dicke

parameter has been found to have a small negative value and it becomes more

negative as the scalar field decreases with time. It has been found in the present

study that the gravitational constant, which is reciprocal of the scalar field parame-

ter, increases with time. In the second of the two models discussed here, an ansatz

has been assumed regarding the mode of change of the dark energy content of the

universe with time. Using this model, they determined the time dependence of the

densities of matter and dark energy and also the density parameters corresponding

to these two constituents of the universe.
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1.22 Lyra geometry

In recent years, there has been a lot of interest in alternative theories of gravitation.

Noteworthy among them is the theory of gravitation proposed by Sen (1957) based

on Lyra (1951) geometry. This geometry is a modified Riemannian geometry in

which a gauge function has been introduced into the structure less manifold as a

result of which the cosmological constant arises naturally from the geometry. In

general relativity, Einstein succeeded in geometrizing gravitation by identifying the

metric tensor with gravitational potentials. In scalar tensor theory of Brans-Dicke

on the other hand, the scalar field remains alien to the geometry. Lyra’s geometry

is more in keeping with spirit of Einstein’s principle of geometrisation since both

the scalar and tensor fields have more or less intrinsic geometrical significance.

Lyra (1951) defined the displacement vector PP′ between two neighboring points

P(xi) and P′(xi+ dxi) which has the components ξi = x0dxi where x0(xi) is a non-zero

gauge function. The coordinate system xi together with x0 form reference system

(x0,xi). Tensors are characterized by the way in which components transform under

a general transformation of coordinates.

The metric

ds2 = gi jx0dxix0dx j, (1.22.1)

is an absolute invariant (i.e., invariant under change of reference system). The

components of the affine connection are no longer symmetric in the lower indices

and cannot be identified with the Christoffel symbols as is the case in Riemannian

geometry. In Lyra geometry the components of the affine connection are not only

the functions of Christoffel symbols but also of ϕi . The Lyra curvature tensor Kh
ij

, the contracted curvature tensor Ki j and the scalar curvature K can be obtained

similar to the Riemannian one. The scalar constant K is given by

K = R
(
x0

)−2
+ 3

(
x0

)−1
, ϕi

;i +
3
2
ϕiϕi, (1.22.2)
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where R is the Riemannian curvature scalar and ϕi is defined by

ϕi =
(
x0

)−1 ∂

∂xi

{
log(x0)2

}
, (1.22.3)

choosing the so-called normal gauge i.e., x0 = 1 the volume integral in space

becomes

I =
∫

k
√
−gd4x, (1.22.4)

where

K = R + 3ϕi
;i +

3
2
ϕiϕ

i. (1.22.5)

The field equations in this manifold may be obtained from the variational principle

δ (I + J) = 0, (1.22.6)

where I is given by (1.22.4) and

J =
∫

L
√
−gd4x. (1.22.7)

Here L is the Lagrangian density of matter.

The field equations given by Sen (1951) are

Ri j −
1
2

Rgi j +
3
2
ϕiϕ

i
−

3
4

gi jϕkϕ
k = −8πTi j. (1.22.8)

Lyra Geometry is use in my study because it is a modification of Riemannian

geometry, which is relatively easy and helpful to introducing a gauge function

into the structureless manifold, which terminates the non-integrability state of the

length of a vector under parallel transport. Lyra geometry, along with constant

gauge vector ϕi will either play the role of cosmological constant or creation field.
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1.22.1 Literature review on Lyra Geometry

Some works are highlighted as a literature review by different cosmologists and

authors regarding Lyra geometry as follows:

Lyra (1951) suggested a modification of Riemannian geometry, which is also re-

garded as a modification of Weyl’s geometry, by introducing a Gauge function (or

scale function) into the structure less manifold which removes the non-integrability

condition of the length of a vector under parallel transport (i.e., the metricity con-

dition is restored) and a cosmological constant is naturally introduced from the

geometry. Lyra (1951) and Scheibe (1952) completed the study of this geometry,

which is known as Lyra’s Geometry. In Lyra’s geometry, the connection is metric

preserving as Riemannian geometry, and length transfers as integrable in contrast

to Weyl’s geometry. This alternating theory of Lyra’s geometry is of interest since

it produces effects similar to Einstein’s theory.

