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BULK VISCOUS FLUID BIANCHI TYPE-I STRING COSMOLOGICAL MODEL
WITH NEGATIVE CONSTANT DECELERATION PARAMETER

KANGUJAM PRIYOKUMAR SINGH AND JITEN BARO1

ABSTRACT. Here we have studied a Bianchi Type-I string cosmological model
with bulk viscous fluid and negative constant deceleration parameter in gen-
eral relativity. To solve the survival field equations here we assumed that the
shear scalar and scalar expansion are directly proportional to each other σ∞θ.
The geometrical as well as physical features of the model are obtained and dis-
cussed. The model universe starts at initial epoch t = 0 with 0 volume and
then expand with accelerated rate. The model universe obtained here is non
shearing. The coefficient of bulk viscosity plays an important role in the cos-
mological consequences.The tension density diminishes with faster rate than
particle density in the evolution of universe which shows that the present day
universe is particle dominated.

1. INTRODUCTION

One of the tough problem for the researcher is to obtained the actual physical
state of the universe at the very early days of its formation. Strings cosmolog-
ical models are studied widely in present days due to their major contribution
in the study of the evolution of the universe in early stages after the big bang.
According to the grand unified theories (Everett [1], Vilenkin [2]), those strings
was formed during the transition of phases when the temperature went down
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beneath some critical temperature soon after the explosion of big-bang . Lete-
lier [3] and Stachel [4] are the two prominent authors who initiated to study
about the strings. Letelier solved the Einstein’s field equation and obtained the
solutions for a cloud of strings with the plane, spherical, and cylindrical sym-
metry. He also solved the same equation for the cloud of massive strings in
the year 1983, and constructed the cosmological models in the Bianchi Type-I
Space-time.

In the evolution of the universe the bulk viscosity contribute a significance
role. It can arise in different circumstances and can lead to constructive mech-
anism of the formation of galaxies. The amplitude of the bulk viscous stress
with respect to the expansion can be determined by means of the coefficients
of bulk viscosity. The homogeneous and anisotropic Bianchi type-I cosmolog-
ical models are considered to understand the evolution in the early stages of
the universe. Many authors have tried to find the precise solutions of field
equations by the way of considering viscous consequences in general relativ-
ity in isotropic as well as anisotropic cosmological model. Misner [5, 6], stud-
ied about the consequences of bulk viscosity in the evolution of cosmological
model. Nightingale [7] has obtained the importance of viscosity in cosmology
within the evolution from the early epoch of the universe. Wang [8] constructed
a Bianchi type-III cosmological models with string within the framework of gen-
eral relativity considering the bulk viscous fluid. The behavior of the Bianchi
type-III cosmological models with strings in general relativity with and without
bulk viscosity are discussed by Bali and Pradhan [9]. Kandalkar et al. [10] con-
structed cosmic string in Bianchi type-I cosmological model with bulk viscosity.
Also, Kandalkar et al. [11] investigated a Bianchi-V cosmological models in gen-
eral relativity with constant deceleration parameter and viscous fluid. Humad
et al [12] constructed a string cosmological model in Bianchi type-I space time
with the help of Bulk viscosity in context of general relativity. Rao et al. [13],
Singh [14], Tripathi et al. [15], Pradhan and Jaiswal [16], Dubey et al. [17],
Singh and Daimary [18], are some of the prominent authors who have inves-
tigated various string cosmology in the Bianchi models with bulk viscosity in
different space-time.

Here we have attempted to find a model in cosmology with string with Bianchi
type-I space-time by considering the deceleration parameter(q) as a constant
quantity in general relativity with bulk viscous fluid. In the first Section of
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this paper we discussed a brief introduction of Bianchi type string cosmologi-
cal models, In second Section a Bianchi type-I metric is presented and the field
equations in general relativity are derived. We determined the solutions of the
survival field equations in the Section 3. In Section 4, physical and geometri-
cal behavior of our model are discussed and then conclusions are given in last
Section.

