
Chapter 2

Higher Dimensional

Robertson-Walker universe

Interacting With Brans-Dicke Field

2.1 Introduction

The study of Brans-Dicke scalar field has attained significant attention in the current

years as it describes most of the important features of the progress of the universe

during the later time dynamical epoch. Though Einstein’s General Relativity is

considered to be the most useful theories in investigating various cosmological

models, it lacks in explaining certain physical observations. Some examples include

present accelerated expansion of our universe, inconsistency with Mach’s principle,

existence of big bang singularity etc. To deal with those problems, in recent years,

several alternative theories of gravity are studied. The scalar-tensor theories are

considered to be the simplest and best understood modified theory of gravitation.

Brans-Dicke theory is in fact a deformation of the Einstein’s General Relativity
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allowing variable gravity coupling that the gravitational constant becomes time

dependent, . It is somewhat classical in nature and for that reason it is expected to

play a crucial role in the late-time evolution of the universe.

Many researchers investigated for new gravitational theories using extra di-

mensions beyond the existing four dimensional spacetime. Mention may be made

of Nordstrom (1914) who investigated unified theory based on extra dimension

and Kaluza (1921) and Klein (1926) theory in which five-dimensional relativity the-

ory was established whereas an extra fifth dimension give rise to electrodynamics.

The matter source of four dimensional spacetime can be taken as a manifestation

of extra dimension. Thus five-dimensional field equations without matter sources

can be reverted back to four dimensional field equations with matter source. In

this way the extra dimension itself can manifest as some kind of matter source. The

concept of Kaluza Klein theories, extra dimensions, higher dimensional unified

theories, supergravity are studied by many researchers (Freund, 1982; Overduin,

1997; Cho, 1992; Weinberg, 1972). Manihar and Priyokumar (2012) investigated the

string cosmological models in the Brans-Dicke theory for five-dimensional space

time. They discussed the role of scalar field in evolving through different phases

of universe and found a “bounce” at a particular instant of its evolution. Due to

inconsistency of Mach’s principle with general relativity, Brans and Dicke (1961)

have given the idea of alternate relativistic theory of gravitation. The Brans-Dicke

cosmology in four dimension from scalar-vacuum in five dimension was studied

by Leon (2010a, 2010b). According to his study, the observed accelerated expansion

of the universe can be explained by Brans-Dicke theory in five dimension with-

out recurring to matter fields in five dimension or dark energy in four dimension.

Aguilar (2008) showed that five-dimensional Brans-Dicke vacuum field equations

turns out to be new Brans-Dicke theory when brought back to four dimension. The

scalar field ϕ in Brans-Dicke theory, plays a great role in expansion and contraction

of the universe. Priyokumar and Dewri (2015) found that ϕ behave as something

reflecting the contraction of universe when increases with time and also behave

as something reflecting the expansion of the universe when decreases with time.
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Many authors (Naidu, 2013, 2015; Reddy, 2007, 2012) investigate cosmological

models in five-dimensional spacetime in the context of BD theory of gravitation

. The possible different candidates of dark energy are studied by many authors,

Mishra and Sahoo (2014) , Rao et al. (2012) , Rao and Nilima (2013), Saha and

Yadav (2012), Samanta (2013a), Samanta et al. (2013b), Katore et al. (2011), Bali

and Singh (2012), Mahanta et al. (2014). Based on the concept of induced matter

theory, Bahrehbakhsh (2011) gives geometrical interpretation of dark energy by

considering non-vacuum five-dimensional version of general relativity. Khadekar

(2015) assume linear combination of bulk viscosity and time dependent parameter

Λwith inhomogeneous equation of state in FRW spacetime to demonstrate and to

explain the dark energy dominated universe. Manihar and Priyokumar (2016) in-

vestigated the interaction of gravitational field and Brans-Dicke field in Robertson

Walker universe containing Dark Energy like fluid. Priyokumar (2013) investigated

on physical distributions in Brans-Dicke cosmology under flat Robertson-Walker

universe.