On the basis of Lyra’s geometry, Sen (1957) studied a static cosmological model

universe similar to the Einstein’s static model, which had a finite density and show-

ing a red shift. He also showed that the red shift of spectral lines from extragalactic

nebulae was nothing but an outcome of an intrinsic geometrical property of the

model independent of expansion. Also, he obtained the field equations in normal

gauge as

Ri j −
1
2

Rgi j +
3
2

gi jϕiϕ j −
3
4

gi jϕkϕ
k = −kTi j, (1.22.9)

where Ri j is the Ricci tensor; R is the Ricci scalar, gi j is a metric tensor, ϕi is a

displacement field and Ti j is the energy-momentum tensor.

Sen (1960) and Sen and Dunn (1971) showed that, unlike Riemannian geometry,

the auto parallels associated with the affine connection in Lyra geometry did not

coincident with the geodesics arises from the metric. In the Lyra’s geometry, they

also constructed a new scalar-tensor theory where both the scalar and tensor field

had natural geometrical significance.

Sen and Vanstone (1972), in their paper “On Weyl and Lyra Manifolds”, showed

that the Lyra’s geometry and Weyl’s geometry are special cases of manifolds with
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more general connections. Also, they showed the relationship between Lyra’s

geometry and Weyl’s geometry and obtained the relationship of them with Rie-

mannian geometry by giving a global formulation of Lyra’s geometry.

Halford (1970) designed a cosmological theory within the framework of Lyra’s

geometry and showed that the constant displacement vector field in Lyra’s geom-

etry plays the role of the cosmological constant in the normal general relativistic

study. Also, Halford (1972) obtained a closed-form exact solution of the field equa-

tions corresponding to a scalar-tensor theory similar to the Brans-Dicke theory

and showed that the scalar-tensor treatment based on Lyra’s geometry predicts the

same effect, within observational limits, as far as the classical solar system test are

concerned (as in the Einstein’s theory of relativity.

Bhamra (1974) obtained a spherically symmetric cosmological model of class-

one in the framework of Lyra’s geometry and showed that the static universe is

physically unrealistic whereas the non-static universe is similar to Lemaitre’s model

in Riemannian geometry in which the mass-energy conservation law did not hold.

Jeavons et al. (1975), in their study of “A Correction to the Sen and Dunn

Gravitational Field Equations”, showed that the field equations formulated by Sen

and Dunn (1971) cannot be derived from the normal variational principle and they

suggested the modified field equations as

Ri j −
1
2

Rgi j + ϕ
−1

(
ϕi; j − gi jϕ

)
− ωϕ−2

(
ϕ,iϕ, j −

1
2

gi jϕikϕ
,k
)
= −ϕTi j, (1.22.10)

where Ri j is the Ricci tensor, R is the Ricci scalar (Riemann curvature scalar), ω

= constant =1 , and Ti j is the material energy-momentum tensor (in our units

c = 8πG = 1).

Reddy (1973, 1977) investigated the Birkhoff’s theorem of general relativity

both in the Brans-Dicke theory and in the scalar-tensor theory suggested by Sen and

Dunn (1971). Reddy (1973) showed that the Birkhoff’s theorem of general relativity

is hold good in the scalar-tensor theory suggested by Sen and Dunn (1971) for all

scalar field irrespective of nature of the scalar field. But in the Brans-Dicke theory,
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Birkhoff’s Theorem is valid only for the scalar field which is independent of time.

Considering time-independent scalar field in the scalar-tensor theory suggested

by Sen and Dunn, Reddy (1977) showed that the Birkhoff’s Theorem of general

relativity is also valid in presence of electromagnetic field. So, he suggested that

the scalar-tensor theory of Sen and Dunn (1971) may be considered as a superior

version of the Brans-Dicke theory.

Karade and Borikar (1978) studied the effects of the thermodynamic equilib-

rium of a gravitating fluid sphere in Lyra’s Geometry and obtained a static model

universe with a zero red shift in it. Singh and Rai (1979) investigated the Birkhoff’s

theorem of general relativity in the scalar-tensor theory suggested by Jeavons et al.

(1975) and showed that when the scalar field is independent time then in presence

of electromagnetic fields in the scalar-tensor theory suggested by Jeavons et al.

(1975), the spherically symmetric gravitational and electromagnetic fields turn out

to be static.

Kalyanshetti and Waghmode (1982) obtained a static cosmological model in

Einstein-Cartan theory in the framework of Lyra’s geometry. Assuming the spin of

each fluid particle along the radial direction, he observed that only constant spin

has existed in his Einstein’s static model universe that can be expressed in terms of

central density. Considering a metric described by a scale constant associated with

the size of the universe, Rosen (1983) modified the Weyl-Dirac theory of gravitation

and electromagnetism.