2. METRIC AND FIELD EQUATIONS

Here we take the Bianchi type-I metric as

(2.1) ds2 = −dt2 + a2(dx2 + dy2) + b2dz2 ,

where a(t) and b(t) are the metric functions of ‘t’.
The Einstein’s field equation (8πG = 1, C = 1)in general relativity is given by

(2.2) Rij −
1

2
Rgij = −Tij .

For a cloud string with bulk viscous fluid, the energy-momentum tensor is taken
as

(2.3) Tij = ρuiuj − λxixj − ξθ(gij + uiuj) .

Here, λ = ρ− ρp is tension density, ρ is energy density and ρp is particle density,
ui is four velocity vector of particles and xi is unit space-like vector which gives
the direction of string, given by

(2.4) ui = (0, 0, 0, 1) and xi = (a−10, 0, 0)

such that,

(2.5) uiu
j = −1 = −xixj and uixi = 0 .

The spatial volume, scalar expansion, Hubble parameter, shear scalar and mean
anisotropy parameter are respectively given by

(2.6) V = a2b = R3
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ȧ
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+
ḃ

b
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ȧ
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b
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1

2
σijσ
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1

2
[2(
ȧ

a
)2 + (

ḃ

b
)2]− θ2
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1

3

3∑
i=1

(
Hi −H
H

)2 ,

where, Hi (i=x,y,z)are defined as Hx = Hy = ȧ
a
, and Hz = ḃ

b
for the metric (2.1).

Using (2.3)-(2.5) in (2.2) yields

ä

a
+
b̈

b
+
ȧḃ

ab
= ξθ(2.7)

2
ä

a
+
ȧ2

a2
= λ+ ξθ(2.8)

ȧ2

a2
+ 2

ȧḃ

ab
= ρ ,(2.9)

where the overhead dots denotes the order of derivative w.r.t. time ‘t’.

3. SOLUTION OF THE FIELD EQUATIONS

We have 3 highly nonlinear independent differential equations (2.7)-(2.9)
with five unknowns variables a, b,ρ, λ and ξ. So to find exact solution we must
used two extra plausible conditions. So here we used the following assumptions:

The shear scalar and scalar expansion are directly proportional to each other,
σ∞θ leading to the equation:

(3.1) a = bn ,

where n 6=0 is a constant.
The above assumption is based on observations of velocity and red-shift re-

lation for an extragalactic source which predicted that the Hubble expansion
is 30 percent isotropic, which is supported by the works of Thorne [19], Kan-
towski and Sachs [20], Kristian and Sachs [21]. In particular, it can be said
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that
σ

H
≥ 0.30, where σ and H are respectively shear scalar and Hubble con-

stant. Also, Collins et al. [22] has shown that if the normal to the spatially ho-
mogeneous line element is congruent to the homogeneous hyper-surface then
σ

θ
=constant, θ being the expansion factor.

Also, Berman’s [23] suggestion regarding variation of Hubble’s parameter H
provides us a model universe that expands with constant deceleration parame-
ter. So for the determinate solution, let us take deceleration parameter to be a
negative constant-

(3.2) q = −RR̈
Ṙ2

= h (constant) .

It is well known that when q is negative then the model universe expand with
acceleration, and when q is positive then it explains a decelerating(contracting)
universe. Although the present observations like CMBR and SNe Ia suggested
the negative value of q but it can be remarkably state that they are not able to
deny about the decelerating expansion(positive q) of universe.

Solving (3.2), we get

(3.3) R(t) = (lt+m)
1

1+h h 6= −1 ,

where l, m, are constants of integration.
Using (2.6), (3.1) and (3.3) we get,

a = (lt+m)
3n

(1+h)(2n+1) , b = (lt+m)
3

(1+h)(2n+1) .

With the suitable choice of coordinates and constant we can take (l=1 and
m=0) and then

a = t
3n

(1+h)(2n+1) , b = t
3

(1+h)(2n+1) .

The metric (2.1) reduces to

(3.4) ds2 = −dt2 + t
6n

(1+h)(2n+1) (dx2 + dy2) + t
6

(1+h)(2n+1)dz2 ,

which gives the geometry of the metric (2.1).
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4. PHYSICAL AND GEOMETRIC PARAMETERS

The tension density, energy density and particle density of the model (3.4)
are obtained as-

λ =
3(2− h)(n− 1)

(1 + h)2(2n+ 1)t2
,

ρ =
9n(n+ 2)

(1 + h)2(2n+ 1)2t2
,

ρp =
3[h(2n2 − n− 1)− (n2 − 8n− 2)]

(1 + h)2(2n+ 1)2t2
.

