
Chapter 3

Observations on the role of bulk

viscosity in present scenarios of the

evolution in FRW model universe

3.1 Introduction

From many of the theoretical work carried out by researchers and experimental

evidence, it proposed that our universe expanded very rapidly just after big-bang

within a small fraction of a second. The modern findings in cosmology tell us that

the universe is expanding and accelerating (Reiss et al., 1998; Permutter et al., 1998;

Sing and Devi, 2016; Reiss et al., 2004). Observations from type-Ia Supernova (Reiss

et al., 1998; Amanullah et al., 2010; Astier et al., 2006, Suzuki et al., 2012), CMB

radiation (Spergel et al., 2003, Tegmark et al., 2004) and LSS (Spergel at al., 2007) are

the evidence that the current universe is having an accelerated expansion, rather

than slowing down as predicted by the big bang theory (Silk, 1989). Scientists

are trying to solve this accelerating universe by assuming various probabilities.

But till today, they could not arrive at a satisfactory conclusion on such strange
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behavior of the universe. The behaviour of late-time acceleration of the universe

cannot be satisfactorily described by the general theory of relativity although it

is considered the most successful theory in describing the early evolution of the

universe. Cosmologists have arrived at two possible approaches to answer this

cosmic accelerating expansion. One of such approaches is to introduce dark energy

which dominates the universe and has associated with negative pressure. The

second consideration is to modify Einstein’s general theory of relativity.

Recently, some of the alternative theories of gravity are studied by many re-

searchers. Among them, the most significant theories are the Weyl theory (Weyl,

1918), Lyra geometry (Lyra, 1951), Brans-Dicke theory (Brans and Dicke, 1961),

f (R) theory (Nojiri and Odinstov, 2003), and f (R,T) gravity (Harko et al., 2011).

Weyl’s theory is a generalized theory of the Riemannian manifold to unify grav-

itational and electromagnetic fields. But due to the drawbacks in integrability

feature, this theory could not attract many researchers. Later, Lyra removed this

non-integrability feature by introducing a gauge function into Reimannian struc-

ture. Many researchers investigated Lyra geometry in four or higher-dimensional

spacetime. (Aygun et al., 2012) showed non-survival of the massive scalar field

for an anisotropic Marder type universe in the framework of Lyra and Riemannian

geometries. (Rahaman and Bera, 2001) studied Kaluza-Klein cosmological model

within the context of Lyra geometry in higher dimensions. (Singh et al., 2003)

have investigated five-dimensional homogeneous cosmological models by consid-

ering bulk viscosity and variable gravitational constant in Lyra geometry. Many

prominent researchers (Pradhan and Pandey, 2003; Rahaman et al., 2002; Reddy,

2005; Bhowmik and Rajput, 2004) have investigated different cosmological models

within the framework of Lyra geometry and modified gravity.

The cosmological study in higher dimensions has become a great significance

in investigating the early evolution of the universe. For many years, scientists

are trying to unify four fundamental interactions to investigate the universe in

the early epoch. In view of Kaluza-Klein theories, many authors (Kaluza, 1921;

Klein, 1926; Lee, 1984; Appelquist et al., 1987) have studied higher dimensional
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cosmological model. (Chodos and Detweller, 1980) showed the possibility of extra

dimensions of space. At the very early stage, all the dimensions (4+1) exist on

the same scale. Later, during evolution, the fifth dimension shrinks and becomes

unobservable. (Guth, 1981; Alvarez and Gavela, 1983) in their papers presented the

cosmological scenario of existing entropy on a large-scale during compactification

of its extra dimension. The present spacetime in four dimension can be modeled

reverting to spacetime in higher dimensions such that the universe at an early

age can be thought of having more than four dimensions. (Yilmaz, 2006) solved

Kaluza-Klein cosmology in five dimensions for quark matter distribution of the

universe attached to cloud string and domain wall in the framework of general

relativity. (Rahaman et al., 2003) investigated higher-dimensional string theory in

Lyra geometry. The strong evidence stands for the concept of extra dimensions

has motivated some researchers (Ibanez, 1986; Gleiser and Diaz, 1988; Banerjee

and Bhui, 1990; Reddy and Rao, 2001; Khadekar and Gaikwad, 2001) to study

cosmology in multi-dimensional spacetime geometry.