Reddy and Innaiah (1985) formulated an anisotropic and spatially homoge-

neous Bianchi type-I cosmological model in Lyra’s manifold with perfect fluid as a

source of gravitational field by considering energy density equal to pressure.

Reddy and Innaiah (1986) constructed a plane-symmetric cosmological model

in Lyra manifold with perfect fluid as a source of gravitational field by taking

energy density equal to pressure.

Beesham (1986) obtained vacuum FRW cosmological models in the framework

of Lyra’s geometry and a number of new solutions are discussed in the de Sitter

universe.
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In the study of “Cosmologies Based on Lyra’s Geometry”, Soleng (1987) dis-

cussed that the Lyra Geometry together with gauge vector ϕi will play either the

role of cosmological constant or the creation field (equal to the Hoyle’s creation field

(Hoyle, 1948; Hoyle and Narlikar, 1963, 1964). He also showed that the solutions

in the first case are equal to the solutions in general relativistic cosmologies with a

cosmological term.

Considering Friedmann-Lemaitre-Robertson-Walker (FLRW), Beesham (1988)

formulated cosmological models in Lyra’s manifold with time-dependent displace-

ment field. In this model, not only he solved the existing problems like singular-

ity, horizon and entropy in the standard cosmological models based on Rieman-

nian geometry but also studied the asymptotic behavior of the models. Singh

and his co-authors (1991a,bb,bc,bd; 1992a, b; 1993b; 1997) studied Bianchi types

I, II, III,V,VI0,VIII, IX , Kantowski-Sachs, and a new class of cosmological model

universe with and without time-dependent displacement field in the framework

of Lyra geometry. Comparative study of the Cosmological theory based on Lyra’s

geometry and the Friedmann-Robertson-Walker (FRW) model universe with a con-

stant deceleration parameter in the Einstein’s theory of relativity were also made

by them.

Khadekar and Nagpure (2001) studied a Higher Dimensional Static conformally

flat spherically symmetric Cosmological Model in Lyra Geometry in presence of

perfect fluid and observed that in Lyra’s manifold, the displacement vector plays

the role of the spin density.

Rahaman et al. (2002) investigated an Inhomogeneous cosmological model in

Lyra Geometry and obtained the exact solutions of the field equations. He has got

an anisotropic model universe where the displacement vector is always non-zero,

so the concept of Lyra geometry exists even after infinite time.

Rahaman (2003) discussed a five-dimensional spherically symmetric metric in

presence of a homogeneous perfect fluid in the framework of Lyra geometry and

obtained a cosmological model for vacuum energy type universe together with

matter filled-universe for dust case, Zeldovich fluid and stiff fluid.

40



Considering a time-dependent displacement field, Pradhan and Vishwakarma

(2004) investigated a locally rotationally symmetric Bianchi type-I metric and a new

class of exact solutions of the field equations in the framework of Lyra geometry is

obtained for constant deceleration parameter. Also, they studied the characteristics

of the energy density and displacement field in the power law expansion and

exponential expansion of both flat and non-flat universe.

Rahaman et al. (2005) obtained two model universe namely axially symmetric

Bianchi type-I and Kantowski-Sach cosmological models with negative constant

deceleration parameter based on Lyra geometry.

Casana et al. (2005) studied the coupling of the curved and torsioned Lyra

manifold with the electromagnetic field and showed that the coupling between

torsion and the massless electromagnetic field was related to scale transformations

in Lyra setting. Also, they showed that the suitable choice of the connection of

gauge transformations with scale invariance in Lyra manifold would remove the

problem of breaking the local gauge invariance connected with this coupling.

Casana et al. (2006) discussed the Dirac field in Lyra geometry and obtained

the equation of motions and conservation laws for spin and energy-momentum.

They, also, obtained the scale relation, which is a fundamental property of matter

fields in Lyra geometry, connecting the spin tensor and energy-momentum tensor.

Studying five-dimensional LRS Bianchi type-I spacetime in presence of bulk

viscous fluid, Mohanty et al. (2007) constructed a higher dimensional string cosmo-

logical model in Lyra Manifold for time-dependent displacement field and constant

coefficient of bulk viscosity. This model had no initial singularity.