The spatial volume is

V = t
3

(1+h) .

The expansion scalar is

θ =
3

(1 + h)t
.

Hubble parameter is

H =
1

(1 + h)t
.

The bulk viscosity of the model is

ξ =
−h(2n2 + 3n+ 1) + 2

(1 + h)(2n+ 1)2t
.

The shear scalar of the model is

(4.1) σ =

√
3(n− 1)

(1 + h)(2n+ 1)t
.

The mean anisotropy parameter is

(4.2) ∆ =
2(n− 1)2

(2n+ 1)2
= Constant.

5. PHYSICAL INTERPRETATIONS

The model given by the equation (3.4) is a Bianchi type-I cosmological model
with string in general relativity with constant deceleration parameter(q=constant)
and bulk viscosity. The variation of some of the features with time for the model
are shown below by taking n = 2, h = −0.5.



BULK VISCOUS FLUID BIANCHI TYPE-I STRING . . . 4913

Energy Density

Tension Density

Particle density

bulk viscosity

20 40 60 80 100
Time (Gyr)

0.01

0.02

0.03

0.04

0.05

0.06

FIGURE 1. Variation of
ρ, λ, ρp, ξ vs. t.

Expansion Scalar

Huble parameter

Shear Scalar

Spatial Volume

0.5 1.0 1.5 2.0 2.5 3.0
Time (Gyr)

5

10

15

20

25

30

FIGURE 2. Variation of
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The geometrical and physical behaviors of the model universe for (1 + h > 0)

are discussed as

(i) The tension density (λ), energy density (ρ) and particle density (ρp) all
are infinite as t = 0, and are decreasing functions of time t and they
all become 0 as t → ∞ , Figure 1 , which indicates that the universe
starts at t = 0 and expand with time. Hence the model admits initial
singularity at t = 0. This model satisfies the energy density conditions
ρ ≥ 0 and ρp ≥ 0. It is also observed that

ρp
|λ|

> 1 which shows that

tension density of string diminishes more quickly than particle density,
so the late universe is particle dominated.

(ii) The bulk viscosity ξ →∞ when t=0 and it decreases with the increasers
of time and finally when t→∞ bulk viscosity ξ vanishes, Figure 1.

(iii) Initially at t = 0 the spatial volume is 0 for this model and as time in-
creases the volume also increases, Figure 2. It reaches to infinite value at
t→∞ and so the model represents an expanding universe with respect
to time.

(iv) At the initial epoch t = 0, the scalar expansion θ as well as Hubble
parameter H both are infinite and as the time progresses gradually they
decreases and finally they become 0 when t → ∞ , Figure 2. Hence the
model shows that the universe is expanding with time but the rate of
expansion become slow with the increases of time and the expansion

end at t → ∞. Since
dH

dt
is negative quantity which also explained that

our model universe is expanding with acceleration.
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(v) From equation (4.1) and Figure 2 it seen that the value of the shear
scalar σ is infinite at initial epoch and decreases with time and become
zero at late universe showing that the universe obtained here is shear
free in the late time.

(vi) From (4.2) the mean anisotropy parameter ∆ = constant 6= 0 for n 6= 1

and ∆ = 0 for n = 1. Also as t → ∞ the value of
σ2

θ2
= constant 6= 0

for n 6= 1 and
σ2

θ2
= 0 for n = 1. From both statements we can conclude

at late time the universe is anisotropic, when n 6= 1 but it is isotropic for
n = 1 throughout evolution.