In the past and recent years, some researchers are showing much interest in

FRW spacetime geometry because of its spatial homogeneity and isotropy. At a

large-scale structure, the current universe is represented by FRW models. The

FRW metric is associated with the high symmetry of these backgrounds. Due to

its high degree of symmetry, FRW models give a better explanation in most of the

physical situations and therefore become useful in dealing with many complicated

geometries. Also, in FRW cosmology, the metric is consistent with the framework

of Mach’s principle (Veto, 2013). Beesham (1988) solved FRW cosmological model

using the idea of time-dependent displacement vector field.

In cosmology, to investigate the physical scenario during the form of the early

universe, the concept of string theory provides a better understanding of evolution,

before particles creation in the universe. Scientists believed that just after the big-

bang, the universe undergoes a spontaneous symmetry breaking during the phase

transition which results in a topological stable defects called cosmic strings. Cosmic

strings are the main source in rising density perturbations that are responsible
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for galaxy formation in the early universe (Stachel, 1980; Letelier, 1979, 1983).

Also, the bulk viscosity mechanism in cosmology describes the present scenario

of high entropy and accelerated expansion of the universe. At an early epoch,

the coupling of neutrinos disappears, and matter distribution in the universe act

as a bulk viscous fluid (Misner, 1986). The bulk viscous fluid is associated with

the transition from massive superstring modes to fewer models, the occurrence of

the gravitational string, and the effects of particle creation in a GUT era. Hence,

the study of one-dimensional cosmic strings together with bulk viscous fluid has

become an important subject in investigating cosmological models. The study of

bulk viscous string cosmology in higher dimensions in Lyra manifold was started

by (Mohanty et al., 2009). (Reddy et al., 2013a, b) studied Kaluza-Klein cosmology

with bulk viscosity and string in five dimensions in the modified theory of gravity.

(Vidyasagar et al., 2014) have discussed a Bianchi type universe filled with the

same type of matter in Brans-Dicke theory of gravity. (Naidu et al., 2012, 2013)

investigated a different class of Bianchi universe with bulk viscous cosmic string

in the context of both in f (R,T) gravity . (Kiran and Reddy, 2013) in their paper

found that bulk viscous string cosmological model cannot exist in Bianchi type

III spacetime in f (R,T) gravity while in general relativity this reduces to vacuum

model.

Motivated by the above kinds of literature, in the present work, we investigate

the role of bulk viscosity in Friedmann-Robertson-Walker (FRW) model universe

in a higher dimension in Lyra geometry. We consider one-dimensional cosmic

string along with bulk viscosity as the source for energy-momentum tensor. The

chapter is presented as follows. In section 3.2, we presented field equations by

higher dimensional FRW metric in Lyra geometry. In Section 3.3, we solve the field

equations with some acceptable physical assumptions of scale factor for flat, open,

and closed models in three different cases. Kinematic and physical interpretations

are given in Section 3.4. Section 3.5 has a concluding remark.
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3.2 Metric and field equations

We consider Robertson-Walker metric in five-dimensional spacetime in the form

ds2 = dt2
− R2(t)

[
dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
]
− S2(t)dψ2, (3.2.1)

where R(t) is the scale factor of the universe, k = 1, 0,−1 for space of positive,

vanishing and negative curvature representing closed, flat and open models of

the universe respectively. The fifth co-ordinate ψ is also assumed to be space like

coordinate.

The Einstein field equations based on Lyra’s geometry in normal gauge is given

by (Sen, 1957) as

Ri j −
1
2

Rgi j +
3
2
ϕiϕ j −

3
4

gi jϕkϕ
k = −Ti j, (3.2.2)

Gi j +
3
2
ϕiϕ j −

3
4

gi jϕkϕ
k = −Ti j, (3.2.3)

with 8πG
c4 = 1. The first two terms of (3.2.2) are Einstein tensor Gi j, ϕi is the

displacement vector and other symbols have their usual meaning as in Riemannian

geometry. The time-like displacement vector ϕi in (3.2.1) is given by

ϕi = (0, 0, 0, 0, β(t)). (3.2.4)

