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Weighted Average Synchronization Algorithm 

4.1. Overview  

 We present a synchronization algorithm, which achieves clock synchronization by 

using a weighted averaging as a convergence function. This algorithm is called Weighted 

Average Synchronization Algorithm (WASA) and it utilizes the concept of sliding window 

to find the minimum variance data set upon which the convergence function is used. 

 

4.1.1. Distribution of Bad Clocks 

 In a network, each node exchanges its clock value and store in an array in order of their 

clock values. The clock values distributed in the array can be visualized in the following 

fashion: n clock values are distributed in the array i.e. we can see this as n slots to be filled 

with n-f good clock values and f bad clocks. The good and bad clocks values can be 

anywhere in the n slots. There are   𝑛𝑃𝑓   distinct possibility as depicted in figure 4.1 below. 

The two extreme cases are as shown where all the bad clocks have accumulated in the left 

or the right corner as shown below in figure 4.2. 

 

4.1.2 Minimum Variance Window 

 The good clocks in a network spread around the ± δ from the mean if the numbers of 

bad clocks are just less than one third of the total clocks. Bad clocks can be anywhere in the 

array. As most of the world values are normally distributed, approximately sixty eight 

percent of these n clock values are within ± σ of the mean, where σ is the standard deviation 

of the distribution of 

 

1The work presented in this chapter has been published in “A precise clock 

synchronization algorithm in network”. Journal of communication engineering & 

systems. ISSN: 2321-5151.Volume 10, issue 1, 2020. UGC CARE LIST JOURNAL 

(upto 2019) 
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Figure 4.1: Distribution of good and bad clock values 

 

Figure 4.2: Extreme distribution of good and bad clock values 

 

all the clocks. σ is a measurement of deviation of the values from the mean. Initially the 

window contains the left most clock values of the array as its left most member. We slide 

this window from the left a clock value ahead along the array. The sliding starts from left 

corner of the array and move towards right. We find the variance of the window at each 

window instant. The minimum variance window is the window containing clock values 

within ± σ from the mean. If the size of the window is reduced around two-third i.e., sixty 

six percent of the total clocks, then also the member clock values are same with few 

reductions in the number of clock values. This is particularly true if there are no malicious 

clocks present, which may give different clock values to different nodes. In presence of 

malicious clocks, the member of the window may change by up to f clock values. However, 

since the window must maintain minimum variance, the means calculated by the different 

arrays stored by different nodes vary within a bound. We use this concept in our algorithm. 

 In a network, two kinds of player are there with conflicting goals. One set of players, 

which have objective to stabilize the system, are the good nodes. The other set of players, 

which aim to destabilize the system, are the bad nodes. Our goal is to synchronize the 

network even in presence of bad nodes. The most serious types of bad nodes are those nodes, 
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which give inaccurate, untimely and conflicting information. They may also give different 

time to different nodes at the same time instance. These malicious behaviours of nodes can 

be of classified as follows: Consistent misbehaviour - Nodes exhibit the same malicious 

behaviour in temporal domain. Inconsistent misbehaviour - Nodes display malicious 

behaviour is inconsistent fashion in temporal domain. A node can misbehave in individual 

capacity or can collectively collude. These misbehaviours are categorized as follows: 

Individual misbehaviour: A node is displaying misbehaviour in individual manner without 

consulting other bad nodes. Collaborative malicious behaviour: Bad nodes may consult each 

other and decide their strategy in collective fashion. 

 In this thesis, our focus is to counter the individual misbehaviour, which includes 

consistent and inconsistent behaviour both. We have devised a sliding window technique to 

find the set of values, which show minimum deviation among the values. We know that 

Gaussian distribution is widely present in nature. We capitalized this knowledge to design 

the weight function. This weighted approach is used to mitigate the misbehaviour. 

 

4.2. Description of the Algorithm 

 We give a detail description of WASA in this section. WASA works in round of equal 

intervals. Every good node in the network executes this algorithm. Tr time duration before 

the end of each round is called re-synchronization time. During re-synchronization period, 

each node executes WASA. The duration of a round is constant R, which is determined by 

the maximum allowed deviation range. Hence, R is decided according to the requirement of 

the system design. WASA can counter consistent malicious nodes. It also works in presence 

of inconsistent malicious behaviour provide the malicious nodes remain consistent 

during  𝑇𝑟. The figure 4.3 depicts the relationship of R and  𝑇𝑟. 
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Figure 4.3: Working of a Clock and re-synchronization period 

 WASA consists of three phases namely Information Collection phase, Sliding Window 

phase and Weighted Average phase. 