6. CONCLUSION

Here, we have constructed a Bianchi type-I string cosmological models with
the help of bulk viscosity and constant deceleration parameter in general rel-
ativity. The parameters which are very important in the study of cosmologi-
cal models are obtained and discussed. The model is expanding,non shearing,
anisotropic for n 6= 1 and isotropic for n = 1. The present universe starts at
initial epoch at t = 0 with 0 volume and then expand with accelerated rate and
the rate of expansion becomes slow with increase of time. The bulk viscosity co-
efficient plays a significance role in the cosmological consequences. The tension
density diminishes with the faster rate than particle density which shows that
present day universe is dominated by particles.
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Abstract
Objectives: To present a new solution to the field equations obtained for
Bianchi type-III universe by using the law of variation of H, which yields constant
DP. Methods: We study a Bianchi type-III cosmological model with a cloud
strings with particles connected to them in Lyra geometry. To find the exact
solutions of survival field equations we consider here that the shear scalar
and scalar expansion are proportional to each other (σαθ) that leads to
the equation b = cm and secondly we adopt the assumption considering the
Deceleration Parameter q as a negative constant quantity giving the inflationary
model. The geometrical and physical properties are studied and comparedwith
the recent observational data. Findings: The present model starts at t=0 with 0
volume and as time progresses it expands with accelerated rate and themodel
shows that the present universe is particle dominated.
Keywords: Bianchi type III metric; inflation; Lyra geometry; cloud string;
anisotropic

1 Introduction
It is still an interesting area of research to discover its unknownphenomenon that has yet
to observe to study the ultimate fate of the universe. But till today cosmologists cannot
make a final and comprehensive conclusion about the origin and evolution of universe
with strong evidence. So more and more investigations are required to discover and
understand the unknown phenomenon of the universe and many mysterious particles
which are to be observed to study the ultimate fate of the universe. The cosmologist
or researchers developed the string theory to describe the universe, its early stages
and the evolution during the time. So, the study on string cosmology is becoming
very interesting area for the cosmologist, because of its significant role in the study of
formation and evolution of the universe at the early stages and to understand about
the future evolution. In the field of the general relativity the investigation of string was
generally initiated by prominent authors, Stachel (1) and Letelier (2,3). In the recent past
years many prominent authors have investigated the cosmic strings in the context of
Lyra geometry since it can play a great role in describing the universe in the early stages
of evolution (Kibble (4,5)) and they can give rise to density perturbations which can lead

https://www.indjst.org/ 46
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to the creation of large scale structure (galaxies) of the universe(Zel’dovich (6,7)).
The strings are crucial topological stable defects occurred due to the phase transition at the early days of the universe,

when the temperature is lower than a specific temperature, known as critical temperature. The occurrence of strings inside
the universe results in anisotropy within the space-time, though the strings aren’t seen in the present epoch. Strings cause no
damage to the cosmological models, but they can result in very interesting astrophysical effects. Because of the great position of
strings in the description of the evolution of the early universe, nowadays, many prominent authors have significantly studied
the string cosmology. Soon, after the big-bang, there was a breaking of symmetry during the time of phase transition and the
cosmic temperature went down below some critical temperatures due to which the strings arose, as according to grand unified
theories(Everett (8), Vilenkin1 (9,10)).

Though the Einstein general relativity is one of the most acceptable theory in modern era to describe the universe, it is
unable to explain some of the strong unknown facts about the universe such as accelerated expansion of universe, reason
behind the expansion etc. So the several researchers are trying to solve and explain those aspects of the universe by the help
of different modified theories of Einstein General theory of relativity such as Weyl’s theory, Brans-Dicke theory, f(R) gravity
theory, f(R, T) theory, Lyra geometry, scalar tensor theory etc. Among these theories Lyra geometry is one of themost important
modified theory. Inspired by the geometrization of gravitation, Weyl (11) developed a theory by geometrizing electromagnetism
and gravitation, known as Weyl’s theory. However, this theory was criticized and not accepted due to the condition of non-
integrability of length of vector under parallel displacement. To remove this non integrability condition to H. Weyl’s geometry,
Lyra (12) suggested a modification by introducing a gauge function ϕµ into the structureless geometry to Riemannian geometry
and this modified Riemannian geometry proposed by Lyra is known as Lyra’s Geometry. Halford (13) constructed a theory
in cosmology in Lyra geometry, and he showed that in general theory of relativity the constant ϕµperforms as cosmological
constant term. Bhamra (14), Beesham (15), Singh and Singh (16,17), Rahaman et al. (18), Reddy andRao (19,20), Yadav et al. (21), Adhav
et al. (22), Reddy (23), Rao et al. (24) are the some of the prominent authors who have already constructed various cosmological
models in Lyra geometry. Recently, Singh et al. (25), W. D. R. Jesus, and A. F. Santos (26), Singh and Mollah (27), Mollah et al. (28),
Yadav and Bhardwaj (29), Maurya and Zia (30), A. K. Yadav (31) have studied various cosmological models in different contexts
considering Lyra’s geometry.