In a scalar-tensor theory of Sen (1957) based on Lyra manifold, Rao and Vijaya

Santhi (2008a) formulated a Bianchi type-V cosmological model in presence of

perfect fluid for a constant displacement vector. Also, when displacement vector is

a function of cosmic time then by using negative constant deceleration parameter

they had shown that this model exists only for radiation universe. Kumar and

Singh (2008) investigated a spatially homogeneous and anisotropic Bianchi type-I

in presence of perfect fluid and obtained a cosmological model universe based on
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Lyra geometry. Using the special law of Hubble’s parameter that gives a constant

deceleration parameter, they had obtained the exact solutions of the field equations

which are consistent with the recent observational data from supernovae Type Ia.

Considering five-dimensional plane symmetric metric, Mohanty et al. (2009b)

attempted to obtain a string cosmological model universe both in Riemannian

geometry and in Lyra geometry. But they had observed that, in both the theories, the

string cosmological models were not survived. Accordingly, they had formulated

the vacuum cosmological models and discussed their properties.

Investigating plane-symmetric metric under the influence of perfect fluid, Yadav

(2010) obtained an inhomogeneous cosmological model universe with electromag-

netic field based on Lyra geometry and the exact solutions of the field equations

for this model are consistent with the recent observational data from supernovae

type Ia.

In the framework of Lyra geometry, Gad (2011) obtained a new class of axi-

ally symmetric cosmological model universe in presence of the mesonic stiff fluid

with time-dependent displacement field which are expanding, shearing and non-

rotating.

Adhav (2011) obtained an anisotropic dark energy model based on Lyra geom-

etry by ex- amining a LRS Bianchi type-I metric under the influence of anisotropic

fluid. Considering exponential volumetric expansion, exact solutions of the field

equations were determined for constant and time-dependent displacement field

and isotropic properties of the space and fluid were examined.

In the framework of Lyra geometry, Mahanta and Biswal (2012) obtained cosmo-

logical model universe for both string cloud and domain walls with quark matter

by solving the Einstein’s field equations using anisotropy property of the universe,

time-dependent displacement field and special law for Hubble’s parameter that

gives the constant value of deceleration parameter.

Shchigolev (2013) obtained a cosmological model within the framework of

Lyra’s geometry with an effective Λ-term in the field equations that appeared

due to the interaction of the displacement vector field with an auxiliary Λ-term.
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In a cosmological model in the framework of Lyra’s geometry, Hova (2013)

established a relationship between the displacement vector field, the energy density

of matter and Hubble’s parameter through an arbitrary function α(t) and obtained

an effective equation of state parameterωe f f in terms ofα(t) and constant equation of

stateωm . The effective equation of state parameterωe f f was completely determined

for pressure-less matter by α(t). Consequently, he had obtained exact solutions for

the models in Lyra’s geometry that yield the ΛCDM and Power-Law Expansion.

Studying an inhomogeneous Bianchi Type-I metric in presence of an electromag-

netic field, Megied et al. (2014) obtained a cosmological model in the framework of

Lyra geometry. Assuming the metric potentials and displacement field as functions

of coordinates x ant t, they had obtained a class of exact solutions of the Einstein’s

field equations.

In the framework of Lyra’s geometry, Darabi et al. (2015) studied about the

existence of the Einstein’s static universe for homogeneous scalar perturbations

together with the stability condition and obtained the stability condition in terms

of the equation of state parameter ω as ω = p . Also, they had studied the stability

conditions for tensor and vector perturbations. They showed that, in the framework

of Lyra’s geometry, Einstein’s static universe can be obtained for appropriate values

of physical parameters.

In order to describe the evolution of the universe, Saadat (2016) formulated a

new cosmological model based on extended Chaplygin gas with varying Λ-term

in the context of Lyra geometry where extended Chaplygin gas is taken as dark

matter and quintessence scalar field is considered as dark energy.

Sahoo, Nath and Sahu, (2017) studied Bianchi type-III cosmological model for

a cloud of string with bulk viscosity in Lyra geometry. To get deterministic models

of universe, they have assumed two conditions (i) ξ = ξ0 = constant and (ii) shear

scalar (σ) proportional to the scalar expansion (Θ). This condition leads toB = Cn

where ξ is the coefficient of bulk viscosity, B and C are metric potentials and n a

constant. They also discussed some physical and geometrical aspects of the model.

Mollah, Singh and Singh (2018) studied with the investigation of a homogeneous

43



and anisotropic spacetime described by Bianchi type-III metric with perfect fluid

in Lyra geometry setting. Exact solutions of Einstein’s field equations have been

obtained under the assumption of quadratic equation of state (EoS) of the form

p = aρ2
− ρ, where a is a constant and strictly a > 0. The physical and geometrical

aspects are also examined in detail.