 

 

4.2.1. Information Collection phase 

 In this phase every nodes share their clock with one another. Node stores these clock 

values in an array. The clock values in the array are then arranged in an ordered fashion as 

per their values. We can visual these sorted clock values as points sitting the timeline. 

4.2.2. Sliding Window phase 

 We introduced the notion of window here. The size of window is n-f where n network 

size and f are allowed bad nodes. Initially we placed the left boundary of the window at the 

beginning of the array. So, first window consists of first n-f values of the array. Thereafter 

we slide the window one step in the right direction and this consists of next n-f values. We 

continue this process until the right boundary of the window reaches end of the array. In this 

process we find the f+1 data set of size n-f. Now out of f+1 data sets we find out the data 

set with minimum variance. The variance of a random variable X is the the expected value 

of the squared deviation from the Mean of X, µ = E[X]; 

Var(X)= E[(X- µ)2] 
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Fig 4.4 Graph of Variance (Diagram courtesy Wikipedia.org) 

4.2.3. Weighted Average phase 

Weighted Average or weighted arithmetic mean is similar to an ordinary arithmetic 

mean (the most common type of average), except that instead of each of the data points 

contributing equally to the final average, some data points contribute more than others. The 

notion of weighted mean plays a role in descriptive statistics. 

 

 We use the minimum variance data set calculated in the Sliding Window phase for 

finding the weighted average with some modifications. Since the size of the minimum 

variance window is n-f, it contains at least n-2f good clocks and at most f bad clocks. For 

the worst case, the minimum variance window contains n-2f good clocks and f bad clocks. 

There can be also at maximum f good clock outside the minimum variance window. 
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 We now push those good clocks which are outside the minimum variance window 

inside the window by assigning the value of the good clock nearest to them inside the 

window. Now data set values inside the minimum variance window are assigned weights as 

per weight function and the weighted average is calculated. These weighted average value, 

θ , is the new clock. 

 For assignment of the weights, clock value within one ± σ distance from μ are assigned 

weight ω1 , where μ is the mean and σ is the standard deviation of the window. Clocks within 

± σ to ± 2 σ are assigned weight ω2 and clocks within ± 2 σ to ± 3 σ are assigned weight ω3. 

Finally, clocks beyond ± 3 σ are assigned zero weight. A pictorial description of working of 

WASA is given below at figure 4.4. 

 

4.3. Theoretical analysis 

 In this section, we evaluate the performance of WASA algorithm. Initially all clocks 

are synchronized in some sense. At the start of the first synchronization period all the correct 

clocks are within α of the real time t (Initial synchronization). The distance between any two 

correct clocks is equal to or less than δ at the end of R. If ε is the maximum message delay 

then width of the window is at most δ + ε. Now we discuss the performance of WASA for 

the ideal and worst case scenario. 

4.3.1 Ideal Case Scenario 

 In the ideal case scenario there is no bad node in the network. Hence, the data sets of 

clocks are the same for all the clocks. The minimum variance of these windows is the same. 

Therefore, the weighted average, θ is identical across all the clocks. 

Lemma 1. The precision of WASA in an ideal condition where there is no bad clock is 𝜋 = 

ε, which is optimal. 
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Figure 4.5: Pictorial description of working of WASA 



46 
 

Proof. The size of the minimum variance window is n-f but for a where case f=0, hence the 

size is now n. This means there are only one window and a single weighted average value, 

θ, which is the new clock. Hence the precision is optimal. 

 

4.3.2. Worst Case Scenario for Proof of Correctness 

 The Here we do worst case analysis to establish correctness of WASA. We know that 

if an algorithm is validated for the worst case then it holds for all possible cases. The worst 

case is the condition when WASA gives the worst possible precision. This condition is 

obtained where all the bad nodes are malicious nodes. From Maximum Clock Failure 

assumption the size of the network is n=3f+1. Let C min and C max be the minimum and 

the maximum clock created by WASA immediately after R. Also let C_min window be the 

window from where C_min is calculated and similarly C_max window for C_max. Here the 

malicious clocks are all within the minimum variance window and make C_(min )  the least 

and C_max   the largest. This happens when all the malicious clocks are smaller than or 

equal to the smallest good clock. The good clocks have minimum drift and delay. In case of 

C_max   all the malicious clocks are larger than or equal to the largest good clock. The drift 

and delay is the highest. A distribution pattern of the clocks for the worst case is depicted in 

the figure 4.5 below. As shown any good clock are in either of the windows. The C_min 

window contains f+1 good clocks out of which f good clocks are exclusively within it. 