The non-vanishing components of the left hand side of (3.2.2) and (3.2.3) for the

metric (3.2.1) are given by

G0
0 =

3Ṙ2

R2 +
3ṘṠ
RS
+

3k
R2 , (3.2.5)

G1
1 = G2

2 = G3
3 =

2R̈
R
+

Ṙ2

R2 +
2ṘṠ
RS
+

S̈
S
+

k
R2 , (3.2.6)

G4
4 =

3R̈
R
+

3Ṙ2

R2 +
3k
R2 , (3.2.7)

where an overhead dot indicates ordinary differentiation with respect to t.
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The energy-momentum tensor Ti j for cloud of massive strings with bulk viscos-

ity is given by (Landau and Lifshitz, 1959),

Ti j = ρuiu j − λxix j − ξθ(uiu j − gi j), i, j = 0, 1, 2, 3, 4. (3.2.8)

Here, ρ is the rest energy density of the cloud of strings with particles attached to

them, λ is the string tension density of the strings and ξ is the co-efficient of bulk

coefficient. If the particle density of the configuration is denoted by ρp, then we

have

ρ = ρp + λ. (3.2.9)

The velocity ui describes the five-velocity, which has components (1,0,0,0,0) for a

cloud of particles and xi represents the direction of string that satisfies the condition

uiui = xix j = −1, uixi = 0. (3.2.10)

So that we have

T0
0 = ρ,

T1
1 = T2

2 = T3
3 = ξθ,

T4
4 = ξθ + λ, (3.2.11)

T = T0
0 + T1

1 + T2
2 + T3

3 + T4
4 = ρ + 2ξθ + λ.

Using co-moving co-ordinates, the field equations based on Lyra geometry (3.2.2)

and (3.2.3) together with (3.2.4) − (3.2.10) for the metric (3.2.1) can be obtained as

3Ṙ2

R2 +
3ṘṠ
RS
+

3k
R2 −

3
4
β2 = ρ, (3.2.12)

2R̈
R
+

Ṙ2

R2 +
2ṘṠ
RS
+

S̈
S
+

k
R2 +

3
4
β2 = ξθ, (3.2.13)

3R̈
R
+

3Ṙ2

R2 +
3k
R2 +

3
4
β2 = ξθ + λ. (3.2.14)
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The energy conservation equation T j
i; j leads to

ρ̇ +

(
3

Ṙ
R
+

Ṡ
S

)
ρ − λ

Ṡ
S
− ξ(n + 3)2 Ṙ2

R2 = 0, (3.2.15)

and (
R j

i −
1
2

Rg j
i

)
; j
+

3
2

(
ϕiϕ

j
)

; j
−

3
4

(
g j

iϕkϕ
k
)

; j
= 0, (3.2.16)

which leads to the following equation

3
2
ββ̇ +

3
2
β2

(
3Ṙ
R
+

Ṡ
S

)
= 0. (3.2.17)

3.3 Solution of the field equations

The field equations (3.2.11), (3.2.12) and (3.2.13) are a system of three independent

equations having six unknowns R, S, β, ρ, λ and ξ. To get the determinate solution,

let the deceleration parameter to be a constant (Berman, 1983), i.e.

q = −
RR̈
Ṙ2
= −

Ḣ +H2

H2 = b (constant). (3.3.1)

The above equation may be rewritten as

R̈
R
+ b

Ṙ2

R2 = 0. (3.3.2)

On integrating (3.2.15), we get the exact solutions as

R(t) = (Ct +D)
1

1+b b , −1,

or R(t) = R0eH0t b = −1,
(3.3.3)

where C, D, R0 and H0 are constants of integration.

We consider a power law equation because of the existence of anisotropy for

the flat and homogeneous universe and θ ∝ σi j (shear tensor). Hence we use the
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following polynomial relation between the metric co-efficient.

S = Rn (3.3.4)

where n is an arbitrary constant.