Maurya and Zia (2019) developed a new cosmological model in Einstein’s mod-

ified gravity theory using two types of modification: (i) Geometrical modification,

in which they have used Lyra’s geometry in the left-hand side of the Einstein field

equations (EFE), and (ii) modification in gravity (energy momentum tensor) on the

right-hand side of EFE, as per the Brans-Dicke (BD) model. With these two mod-

ifications, they have investigated spatially homogeneous and anisotropic Bianchi

type-I cosmological models of Einstein’s Brans-Dicke theory of gravitation in Lyra

geometry.

Mollah and Singh (2021) studied the aspects of bulk viscous fluid cosmological

model with quadratic equation of state in the presence of strings loaded with

particles in a higher dimensional (5- dimensional) Bianchi type-III geometry in

Lyra’s Manifold (Lyra, 1951). Interestingly they saw that both bulk viscosity and

quadratic equation of state are acting crucial jobs throughout the evolution of the

model which is expanding with acceleration so it represents dark energy model

universe.

1.23 Saez-Ballester scalar-tensor theory

Saez and Ballester (1986) developed a scalar-tensor theory in which the metric is

coupled with a dimensionless scalar field. Saez and Ballester (1986) assumed the

Lagrangian

L = R − ωϕn(ϕµ
,kϕ

,k), (1.23.1)

where R is the curvature, ϕ is the dimensionless scalar field, ω and n are arbitrary

dimensionless constants and ϕ,i = gi jϕ, j. For scalar field having the dimension ϕ =
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G−1, the Lagrangian given by equation (1.23.1) has different dimensions. However,

it is a suitable Lagrangian in the case of a dimensionless scalar field. From the

Lagrangian one can build the action

I =
∫
Σ

(L + GLm)
√
−g dx dy dz dt, (1.23.2)

here Lm is the matter Lagrangian, g =| gi j | , Σ is an arbitrary region of integration

and G = 8π. Also the variational principle

δI = 0 (1.23.3)

leads to the Saez and Ballester (1986) field equations for combined scalar and tensor

fields given by

Ri j −
1
2

Rgi j − ωϕ
n
(
ϕ,iϕ, j −

1
2

gi jϕ,kϕ
,k
)
= −8πϕ−1Ti j (1.23.4)

and the scalar field ϕ satisfies the equation

2ϕnϕ,i;i + nϕn−1ϕ,kϕ
,k = 0 (1.23.5)

also

Ti j
; j = 0. (1.23.6)

The study of cosmological models in the framework of scalar tensor theories has

been the active area of research for the last few decades. In particular, Singh and

Agrawal (1991); Shari Ram and Tiwari (1998) are some of the authors who have

investigated several aspects of the cosmological modles in Saez-Ballester scalar

tensortheory. Bisabr (2009) has studied the holographic DE model in a generalized

scalar tensor theory.He has shown that various types of potentials,the equation

of state parameter is negative and transition from deceleration to acceleration

expansion of the universe is possible. In recent years, Rao et al. (2011) have

discussed anisotropic universe with cosmic strings and bulk viscosity in this scalar
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tensor theory of gravitation.

Zeyauddin and Shri Ram (2011) have studied Bianchi type-V viscous fluid

cosmological models in saez-Ballester theory of gravitation. Jamil et al. (2012)

have obtained Bianchi type-I cosmology in generalized Saez-Ballester theory via

noether gauge symmetry. Pradhan et al. (2013) have studied accelerating Bianchi

type-V cosmology with perfect fluid and heat flow in Saez-Ballester theory. Reddy

et al. (2014) have investigated Bianchi type-V bulk viscous string cosmological

model in Saez-Ballester scalar–tensor theory of gravitation. Chand and Shri Ram

(2015) have discussed anisotropic cosmological models with bulk viscosity and

particle creation in Saez-Ballester theory of gravitation.

Rao and prasanthi (2017) have analysed some Bianchi type modified holo-

graphic RDE modles in SB scalar-tensor theory of gravity with a variable de-

celeration parameter. Aditya and Reddy (2018a) have investigated anisotropic

new holographic dark energy model in the framework of Saez-Ballester theory of

gravitation. Mishra and Dua (2019) have studied bulk viscous string modles in

Saez-Ballester theory of gravitation. Sharma et al. (2019a) have discussed transit

cosmological models with perfect fluid and heat flow in Saez-Ballester theory of

gravitation.