Inspired by the above discussions, here we have studied the string cosmological model with particles connected to them in
Bianchi type-III universe considering Lyra geometry. The work done in this paper and findings are somewhat distinct from
the earlier findings. In the sec.2, Bianchi type-III metric is presented and the field equations in Lyra geometry are derived;
In the sec.3, the determinate solutions of the field equations are determined by using some plausible conditions. Physical and
geometrical properties of our model with the help of graph are discussed in sec.4; In sec.5 conclusions of the paper are given.

2 The metric and field equations
We consider the Bianchi type-III metric as

ds2 = a2dx2 +b2e−2xdy2 + c2dz2 −dt2 (1)

Here, a, b and c are the functions of ‘t’ alone. For the above metric let

x1 = x,x2 = y,x3 = z and x4 = t (2)

The field equations with gauge function and 8πG = 1,C = 1 in Lyra manifold is

Ri j −
1
2

Rgi j +
3
2

ϕiϕ j −
3
4

gi jϕkϕ k =−Ti j (3)

Where, ϕi is the displacement field vector given by

ϕi = (0,0,0,β ) (4)

Here, β is the function of time.
The energy-momentum tensor for a cosmic string is taken as

Ti j = ρuiu j −λxix j (5)

Here, λ = ρ −ρp is the string tension density, ρ is the energy density and ρp is the particle density of the string. Also, ui is the
four velocity vector and xi is the unit space-like vector which represents the direction of strings, and they are given by

xi =
(
0,0,c−1,0

)
and ui = (0,0,0,1) (6)
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Such that uiui =−1 =−xixi and uixi = 0 (7)

If R is the average scale factor then volume is

V = abc = R3 (8)

The expansion scalar is given by

θ = ui
,i =

ȧ
a
+

ḃ
b
+

ċ
c

(9)

Hubble parameter is given by

H =
1
3

(
ȧ
a
+

ḃ
b
+

ċ
c

)
(10)

The shear scalar is given by

σ2 =
1
2

σi jσ i j =
1
3

[(
ȧ
a

)2

+

(
ḃ
b

)2

+

(
ċ
c

)2

− ȧḃ
ab

− ḃċ
bc

− ċȧ
ca

]
(11)

And the mean anisotropy parameter is

∆ =
1
3

3

∑
r=1

(
Hr −H

H

)2

(12)

Where, Hr(r = x,y,z) denotes the directional Hubble factors, and they are given by Hx =
ȧ
a ,Hy =

ḃ
b and Hz =

ċ
c for the metric

(1).
The field Equation (3) with the Equations (4), (5), (6) and (7) for the Equation (1) takes the form

b̈
b
+

c̈
c
+

ḃċ
bc

+
3
4

β 2 = 0 (13)

ä
a
+

c̈
c
+

ċȧ
ca

+
3
4

β 2 = 0 (14)

ä
a
+

b̈
b
+

ȧḃ
ab

++
3
4

β 2 − 1
a2 = λ (15)

ȧḃ
ab

+
ḃċ
bc

+
ċȧ
ca

− 3
4

β 2 − 1
a2 = ρ (16)

ȧ
a
− ḃ

b
= 0 (17)

Here the overhead dots represent the order of differentiation w. r. t. time ‘t’.
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3 Solutions of the field equations
Solving Equation (17), we have

a = rb (18)

Here r is the integration constant. With generality, we can take r = 1 .
And using it, (18) can be written as,

a = b (19)

Thus using relation (19) the field Equations (13), (14), (15) and (16) reduces to

b̈
b
+

c̈
c
+

ḃċ
bc

+
3
4

β 2 = 0 (20)