Therefore, from (3.3.2) and (3.3.3), we get

S(t) = (Ct +D)
n

1+b b , −1,

or S(t) = R0enH0t b = −1.
(3.3.5)

Case I: b , −1 The metric in (3.2.1) for FRW model takes the form

ds2 = dt2
− (Ct +D)

2
1+b

[
dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
]
− (Ct +D)

2n
1+b dψ2. (3.3.6)

The displacement vector β is obtained as

β = c1(Ct +D)−
3+n
1+b . (3.3.7)

The expansion scalar θ is obtained as

θ =
C(n + 3)

(1 + b)(D + Ct)
. (3.3.8)

From (3.2.12), we get

ρ =
3c2(1 + n)

(1 + b)2(D + Ct)2 +
1
4

(D + Ct)−
2(3+n)

1+b

[
12k(D + Ct)

2(2+n)
1+b − 3c2

1

]
. (3.3.9)

From (3.2.13), we get

ξθ =
4C2
− 8bC2 + 8nC2

− 4nC2(1 + b − n) + 4(1 + b)2k(D + Ct)
2b

1+b + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

4(1 + b)2(D + Ct)2

ξ =
4C2
− 8bC2 + 8nC2

− 4nC2(1 + b − n) + 4(1 + b)2k(D + Ct)
2b

1+b + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

4C(n + 3)(1 + b)(D + Ct)
.

(3.3.10)
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From (3.2.14), we get

λ =
4C2
− 10bC2 + 4nC2

− 2nC2(1 + b − n) + 8(1 + b)2k(D + Ct)
2b

1+b + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

2(1 + b)2(D + Ct)2 .

(3.3.11)

From (3.3.8) and (3.3.10) together with (3.2.9), we get

ρp =
4C2
− 20bC2 + 20nC2

− 4nC2(1 + b − n) + 28(1 + b)2k(D + Ct)
2b

1+b + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

4(1 + b)2(D + Ct)2 .

(3.3.12)

For k = 0, flat model:

In this particular case, the model becomes

ds2 = dt2
− (Ct +D)

2
1+b [dr2 + r2(dθ2 + sin2 θdϕ2)] − (Ct +D)

2n
1+b dψ2 (3.3.13)

The energy density for this model is given by

ρ =
3c2(1 + n)

(1 + b)2(D + Ct)2 − c2
1
3
4

(D + Ct)−
2(3+n)

1+b . (3.3.14)

The bulk viscosity is

ξ =
4C2
− 8bC2 + 8nC2

− 4nC2(1 + b − n) + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

4C(n + 3)(1 + b)(D + Ct)
. (3.3.15)

The tension density is given by

λ =
4C2
− 10bC2 + 4nC2

− 2nC2(1 + b − n) + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

2(1 + b)2(D + Ct)2 . (3.3.16)

The particle density is

ρp =
4C2
− 20bC2 + 20nC2

− 4nC2(1 + b − n) + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

4(1 + b)2(D + Ct)2 . (3.3.17)

For k = 1, closed model:
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The metric for FRW model takes the form

ds2 = dt2
− (Ct +D)

2
1+b

[
dr2

1 − r2 + r2(dθ2 + sin2 θdϕ2)
]
− (Ct +D)

2n
1+b dψ2. (3.3.18)

The energy density for this model is given by

ρ =
3c2(1 + n)

(1 + b)2(D + Ct)2 +
1
4

(D + Ct)−
2(3+n)

1+b

[
12(D + Ct)

2(2+n)
1+b − 3c2

1

]
. (3.3.19)

The bulk viscosity is

ξ =
4C2
− 8bC2 + 8nC2

− 4nC2(1 + b − n) + 4(1 + b)2(D + Ct)
2b

1+b + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

4C(n + 3)(1 + b)(D + Ct)
.

(3.3.20)

The tension density is given by

λ =
4C2
− 10bC2 + 4nC2

− 2nC2(1 + b − n) + 8(1 + b)2(D + Ct)
2b

1+b + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

2(1 + b)2(D + Ct)2 .

(3.3.21)

The particle density is

ρp =
4C2
− 20bC2 + 20nC2

− 4nC2(1 + b − n) + 28(1 + b)2(D + Ct)
2b

1+b + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

4(1 + b)2(D + Ct)2 .