Archana et al. (2020) investigate a new class of LRS Bianchi type-II cosmological

by considering a new deceleration parameter (DP) depending on the time in string

cosmology for the modified gravity theory suggested by Sáez–Ballester. They have

considered the energy–momentum tensor proposed by Letelier for bulk viscous

and perfect fluid under some assumptions. They have substantiated a new class

of cosmological transit models for which the expansion takes place from the early

decelerated phase to the current accelerated phase. Also, they have studied some

physical, kinematic and geometric behaviour of the models, and have found them

consistent with observations and well-established theoretical results. They ob-

served that the results are better, stable under perturbation and in good agreement

with cosmological reflections.

Naidu et al. (2021) investigate the dynamical behaviour of Kaluza-Klein (KK)
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FRW type dark energy cosmological models. Three cosmological models are pre-

sented by solving the field equations using (i) hybrid expansion law given by Prad-

han et al. (ii) varying deceleration parameter proposed by Mishra et al. and (iii)

linearly varying deceleration parameter defined by Akarsu and Dereli. They have

evaluated the dynamical parameters for each of the models, namely, the equation

of state (EoS) parameter, the deceleration parameter, statefinder parameter and to-

tal energy density parameter of dark energy. They have also found the scalar field

in the models and discussed the dynamical behavior of the parameters through

graphical representation with special reference to Planck Collaboration data. It is

observed that the models describe accelerated expansion of the universe and our

theoretical results are, reasonably, in good agreement with the observational data.

1.24 Entropy

Entropy is a property of the equilibrium states of a system. It is the measure

of a system’s thermal energy per unit temperature. The entropy of our entire

universe is enormous dominated by supermassive black holes, the entropy density

is remarkably small. Because of our universe having singularity that ballooned

out and continues expanding on the time entropy is constantly growing in our

universe.

The role of entropy in cosmology remain essential to study the transverse of

irreversible energy flow from gravitational field to matter creation. It also influence

of the specific models of dark energy on the thermodynamical properties of the

FLRW universe and examines the energy conditions in these scenarios.

1.25 Dark energy

The universe is expanding which is believed to be driven by some exotic dark en-

ergy (Perlmutter et al., 1999; Reiss et al., 1998; Spergel et al., 2003, 2007). The nature

and composition of dark energy is still an open problem. Also, it is commonly be-
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lieved by the cosmological community that this hitherto unknown exotic physical

entity known as dark energy is a kind of repulsive force which acts as antigravity

responsible for gearing of the universe.

It has been conjectured that the simplest dark energy candidate is the cosmo-

logical constant, but it needs to be extremely fine tuned to satisfy the current value

of the dark energy. (Srivatsva, 2005; Bertolami et al., 2004; Bento et al., 2002) con-

sidered Chaplygin gas as a source of dark energy dark energy because of negative

pressure. Some authors have also suggested that interacting and non-interacting

two fluids scenario are possible dark energy candidates (Setare, 2007; Setare et al.,

2009; Pradhan et al., 2011). Dark energy causing late time acceleration of the uni-

verse by adding a function (Nojiri and Odinstov, 2003; Caroll et al., 2004; Abdalla

et al., 2005; Mena et al., 2006). A review on modified gravity as an alternative

to dark energy is made available by Nojiri and Odinstov (2007) and Copeland et

al. (2006). In spite of these attempts cosmic acceleration is, still, a challenge for

modern cosmology.

Cosmological models based on dark energy have been widely investigated by

Sami et al. (2005), Li et al. (2011), Wang et al. (2007), Jamil and Rashid (2008),

Zimdahl and Pavon (2007). These models yield stable solutions of FRW equations

at late times of evolving universe. Farooq et al. (2011) have investigated dynamics

of interacting phantom and quintessence dark energy. Yadav and Yadav (2011) and

Adhav et al. (2011) are some of the authors

Caozziello and Luongo (2018) have analysed the information entropy and dark

energy evolution. The adiabatic evolution can be investigated in such an approach

by defining a dark temperature that matches information entropy with standards

thermodynamics. Capozziello and Sen (2019) have investigated model indepen-

dent constraints on dark energy evolution from low-redshift observations.They

have presented, the constraint on sound speed for the total fluid of the universe,

and for the dark energy fluid, rules out the possibility of a barotropic fluid model

for unified dark sector and barotropic fluid model for dark energy.Very Recently,

Mishra et al. (2021) have studied stability analysis of two fluid dark energy models.
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1.26 Objectives of the thesis

(i) To study whether the fifth dimension in Robertson Walker universe plays

a vital role in early stage evolution of universe and in driving the present

accelerated expansion of the universe.