2
b̈
b
+

ḃ2

b2 +
3
4

β 2 − 1
b2 = λ (21)

ḃ2

b2 +2
ḃċ
bc

− 3
4

β 2 − 1
b2 = ρ (22)

We have 3 highly nonlinear independent differential Equations (20), (21) and (22) with variables b,c,λ ,β and ρ which are
unknown. So to obtain the exact solutions of above equations we must have two extra conditions. So here we used the following
two physically plausible conditions:

Here, we take the assumption that the shear scalar and expansion scalar are proportional to each other (σαθ) which leads
to the equation

b = cm (23)

Here m ̸= 0 is a constant.
This is based on observations of velocity and red-shift relation for an extragalactic source which predicted that the Hubble

expansion is 30 percent isotropic, which is supported by the works of Thorne (32), Kantowski and Sachs (33), Kristian and
Sachs (34). In particular, it can be said that σ

H ≥ 0.30, where σ and H are respectively shear scalar and Hubble constant. Also,
Collins et al. (35) has shown that if the normal to the spatially homogeneous line element is congruent to the homogeneous
hyper-surface then σ

θ = constant ,θ being the expansion factor.
Secondlywe adopt the assumption proposed byBerman (36) about the variation of hubble’s parameterH,which gives constant

DP in the model as

q =−RR̈
Ṙ2 = (constant) (24)

When h is negative then the model universe expand with acceleration and when q is positive then the model universe contract
with deceleration. Although the present observations like CMBR and SNe Ia suggested the negative value of q but it can be
remarkably state that they are not able to deny about the decelerating expansion (positive q) of universe. This is the most
suitable condition to explore the physically meaningful solutions of the above field equations.

The scale factor R admits the solution-

R = (ht + k)

1
1+q , q ̸=−1

(25)

Here h ̸= 0 and k are integration constants.
Using the Equations (8), (19), (23) and (25), we get,

a = b = (ht + k)

3m
(1+q)(2m+1) (26)
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c = (ht + k)

3
(1+q)(2m+1) (27)

Without loss of generality we take h=1 and k=0 then (26), (27) becomes

a = b = t

3m
(1+q)(2m+1) , c = t

3
(1+q)(2m+1) (28)

Using (28) the metric (1) can be reduced to

ds2 = t

6m
(1+q)(2m+1) (dx2 + e−2xdy2

)
+ t

6
(1+q)(2m+1) dz2 −dt2 (29)

This gives the geometry of the metric (1).

4 Physical and geometrical parameters
We obtained some of the important physical and geometrical parameters that are useful for the discussion on the evolution of
the universe.

Using (28) in (22) we obtained ρ as

ρ =
3(m+1)(2−q)

(1+q)2(3m+1)t2 − t
−

6m
(1+q)(2m+1) (30)

From (19) and (20) using (28) we obtained

λ =
3(m−1)(2−q)

(1+q)2(3m+1)t2 − t
−

6m
(1+q)(2m+1) (31)

From (30), (31) we obtained the ρp as

ρp =
6(2−q)

(1+q)2(3m+1)t2 (32)

The gauge function β is obtained as

β 2 =
4
[
(m+1)(2m+1)(1+q)−3

(
m2 +m+1

)]
(1+q)2(3m+1)2t2

(33)

The spatial volume, scalar expansion, Hubble parameter, shear scalar and mean anisotropy parameter of the model are

V = t

3
1+h (34)

θ =
3

(1+h)t
(35)

H =
1

(1+h)t
(36)

σ =

√
3(m−1)

(1+h)(2m+1)t
(37)

∆ =
2(m−1)2

(2m+1)2 = Const. (38)
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5 Interpretations of the solutions
The Equation (29) represents the Bianchi type-III anisotropic cosmological model with strings in Lyra geometry. The physical
and geometrical behavior of model for −1 < h < 0 are discussed as