Similarly the same distribution for  C_max window. One good clock is common to both the 

windows. The difference between C_min and C_max  gives the worst case precision, 𝜋, of 

WASA. 

 

Figure 4.6: Clock values distribution for worst case scenario 
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Theorem 1. In the worst case the precision of WASA,  , if the upper bound of bad clocks is 

one-third of the total number of nodes, n, with a maximum window width δ + ε is given by 

𝜋 ≤  𝜀 + 2(𝛿 + 𝜀) (
𝑓
𝑛

) =  𝜀 + 2(𝛿 + 𝜀)(
𝑓

3𝑓 + 1
) 

Proof. Here Π is the distance between 𝐶𝑚𝑖𝑛   and 𝐶𝑚𝑎𝑥 . From Lemma 1 we know that for 

ideal condition all the clocks are within ε of θ. With the presence of bad clocks θ is shifted 

to either direction. In case of 𝐶𝑚𝑖𝑛  all the malicious clocks is to the left of the left most good 

clock. The maximum deviation of 𝐶𝑚𝑖𝑛𝑤𝑖𝑛𝑑𝑜𝑤 , 𝛿𝑚𝑖𝑛 ≤ δ because it is the minimum 

variance window.  𝐶𝑚𝑖𝑛   is obtain by shifting θ by an amount upto  𝑓
𝛿

(𝑛−𝑓)
  since there are f 

malicious clocks. The shift is made lesser by pushing the left out good clocks into the 

window. Now the number of clocks is increased to n from n-f. Hence the distance shifted is 

up to 𝑓
𝛿 

𝑛
. 

 Similarly, the shifting due to malicious clocks on the right side of the good clock is up 

to  𝑓
𝛿

𝑛
 on the right side of θ. This gives value of 𝐶𝑚𝑎𝑥  w.r.t. θ. Hence considering ε, the 

distance between 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥  is given by 

𝜋 ≤  𝜀 + {𝜃 + (𝛿 + 𝜀) (
𝑓
𝑛

)} − {𝜃 − (𝛿 + 𝜀) (
𝑓
𝑛

)} 

𝜋 ≤  𝜀 + 2 {(𝛿 + 𝜀) (
𝑓
𝑛

)} 

But n = 3f+1, therefore 

𝜋 ≤ 𝜀 + 2(𝛿 + 𝜀)(
𝑓

3𝑓 + 1
) 

Hence proved. 

Proposition 1. The worst possible precision of WASA for large value of f is within: 

𝜋 ≤ 𝜀 +
2(𝛿 + 𝜀)

3
 

Proof.  From Theorem 1 we have 

𝜋 ≤ 𝜀 + 2(𝛿 + 𝜀)(
𝑓

3𝑓 + 1
) 

If the number of malicious clocks is very large i.e. f ≫ 1 then 3f+1 ≃ 3f hence 
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𝜋 ≤ 𝜀 +
2(𝛿 + 𝜀)

3
 

This is the worst possible Π for large value of f. 

One of our aims of designing WASA is to ensure that the good clocks never deviate from 

(δ + ε) as defined in Agreement Property. 

Proposition 2. WASA guaranteed satisfaction of the Agreement Property. 

Proof. The worst possible precision guaranteed by WASA is given by 

𝜋 ≤ 𝜀 +
2(𝛿 + 𝜀)

3
 

Since 𝜀 ≪  𝛿,  

𝜋 ≤ 𝜀 +
2(𝛿 + 𝜀)

3
< (𝛿 +  𝜀) 

Hence WASA guaranteed Agreement Property. 

From Proposition 2 we can establish that WASA ensures all good clocks are consistently 

within < (δ + ε ) . This completes the proof of correctness. 

The worst case precision by 𝑆𝑊𝐴𝑚𝑒𝑎𝑛
𝑑𝑒𝑡  [Pfluegl and D. M. Blough , 1995] is given as for 

    n ≥ 4f 

𝜋 ≤ 𝜀 + 𝑓
(𝛿 + 𝜀)
𝑛 − 𝑓

+ 𝑓
(2𝛿 + 𝜀)

𝑛 − 𝑓 + 1
 

If f ≫ 1 and taking δ ≫ ε , WASA is at least 33% tighter. 

 

4.3.3. Analysis for optimal weight assignment for weighted average 

 Weight assignment enables us to mitigate the effect of bad clocks, which cannot be 

segregated from the minimum variant window. It can be appreciated that maximum of the 

bad clocks which manage to stay inside the minimum variant window are malicious clocks.  