Motivated from the above literatures, in this chapter, we consider a five-

dimensional Brans-Dicke theory, to investigate about the role of the extra fifth

dimension with some acceptable physical assumptions of scale factor for open,

closed and flat models in three different cases. The chapter is presented as follows:

Section 2.2 consist of metric and field equations, Section 2.3 deals with solution of

the field equations, physical discussion is presented in Section 2.4 and conclusion

is given in Section 2.5.

2.2 Metric and field equations

The vacuum Brans-Dicke field equations in the general form are given by

Ri j −
1
2

Rgi j + Λgi j = −
8π
ϕ

Ti j −
ω
ϕ2

[
ϕ,iϕ, j −

1
2

gi jϕ
,sϕ,s

]
−

1
ϕ

(
ϕ,i j − gi jϕ

,s
;s

)
, (2.2.1)

(4 + 3ω)ϕ,s;s = 8πT, (2.2.2)
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where ϕ is the scalar field and Λ is the cosmological constant. For a perfect fluid

matter distribution, the energy-momentum tensor is given by,

Ti j = (ρ + p)uiu j − pgi j, (2.2.3)

where ρ is the energy density and p is the isotropic pressure. Let us consider the

Robertson-Walker space time metric

ds2 = dt2
− R2(t)

[
dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
]
−Q2(t)dψ2, (2.2.4)

where R(t) is the scale factor and k is the curvature index which can take up the

values (−1, 0,+1) for open, flat, closed model of the universe respectively.

The Brans-Dicke field equations (2.2.1) and (2.2.2) together with (2.2.3) for the

metric (2.2.4), becomes

Q̇Q +
Ṙ2

R2

Q̇
Q
+ 2

R̈
R
+

k
R2 −Λ = −

8πρ
ϕ
+
ω
2
ϕ̈2

ϕ2 −
1
ϕ

[
−2

Rϕ̇
R
− ϕ +

Q̈
Q
ϕ̇

]
, (2.2.5)

Q̈
Q
+

Ṙ2

R2

Q̇
Q
+ 2

R̈
R
+

k
R2 −Λ = −

8πρ
ϕ
−
ω
2
ϕ̈2

ϕ2 +
1
ϕ

[
−2

Rϕ̇
R
+ ϕ̈ −

Q̈
Q
ϕ̇ + ϕ̈

]
, (2.2.6)

3
(

k
R2 +

Ṙ2

R2 +
R̈
R

)
−Λ =

8πp
ϕ
+
ω
2
ϕ̇2

ϕ2 −
1
ϕ

[
3

Ṙϕ̇
R
+ ϕ̈

]
, (2.2.7)

3
(

k
R2 +

Ṙ2

R2 +
Ṙ
R

Q̇
Q

)
−Λ =

8πp
ϕ
−
ω
2
ϕ̇2

ϕ2 −
1
ϕ

[
−3

Ṙϕ̇
R
−

Q̇
Q
ϕ̇

]
, (2.2.8)

and

(4 + 3ω)
[
ϕ̈ + 3

Ṙ
R
ϕ̇ +

Q̇
Q
ϕ̇

]
= 8π(ρ − 4p), (2.2.9)

Here a overhead dot denotes differentiation with respect to time t. From (2.2.5) and

(2.2.6), we get

Q =Mϕ
ω
2 , (2.2.10)

Q being the interacting term between matter (including dark matter) and dark

energy. To get the determinate solution, we assume the physical condition for
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five-dimensional radiating model (Reddy, 2015)

ρ = 4p. (2.2.11)

Thus, from equation (2.2.9) and (2.2.11), we obtain

ϕ
ω
2 +1

ω
2 + 1

= N
∫

1
R3 dt, (2.2.12)

where N is an arbitrary constant.