(ii) To discuss the role of perfect fluid in investigating an inflationary model

universe in modified theory of gravitation.

(iii) To study the role of bulk viscosity, which plays a significant role in the present

scenario of the evolution of the universe which in turn contribute to a better

understanding of spatially homogeneous and isotropic accelerating universe

in five dimensions.

(iv) To test the stability of FRW model by examining the different energy condition.

(v) To investigate the FRW cosmological model in the context of Einstein theory

of gravitation.

(vi) To study five-dimensional FRW model universe in scalar-tensor theory of

Gravitation using quadratic equation of state.

(vii) To investigate the higher dimensional flat FRW model with cosmological

Variable G and Λ.

1.27 Problems investigated

In this section, we mention, in brief, the problems investigated and the results

achieved in this thesis.

In Chapter 2, we discussed about five-dimensional Robertson-Walker universe

interacting with Brans-Dicke field. To obtain determinate solution of the field

equations, we have used the relation for scale factor and curvature index which

49



can take different values of −1, 0,+1 by considering three different cases. Physical

properties of the model are also discussed in detail. Interestingly, it is found

that the fifth dimension itself acts as a source of dark energy. In this chapter,

Robertson-Walker universe have been studied in the context of Brans-Dicke theory

of gravitation corresponding to perfect fluid distribution of matter source. After

solving the field equations for this theory of gravitation, we have presented closed,

open and flat Robertson-Walker radiating universe corresponding to perfect fluid

in five-dimensional spacetime. In this Brans-Dicke scalar-tensor theory, the fifth

dimension plays a vital role in early stage evolution of universe and in driving the

present accelerated expansion of the universe. At a particular case, if ω→ −2, we

see that the scalar field ϕ→ 0. In such case, the scale factor of the fifth dimension is

considered to be the source of dark energy. Though it acts as a source of dark energy,

the fifth dimension contracts and is therefore not visible to the present epoch. The

solution obtained here represents a five-dimensional expanding universe and helps

to discuss the role of perfect fluid in investigating an inflationary model universe

in this modified theory of gravitation. So, our findings will be useful for better

understanding of the present universe.

In Chapter 3, we investigate the role of bulk viscosity in present scenarios of the

evolution in FRW model universe in the framework of Lyra’s geometry. We derived

the field equations when the source for energy-momentum tensor is composed of a

bulk viscous fluid with cosmic strings. The Einstein’s field equations are solved by

assuming a constant deceleration parameter. In this work, the displacement vector

is considered to be a function of time. The kinematic and physical properties of the

model are also discussed by using some acceptable physical assumptions of scale

factor for flat, open, and closed universe. We restricted our study to a constant

deceleration parameter as predicted from observation. The solutions of the model

have been obtained for flat, closed, and open bulk viscous string FRW universe in

five dimensions. The physical parameters have been plotted for b , −1. However,

in the case of b = −1, all the parameters vanish rapidly within a short period of

time. This fact indicates that the solution represents an early era of the evolution of
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the universe. The incorporation of bulk viscosity in our investigation is to replace

the condition of material distribution other than perfect fluid. The bulk viscosity

plays a significant role in the present scenario of the evolution of the universe. So,

our model will contribute to a better understanding of spatially homogeneous and

isotropic accelerating universe (Bamba, 2012) in five dimensions.

In Chapter 4, we discussed the Einstein’s field equations based on Lyra’s man-

ifold in normal gauge is studied in a FRW line element for a five-dimensional

cosmological model universe. Considering the power law expansion as a(t) = tn

where n is a parameter and the shear scalar to be proportional to expansion scalar

so as to obtain A = Rm where m is an arbitrary constant, we have examined some

of the energy conditions such as null energy condition (NEC), weak energy condi-

tion (WEC), dominant energy condition (DEC) and strong energy condition (SEC)

for the open and closed universe. Here in this chapter we have presented a five-

dimensional FRW cosmological model by considering power law expansion as

a(t) = tn with certain physical assumption of the scalar σ and expansion scalar θ

interact with perfect fluid. We also made the assumption based on observed rela-

tion between velocity and red shift for an extra galactic source which predicted the

Hubble expansion is isotropic. Our solution supports the finding of Thore (1967)

and Kristran and Sachs (1966). We also presented for the different model of uni-

verse like open and closed universe. In order to test the stability of our proposed

model we have examined the Energy Condition such as Null energy condition

(NEC) ,Weak energy Condition (WEC), Dominated energy condition (DEC) and

Strong energy Condition ( SEC). In all the conditions we found that our proposed

model supports the condition of present observational findings. Such a model will

be benefited to the new researchers to investigate about the evolution of our present

day universe other than the other Cosmological Models.