(3.3.22)

For k = −1, open model:

The metric for FRW model takes the form of

ds2 = dt2
− (Ct +D)

2
1+b

[
dr2

1 + r2 + r2(dθ2 + sin2 θdϕ2)
]
− (Ct +D)

2n
1+b dψ2. (3.3.23)

The energy density for this model is given by

ρ =
3c2(1 + n)

(1 + b)2(D + Ct)2 +
1
4

(D + Ct)−
2(3+n)

1+b

[
−12(D + Ct)

2(2+n)
1+b − 3c2

1

]
. (3.3.24)
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The bulk viscosity is

ξ =
4C2
− 8bC2 + 8nC2

− 4nC2(1 + b − n) − 4(1 + b)2(D + Ct)
2b

1+b + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

4C(n + 3)(1 + b)(D + Ct)
.

(3.3.25)

The tension density is given by

λ =
4C2
− 10bC2 + 4nC2

− 2nC2(1 + b − n) − 8(1 + b)2(D + Ct)
2b

1+b + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

2(1 + b)2(D + Ct)2 .

(3.3.26)

The particle density is

ρp =
4C2
− 20bC2 + 20nC2

− 4nC2(1 + b − n) − 28(1 + b)2(D + Ct)
2b

1+b + 3(1 + b)2(D + Ct)2− 2(3+n)
1+b c2

1

4(1 + b)2(D + Ct)2 .

(3.3.27)

Case II: b = −1

ds2 = dt2
− R2

0e2H0t

[
dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
]
− R2n

0 e2nH0tdψ2. (3.3.28)

The displacement vector β is obtained as

β = c0e−H0(3+n)t. (3.3.29)

The expansion scalar θ is

θ = (n + 3)H0. (3.3.30)

From (3.2.12), we get

ρ = 3H2
0(n + 1) +

3k
R2

0e2H0t
−

3
4

e−2H0(n+3)tc2
0. (3.3.31)
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From (3.2.13), we get

ξθ =
3
4

c2
0e−2(3+n)H0t +

k
R2

0e2H0t
+ (3 + 2n + n2)H2

0

ξ =

3
4c2

0e−2(3+n)H0t + k
R2

0e2H0t + (3 + 2n + n2)H2
0

(n + 3)H0
.

(3.3.32)

From (3.2.14), we get

λ =
4k

R2
0e2H0t

+ (9 + 2n + n2)H2
0. (3.3.33)

The particle density is

ρp = −
3
4

e−2H0(n+3)tc2
0 + 3H2

0(5n − 6) +
7k

R2
0e2H0t

. (3.3.34)

For k = 0, flat model

ds2 = dt2
− R2

0e2H0t
[
dr2 + r2(dθ2 + sin2 θdϕ2)

]
− R2n

0 e2nH0tdψ2. (3.3.35)

The expansion scalar θ is

θ = (n + 3)H0. (3.3.36)

The energy density ρ is

ρ = 3H2
0(n + 1) −

3
4

e−2H0(n+3)tc2
0. (3.3.37)

The bulk viscosity is

ξ =
3
4c2

0e−2(3+n)H0t + (3 + 2n + n2)H2
0

(n + 3)H0
. (3.3.38)

The string tension density λ is

λ = (9 + 2n + n2)H2
0. (3.3.39)
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The particle density ρp is

ρp = −
3
4

e−2H0(n+3)tc2
0 + 3H2

0(5n − 6). (3.3.40)

For k = 1, closed model

ds2 = dt2
− R2

0e2H0t

[
dr2

1 − r2 + r2(dθ2 + sin2 θdϕ2)
]
− R2n

0 e2nH0tdψ2. (3.3.41)

The energy density ρ is

ρ = 3H2
0(n + 1) +

3
R2

0e2H0t
−

3
4

e−2H0(n+3)tc2
0. (3.3.42)

The bulk viscosity is

ξ =

3
4c2

0e−2(3+n)H0t + 1
R2

0e2H0t + (3 + 2n + n2)H2
0

(n + 3)H0
. (3.3.43)

The string tension density λ is

λ =
4

R2
0e2H0t

+ (9 + 2n + n2)H2
0. (3.3.44)

The particle density ρp is

ρp = −
3
4

e−2H0(n+3)tc2
0 + 3H2

0(5n − 6) +
7

R2
0e2H0t

. (3.3.45)

For k = −1, open model

ds2 = dt2
− R2

0e2H0t

[
dr2

1 + r2 + r2(dθ2 + sin2 θdϕ2)
]
− R2n

0 e2nH0tdψ2. (3.3.46)