For assignment of the weights, we first find out the mean, μ and standard deviation, σ, of 

the minimum variant window. Then clocks within one ± σ distance from μ are assigned 

weight ω1, where μ is the mean and σ is the standard deviation of the window. Clocks within 

± σ to ± 2 σ are assigned weight ω2 and clocks within ± 2 σ to ± 3 σ are assigned weight ω3. 

Finally, clocks beyond  ± 3 σ are assigned zero weight. 
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 The distribution of all clocks for the worst-case analysis is given in figure 2.6 below. 

In the minimum worst-case scenario all the malicious clocks are around the smallest valued 

good clock. The algorithm also makes the adjustment all good clocks that are outside the 

minimum variant window. The adjustment make f such good clocks take same value as the 

largest good clock inside the minimum variant window. Therefore as shown in the figure, 

there are f+1 clocks concentrating on either edge of the window.  A similar 

explanation is also true for maximum worst-case analysis.  There will be f-1 clocks left 

between these clocks, which are on the edge of the window.  

 

Figure 4.7. Concentration of clocks in Worst-case clock distribution 

 As most of the world values are normally distributed, approximately sixty eight percent of 

these n clock values are within ± σ of the mean as shown in figure 2.7 below. It can be easily 

seen that the distribution pattern of the good clocks other then which are outside the 

minimum variant window are altered by the algorithm. Hence, good clocks within ± σ of 

the mean are not altered. If we     ω1 = 1, ω2 ≪ ω1  and ω3 = 0, then all the clocks on the edges 

are negated for further calculations.  The remaining clocks in the minimum worst-case 

window and in the maximum worst-case window are those, which were originally within ± 

σ of the original clock distribution obtained after, stage one of WASA.  This shows that the 

means of the minimum worst-case window and maximum worst-case window are within 2σ 

of each other at most. The maximum deviation δ is approximately equal to 6σ as there are 
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99.7% of the total clocks within ± 3σ from the mean. Therefore, the means of the minimum 

worst-case window and maximum worst-case window is at most one-third of δ. Hence the 

weights, ω1 = 1, ω2 ≪ ω1 and ω3 = 0 , offer a much better precision. The optimality of these 

weights is not established.  

Diagram courtesy Wikipedia.org 

Figure 4.8.  Normal Distribution 

 4.3.4. Pseudo code of WASA 

 We present pseudo code of our algorithm in this section. The algorithm executes in 

rounds and the resynchronization is done at each round. Each node in each round executes 

the process presented in the pseudo code below. First, the variables used in the algorithm 

are given then the subroutines used are explained subsequently.  

 

Global variable: 

 n  : Number of clocks in the network   

 f  : Number of faulty clocks in the network 

 w1, w2, w3 : weights 

Local variable:  

 all_node_clock  : Clock of all nodes of the network 

 Clock_array   : Array whose members are the clocks of the  

    network  
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 Clock_array_sort  : Array whose members are sorted in an   

   order 

 Var_clock_win  : Return minimum value variance from an   

   array whose members are variances 

 min_ Var_clock_win  : Array of clock whose variance is minimum 

 left_ Var_clock_win  : Array whose members are member of   

     Clock_array  and not members of     

   min_ variance_clock_win but smaller     

  than the first of min_ Var_clock_win 

 right_ Var_clock_win : Array whose members are members of    

  Clock_array  and not member of min_      

 Var_clock_win but larger than the last      

 member of min_ Var_clock_win 

 Complete_clock  : Final clock array whose members consists   

   of n clocks 

 mean_ complete_Var_clock_win: mean of the array     

               complete_Var_clock_win 

 sd_ complete_Var_clock_win: standard deviation  of the     

        complete_Var_clock_win 

 mn    : mean_ complete_Var_clock_win 

 sd    : std_ complete_Var_clock_win 

 W1_ complete_Var_clock_win: Array whose members are within ∓ sd of   

          mn 

 W2_ complete_Var_clock_win: Array whose members are within ∓ 2sd   

        of mn but not member of W1_      

         complete_Var_clock_win 

 W3_ complete_Var_clock_win: Array whose members are within ∓ 3sd   

        of mn but not member of W2_      

        complete_Var_clock_win 
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 new_clock       : New clock value 

Subrountines: 

 Request_all () : Request all nodes to send their clocks 

 Receive() : All clock values sent is received by the requesting node 

 Sort()  : Sort the members of an array in ordered fashion 

 Variance() : Calculate the variance of an array 

 Min()  : Return the minimum element of an array 

 Element() : Return the number of members of an array 

 Cat()  : Concatenate multiple arrays into a single array 

 Mean() : Return the mean of the members of an array 

 Std()  : Return the standard deviation of the members of an array 

  

Pseudo-Code: 

Each node will perform this process at the start of Tr.  