In Chapter 5, the modern astronomical research is more attractive with different

fluid contents present in the universe which yields significant mysterious results

that gives moral boost to study the contents of the universe with various alternate

theories as well. Here we have analysed the Einstein theory as a source of discus-
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sion with thermodynamical effect within it. To study the model in a diversified

way we have considered the dark energy of the universe in terms of time varying

cosmological parameters of the universe. For a specific assumption the obtained

model indicated a phantom phase during spatially open universe and quintessence

phase for other different assumptions. We conclude from our observations that the

obtained model is valid for flat and closed universe but remain conditionally valid

for open universe which is acceptable one. Study of early stage of the universe

with FRW cosmological models in the frame work of Einstein theory plays an

important role. Also, it is well established that the mathematical formulation of

different cosmological models through the laws of physics becomes an essential

component in understanding the nature of the universe. Hence, in this chapter,

we have investigated FRW cosmological model in the context of Einstein theory

of gravitation. We have studied time varying dark energy states of two different

assumptions, from which we found a phantom phase during spatially open uni-

verse for Λ ∝ [a(t)]n and all remaining results indicates a quintessence phase. We

observed that the Hubble parameter approaches to infinite when time approaches

to zero, this indicates the universe describes a power law inflation. The tempera-

ture and entropy density of the model remain positive for both the cases. In view

of energy conditions, the assumptions yields identical results. Our study suggests

the Strong Energy Condition violates for our model, that indicates an accelerating

expansion of the universe. From our discussion we conclude that during both

the assumptions the second law of thermodynamics remain impactless. Moreover,

the study suggests our universe is of finite life time. All the obtained results are

consistent with respect to observational constraints.

In Chapter 6, a five-dimensional Friedmann-Robertson-Walker (FRW) cosmo-

logical spacetime is considered in the scalar-tensor of gravitation proposed by Saez

and Ballester using Quadratic equation of state. The Einstein field equation is

solved using Scale factor R = eαt (de Sitter universe) where α is constant, which

always give a deceleration parameter q = −1. The behavior of flat, open and closed

models is presented and discussed under various scenarios. In this chapter, we
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attempt to explain the behaviour some of unknown phenomenon of the universe in

five-dimensional FRW model universe in scalar tensor theory of gravitation using

quadratic equation of state is studied with the use of certain physical assumptions,

which are agreeing with the present observational findings. The field equations for

five-dimensional FRW model universe in scalar tensor theory of gravitation have

been obtained and exact solutions are obtained. The model represents to have

anisotropic phase throughout the evolution of the universe which is in agreement

with the present observational data made by COBE (Cosmic Background Explorer)

and WMAP (The Wilkinson Microwave Anisotropy Probe). Also, the model rep-

resents an expanding universe that starts with small finite volume at cosmic time

t = 0 and expands with acceleration. Our model satisfies the energy conditions

ρ ≥ 0. Also, the shear scalar become nonzero as t→∞. So, our model represents a

shearing cosmological model universe for large values of cosmic time t.

In Chapter 7, this chapter deals by considering a five-dimensional homogeneous

and isotropic FRW model with varying gravitational and cosmological constant

with time t. Exact solution of the Einstein field equations are obtained by using

the equation of state p = (γ − 1)ρ (gamma law), where γ which is an adiabatic

parameter varies continuously as the universe expands. We obtained the solutions

for flat model using R = eβt, where β is a constant as the scale factor. Physical

parameters of the models are discussed. In this chapter we have investigated a

higher dimensional flat FRW model with variable G and Λ. The cosmological

parameters and state finder parameters have been obtained for dust, radiation and

stiff matter. The different models are obtained for different stages of the universe.

We have discussed the physical parameters of the models.

The constant G and Λ are allowed to depend on the cosmic time t. We hope

that our results may throw some light in understanding of the real universe. This

study will throw some light on the structure formation of the universe, which

has astrophysical significance. The expanding universe has singular at t = 0. In

this way the unified description of early evolution of the universe is possible with

variables G and Λ in the framework of higher dimensional space time.
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