2.3 Solution of the field equations

The field equations (2.2.5) − (2.2.9) are a system of four independent equations

connecting five unknowns Q, R, ϕ, ρ and p. To get the determinate solution, let us

assume that: The scale factor R(t) is

R(t) =
√

a + bt − kt2. (2.3.1)

The scalar field ϕ is

ϕ =

− N(w + 2)(b − 2kt)

(4ak + b2)
√

(a + bt − kt2)


2
ω+2

. (2.3.2)

Now,

Q =Mϕ
ω
2 =M

− N(w + 2)(b − 2kt)

(4ak + b2)
√

(a + bt − kt2)


ω
ω+2

. (2.3.3)

The gravitational constant G is

G =
1
ϕ

(4 + 2ω
3 + 2ω

)
,

G =

− N(w + 2)(b − 2kt)

(4ak + b2)
√

(a + bt − kt2)

−
2
ω+2 (4 + 2ω

3 + 2ω

)
. (2.3.4)
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The Hubble’s parameter H is

H =
1
2

[
b − 2kt

a + bt − kt2

]
. (2.3.5)

The Expansion factor θ is

θ =
3
2

[
b − 2kt

a + bt − kt2

]
. (2.3.6)

For Λ (cosmological constant) = 0 :

The Energy density ρ is

ρ =
1

8π

− N(w + 2)(b − 2kt)

(4ak + b2)
√

(a + bt − kt2)

−
2
ω+2 [

3
4

(
b − 2kt

a + bt − kt2 )2(
ω + 6
ω + 2

) +
3k

a + bt − kt2

]
.

(2.3.7)

The Pressure p is

p =
1

32π

− N(w + 2)(b − 2kt)

(4ak + b2)
√

(a + bt − kt2)

−
2
ω+2 [

3
4

(
b − 2kt

a + bt − kt2 )2(
ω + 6
ω + 2

) +
3k

a + bt − kt2

]
.

(2.3.8)

2.3.1 Case I : k = 0, flat universe

The scale factor R(t) is

R(t) =
√

a + bt, L = −
N
b
. (2.3.9)

The scalar field is

ϕ =

 L(ω + 2)√
(a + bt)


2
ω+2

. (2.3.10)

Now,

Q =Mϕ
ω
2 =M

 L(ω + 2)√
(a + bt)


ω
ω+2

. (2.3.11)

The gravitational constant G is

G =

 L(ω + 2)√
(a + bt)


−2
ω+2 (4 + 2ω

3 + 2ω

)
. (2.3.12)
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The Hubble’s paramater H is

H =
1
2

[
b

a + bt

]
. (2.3.13)

The expansion scalar θ is

θ =
3
2

[
b

a + bt

]
. (2.3.14)

The energy density ρ is

ρ =
1

8π

 L(ω + 2)√
(a + bt)


2
ω+2

3
4

(
b

a + bt

)2 (
ω + 6
ω + 2

) . (2.3.15)

The pressure p is

p =
1

32π

 L(ω + 2)√
(a + bt)


2
ω+2

3
4

(
b

a + bt

)2 (
ω + 6
ω + 2

) . (2.3.16)

2.3.2 Case II : k = 1, closed universe

The scalar factor R(t) is

R(t) =
√

a + bt − t2, L = −
N

(4a + b2)
. (2.3.17)

The scalar field ϕ is

ϕ =

L(ω + 2)(b − 2t)√
(a + bt − t2)


2
ω+2

. (2.3.18)

Now,

Q =Mϕ
ω
2 =M

L(ω + 2)(b − 2t)√
(a + bt − t2)


ω
ω+2

. (2.3.19)

The graviational constant G is

G =

L(ω + 2)(b − 2t)√
(a + bt − t2)


−2
ω+2 (4 + 2ω

3 + 2ω

)
. (2.3.20)
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The Hubble’s paramater H is

H =
1
2

[
b − 2t

a + bt − t2

]
. (2.3.21)

The expansion scalar θ is

θ =
3
2

[
b − 2t

a + bt − t2

]
. (2.3.22)

The energy density ρ is

ρ =
1

8π

L(ω + 2)(b − 2t)√
(a + bt − t2)


2
ω+2

3
4

(
b − 2t

a + bt − t2

)2 (
ω + 6
ω + 2

)
+

3
a + bt − t2

 . (2.3.23)