 Request_all (all_node_clock) 

 Receive (all_node_clock ): 

  Clock_array[n] = [clock1, clock2,...,clockn]; 

  Clock_array_sort = sort(Clock_array[n]); 

 For i=1 to f+1 

  Var_clock_win(i) = Variance (Clock_array_sort[i:(n-f+i-1)]); 

  i++; 

 end 

 

 min_ Var_clock_win=min(Var_clock_win); 

If (element(min_Var_clock_win) <  element(clock_array)) 

 left_win(1,1:element(left_Var_clock_win))= min_ Var_clock_win[1,1]; 
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 right_win(1,1:element(left_Var_clock_win))= min_ Var_clock_win[1,n-f]; 

 complete_Var_clock_win=cat(left_win, min_var_clock_win, right_win); 

else 

 complete_Var_clock_win= min_var_clock_win; 

end 

 mean_ complete_Var_clock_win=mean (complete_Var_clock_win); 

  mn= mean_ complete_Var_clock_win 

 sd_ complete_Var_clock_win = std (complete_Var_clock_win); 

  sd= sd_ complete_Var_clock_win; 

 

 For i=1 to n 

 If (mn + sd ≥ complete_Var_clock_win(1,i) ≥ mn-sd) 

  W1_ complete_Var_clock_win(1,i)= complete_Var_clock_win (1,i) 

 elseif  (mn + 2*sd ≥ complete_Var_clock_win(1,i) ≥ mn-2*sd) 

  W2_ complete_Var_clock_win(1,i)= complete_Var_clock_win (1,i) 

 elseif  (mn + 3*sd ≥ complete_Var_clock_win(1,i) ≥ mn-3*sd) 

  W3_ complete_Var_clock_win(1,i)= complete_Var_clock_win (1,i) 

 else 

  complete_Var_clock_win(1,i)= 0 

 end 

 end 

 

 new_clock= (w1* w1_ complete_Var_clock_win+     

 w2* w2_complete_Var_clock_win+       w3* 

w3_ complete_Var_clock_win)/(w1+w2+w3) 
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4.4. Message Complexity Analysis 

 We have designed our algorithm for a completely connected static network. Here all 

the nodes are connected to the other nodes with a bi-directional communication links. All 

these nodes communicate by passing messages. For calculation of the message complexity 

let us take any one node from this network. This node, ni , has a link to every node in the 

network. During the course of the resynchronization process ni request all nodes to share 

their clock value. All these nodes then response to this request by sending their clock value 

to ni. This process take 2N messages if the number of nodes in the network is N. For N nodes 

the total number of messages exchanged is 2𝑁 × 𝑁 = 2𝑁2. Therefore, the message 

complexity of the algorithm is O(N2).  

 

4.5. Time Complexity Analysis 

 Here in this section we analysis your algorithm to find out the time complexity. Time 

complexity gives the relationship between the computing time and the input data of the 

algorithm. The knowledge of time complexity of the algorithm facilitates optimization of 

the algorithm computing time. The time complexity is computed in terms of N, where N is 

the number of times a particular statement is executed. For calculation of the time 

complexity of the algorithm, we have followed the following:  

  (i) The running time of a statement in the algorithm that does not have any loop 

is considered constant. 

  (ii) The running time of a single loop is taken as linear, that is multiple of N. 

  (iii) The running time of a double loop is quadratic. 

  (iv) Lastly, the running time of an iterative statement is considered logarithmic. 

The maximum running time take by any subroutine is by sort() and linear. In the algorithm 

other then the subroutine there are one loop and two iterative statements. The second 

iterative statement -  

 “For i=1 to n 

 If (mn + sd ≥ complete_Var_clock_win(1,i) ≥ mn-sd) 

  W1_ complete_Var_clock_win(1,i)= complete_Var_clock_win (1,i) 
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 elseif  (mn + 2*sd ≥ complete_Var_clock_win(1,i) ≥ mn-2*sd) 

  W2_ complete_Var_clock_win(1,i)= complete_Var_clock_win (1,i) 

 elseif  (mn + 3*sd ≥ complete_Var_clock_win(1,i) ≥ mn-3*sd) 

  W3_ complete_Var_clock_win(1,i)= complete_Var_clock_win (1,i) 

 Else 

  complete_Var_clock_win(1,i)= 0 

 end 

 end” 

takes the maximum running time. The statement requires N*log(N) since there is a loop and 

an iterative statement combine. Hence the time complexity of the algorithm is O(N*log(N)). 
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