Fig 1. Energy density Vs. Time

Fig 2. Tension density, Particle density Vs. Time

• From the expressions of energy density ρ and tension density λ given by Equations (30) and (31), we have observed that
both of them are negative at the initial epoch of time but as the time progresses they changes sign from negative to positive
and then decreases gradually and finally become zero when t → ∞ . Figure 1 presents the variations of energy density with
time t, which clearly indicate that at infinite time, ρ → 0 . Again, the nature of the variations of tension density λversus
time t is shown by Figure 2. From this we can conclude that initially when t → 0 , λ is negative but with the passage of
cosmic time it changes sign from negative to positive and finally at infinite time it becomes zero, which is supported by
Letelier (2,3)

• For themodel universe, the expression of particle density ρp is found as the Equation (32) and its variations versus cosmic
time is shown in Figure 2.Which shows that ρpis always positive which decreases from ρp =∞ as t = 0 to ρp = 0 whenever
t → ∞ . Also, Figure 2 depicts that the tension density diminishes more quickly than the particle density, therefore with
the passage of time string will disappear leaving the particles only. Hence, our model is realistic one. And it is also seen
that ρp

|λ | > 1 , that shows that tension density of string diminishes faster than particle density. This tells us that the late
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universe is particle dominated.

Fig 3. Volume, Gauge Function Vs. Time

• In this model universe, at the initial epoch of time, the gauge function β 2 given by Equation (33) is found to be infinite
and it decreases with the increase of time. Finally, the gauge function β 2 → 0 when t → ∞ .

• The volume for this model increases as time increases. The expression of volume V as obtained in Equation (34) shows
that the model universe begin with initial singularity at t = 0 from V = 0 i.e. our model universe starts from zero volume at
t = 0 and as time increases it expands and also when t → ∞, V → ∞ . So, for 1+q > 0 the model shows that the universe
is expanding with accelerated rate.

Fig 4. Expansion scalar, Hubble parameter, Shear scalar Vs. Time

• From the expansion scalar and Hubble parameter for the model (29), at t = 0, the θ and H both are infinite and as the
time progresses gradually they decrease and finally θ and H become 0 when t is infinite. Hence, the model shows that the
universe expands with time but the rate of expansion slower as the increases of time and the expansion stops at t → ∞
. Again, it is seen that dH

dt = − 1
(1+h)t2 = 0 , when t approaches infinity and this implies the greatest value of Hubble’s

Parameter and accelerated expansion of the universe. These behaviors of the model are presented in Figure 4
• In Equation (37) and Figure 4. It is seen that the value of the shear scalar σ → ∞ at initial epoch and it decreases as the

time increases and become zero at late universe showing that the universe obtained here is shear free in the late time.
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• From Equation (38) the mean anisotropy parameter ∆ = constant(̸= 0) for m ̸= 1 and ∆ = 0 for m = 1. Also as t → ∞ the
value of σ2

θ 2 = (m−1)2

3(2m+1)2 = constant(̸= 0) for m ̸= 1 and σ2

θ 2 = 0 for m = 1 From both statements we can conclude that this
model is anisotropic for large value of t when m ̸= 1 but it is isotropic for m=1.

6 Conclusions
In this article, we have attempted to present a new solution to the field equations obtained for Bianchi type-III universe in
Lyra geometry by using the law of variation of Hubble’s parameter H which yields constant DP. This variational law for H in
Equation (24) explicitly determine the values of the average scale factors(R). So here we have constructed a Bianchi type-III
cosmological model attached to strings in Lyra geometry, which is an anisotropic and inflationary model. The physical and
geometrical parameters which are very important in the description of cosmological models have been obtained and discussed.
The model starts at t = 0 with volume 0 and it expand with acceleration in which the strings disappear leaving the particles
only in the late universe giving particle dominated universe which agrees with the present observational data. The model is
expanding, anisotropic for m ̸= 1 at late universe, accelerating, non-shearing and admits initial singularity at t=0, that also
agree with the present day observational data. Through this study, we hope to present a better knowledge of the cosmological
evolution of the present universe with the help of Bianchi type-III universe in Lyra geometry.
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Here we studied Bianchi type-I cosmological models with massive strings in general
relativity in five dimensional space time. Out of the two different cases obtained here, one
case leads to a five dimensional Bianchi type-I string cosmological model in general
relativity while the other yields the vacuum Universe in general relativity in five dimensional
space time. The physical and geometrical properties of themodel Universe are studied and
compared with the present day’s observational findings. It is observed that our model is
anisotropic, expanding, shearing, and decelerates at an early stage and then accelerates
at a later time. Themodel expands along x, y, and z axes and the extra dimension contracts
and becomes unobservable at t→∞. We also observed that the sum of the energy density
(ρ) and the string tension density (λ) vanishes (ρ + λ � 0).