The energy density ρ is

ρ = 3H2
0(n + 1) −

3
R2

0e2H0t
−

3
4

e−2H0(n+3)tc2
0. (3.3.47)
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Energy Density(k=1)

Energy Density(k=0)

Energy Density(k=-1)
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Time (Gyr)

-4
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2

4

Figure 3.1: Variation of ρ with t in Gyr for b , −1

The bulk viscosity is

ξ =

3
4c2

0e−2(3+n)H0t
−

1
R2

0e2H0t + (3 + 2n + n2)H2
0

(n + 3)H0
. (3.3.48)

The tension density λ is

λ = −
4

R2
0e2H0t

+ (9 + 2n + n2)H2
0. (3.3.49)

The particle density is

ρp = −
3
4

e−2H0(n+3)tc2
0 + 3H2

0(5n − 6) −
7

R2
0e2H0t

. (3.3.50)

Observations on the role of bulk viscocity in present scenarios of the evolution

in FRW model.
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Tension Density(k=1)

Tension Density(k=0)

Tension Density(k=-1)

0.5 1.0 1.5 2.0 2.5 3.0
Time (Gyr)

10

20

30

40

50

Figure 3.2: Variation of λ with t in Gyr for b , −1

Particle Density(k=1)
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Figure 3.3: Variation of ρp, with t in Gyr for b , −1
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Bulk Viscosity(k=1)

Bulk Viscosity(k=0)
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Figure 3.4: Variation of ξ with t in Gyr for b , −1
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Figure 3.5: Variation of β, θ with t in Gyr for b , −1

82



3.4 Discussion

Fig. 3.1 depicts the behaviour of energy density versus time. We observed that ρ

changes sign from negative to positive value after some finite time and reaches large

value and decreases with the time approaching a small positive value at late times

for closed model (k = 1). For a flat model (k = 0), the energy density is negative at

the initial epoch and maintains a small positive value at an early stage, and is almost

coincident with zero at late times. For the open model (k = −1), energy density

is a negative increasing function of time converging to a small negative value at

late times. The string tension density and particle density versus time for all flat,

closed, and open models have been plotted in Fig 3.2 and Fig 3.3. Both particle and

string tension density are always positive in the closed model (k = 1) whereas, they

decrease more sharply with the cosmic time and approaches zero in the flat model

(k = 0). However, in the open model (k = −1), ρp and λ quickly passes through

zero and approaches negative values. It is observed that the string tension density

disappears more rapidly than particle density leaving particles only indicating

the matter-dominated universe at late times as anticipated. The variation of bulk

viscosity with time is shown in Fig. 3.4. In the flat model (k = 0), the bulk viscosity

decreases with time leading to an inflationary model and vanishes for infinitely

large time t. In the closed model (k = 1), ξ decreases, remain positive throughout

the evolution whereas, for the open model (k = −1), it reaches negative values. The

function of the bulk viscosity is to retard the expansion of the universe and since

bulk viscosity ξ decreases with time, retardedness also decreases which supports

the expansion at a faster rate in the late stages of the evolution of the universe. The

displacement vector β and the expansion scalar θ have been found out for all three

flat, open, and closed models and are plotted in Fig. 3.5. We noticed that β and θ

decreases with the increase in the age of the universe. At the initial epoch of time,

the gauge function β2 is found to be infinite and ultimately β2
→ 0 when t→∞.
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3.5 Conclusion

In this chapter, we investigated the role of bulk viscous fluid attached to the string

cloud by considering a time-dependent deceleration parameter in present scenarios

of the evolution in FRW model universe in the context of Lyra Geometry. Here,

we restricted our study to a constant deceleration parameter as predicted from

observation. The solutions of the model have been obtained for flat, closed, and

open bulk viscous string FRW universe in five dimensions. The physical parameters

have been plotted for b , −1. However, in the case of b = −1, all the parameters

vanish rapidly within a short period of time. This fact indicates that the solution

represents an early era of the evolution of the universe. The incorporation of bulk

viscosity in our investigation is to replace the condition of material distribution

other than perfect fluid. The bulk viscosity plays a significant role in the present

scenario of the evolution of the universe. So, our model will contribute to a

better understanding of spatially homogeneous and isotropic accelerating universe

(Bamba, 2012) in five-dimensions.
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