The pressure p is

p =
1

32π

L(ω + 2)(b − 2t)√
(a + bt − t2)


2
ω+2

3
4

(
b − 2t

a + bt − t2

)2 (
ω + 6
ω + 2

)
+

3
a + bt − t2

 . (2.3.24)

2.3.3 Case III : k = −1, open universe

The scale factor R(t) is

R(t) =
√

(a + bt + t2), L = −
N

(−4a + b2)
. (2.3.25)

The scalar field ϕ is

ϕ =

L(ω + 2)(b + 2t)√
(a + bt + t2)


2
ω+2

. (2.3.26)

Now,

Q =Mϕ
ω
2 =M

L(ω + 2)(b + 2t)√
(a + bt + t2)


ω
ω+2

. (2.3.27)

The gravitational constant G is

G =

L(ω + 2)(b + 2t)√
(a + bt + t2)


−2
ω+2 (4 + 2ω

3 + 2ω

)
. (2.3.28)
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Figure 2.1: The variation of H and θ vs. Time t in Gyr for k = 0.

The Hubble’s paramater is

H =
1
2

[
b + 2t

a + bt + t2

]
. (2.3.29)

The expansion scalar θ is

θ =
3
2

[
b + 2t

a + bt + t2

]
. (2.3.30)

The energy density ρ is

ρ =
1

8π

L(ω + 2)(b − 2t)√
(a + bt + t2)


2
ω+2

3
4

(
b + 2t

a + bt + t2

)2 (
ω + 6
ω + 2

)
−

3
a + bt + t2

 . (2.3.31)

The pressure p is

p =
1

32π

L(ω + 2)(b + 2t)√
(a + bt + t2)


2
ω+2

3
4

(
b + 2t

a + bt + t2

)2 (
ω + 6
ω + 2

)
−

3
a + bt + t2

 . (2.3.32)

Taking a = 1, b = 1, L = 1, and ω = −1.5, some of the parameters are plotted against

time for k = 0 and k = −1.
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Figure 2.2: The variation of H and θ vs. Time t in Gyr for k = −1.
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Figure 2.3: The variation of ρ and p vs. Time t in Gyr for k = 0.
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Figure 2.4: The variation of ρ and p vs. Time t in Gyr for k = −1.
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Figure 2.5: The variation of ϕ vs. Time t in Gyr for k = 0.
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Figure 2.6: The variation of ϕ vs. Time t in Gyr for k = −1

2.4 Physical Interpretations

From the above analytical expressions and with the help of their graphical rep-

resentation, their physical behaviours can be smoothly understood. In the cases,

k = 0 and k = −1, both the Hubble’s parameter and expansion factor decreases

with time and vanishes at infinitely large t. The pressure and energy density are

decreasing function of time t and their positivity condition are achieved in flat and

open model universe. The behaviour of scalar fieldϕ for flat model is quite familiar

with that for open model. It decreases with time and tends to zero for infinitely

large time for k = 0. Also, we see that Hubble’s parameter decreases with time

which represents an expanding universe with an accelerated rate and is consistent

with the present observational findings.

2.5 Conclusion

In this chapter, Robertson-Walker universe have been studied in the context of

Brans-Dicke theory of gravitation corresponding to perfect fluid distribution of

matter source. After solving the field equations for this theory of gravitation, we
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have presented closed, open and flat Robertson-Walker radiating universe cor-

responding to perfect fluid in five-dimensional spacetime. In this Brans-Dicke

scalar-tensor theory, the fifth dimension plays a vital role in early stage evolution

of universe and in driving the present accelerated expansion of the universe. At a

particular case, if ω→ −2, we see that the scalar field ϕ→ 0. In such case, the scale

factor of the fifth dimension is considered to be the source of dark energy. Though

it acts as a source of dark energy, the fifth dimension contracts and is therefore

not visible to the present epoch. The solution obtained here represents a five-

dimensional expanding universe and helps to discuss the role of perfect fluid in

investigating an inflationary model universe in this modified theory of gravitation.

So, our findings will be useful for better understanding of the present universe.
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