Keywords: five dimension, cloud string, bianchi type-I space-time, general relativity, anisotropic

1 INTRODUCTION

Nowadays, there has been drastic interest in string cosmology because of its important role in the
study of the origin of the Universe and its very early phases before the formation of particles. It is
an interesting concept for cosmologists to study and discover its unknown phenomena that have
yet to be observed to study and explore the hidden information of the Universe. So cosmologists
have taken an enormous interest to understand the past evolution, present state, and future
evolution of the Universe. The general relativistic study of string was started by Letelier (Letelier,
1983) and Stachel (Stachel, 1980), who developed a classical concept of the geometric strings.
Due to the key role of strings in describing the evolution of the early stage of our Universe, these
days, many distinguished authors are inquisitive about cosmic strings within the framework of
general relativity (Kibble (Kibble, 1976; Kibble, 1980)) and it is believed that strings give rise to
density perturbations leading to the creation of the massive scale structures (like galaxies) of the
Universe (Zel’dovich (Zel’dovich et al., 1974; Zel’dovich, 1980)). These strings have stress-
energy and they are classified as geometric strings and massive strings. The occurrence of strings
in the Universe results in anisotropy in space-time, though the strings cannot be seen in the latest
epoch. These strings are not harmful to the cosmological models, alternatively they can result in
plenty of very interesting astrophysical outcomes. There was a spontaneous symmetry breaking
of the Universe during the phase transition in the early stage of the Universe after the big-bang
explosion and those cosmic strings which are very important topological defects arose in the
early epoch as the cosmic temperature went down below a few critical temperature points which
are consistent with grand unified theories (Everett (Everett, 1981), Vilenkin (Vilenkin, 1981a;
Vilenkin, 1981b)).
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The study of cosmological models in higher dimensional space-
time provides us with an idea that our present Universe is much
greater than the Universe at the early stage of evolution due to the
accelerated expansion of the Universe. So, nowadays it is becoming
very interesting to study string cosmology in higher-dimensional
space-time in the framework of general relativity. The possibility of
space-time possessing more than 4D (Higher Dimensions) has
attracted many authors to study higher dimensional models to
study cosmology. The higher dimensional model was introduced
by Kaluza (Kaluza, 1921)and Klein (Klein, 1926) in an effort to unify
gravity with electromagnetism. Higher-dimensional models can be
regarded as a tool to illustrate the late time expedited expanding
paradigm (Banik and Bhuyan (Banik and Bhuyan, 2017)).
Investigation of higher-dimensional space-time can be regarded as
a task of paramount importance as the Universe might have come
across a higher dimensional era during the initial epoch (Singh
et al.(Singh et al., 2004)). Marciano (Marciano, 1984) asserts that
the detection of a time-varying fundamental constant can possibly
show us the proof for extra dimensions. According to Alvax and
Gavela (Alvarez and Gavela, 1983) and Guth (Guth, 1981), extra
dimensions generate a huge amount of entropy which gives a possible
solution to the fitness and horizon problems. Since we are living in a
4D space-time, the hidden extra dimension in 5D is highly likely to be
associated with the invisible Dark Matter and Dark Energy
(Chakraborty and Debnath (Chakraborty and Debnath, 2010)).
Many researchers have investigated various Bianchi type models in
the field of five -dimensional space-time to explore the hidden
information of the Universe. Chatterjee (Chatterjee, 1993)
constructed a cosmological model in higher dimensional
inhomogeneous space-time with massive strings.

From the observational data, we found that our Universe is
homogeneous and isotropic on a large scale, however, no physical
evidence denies the chance of an anisotropic Universe. In fact,
theoretical arguments are presently promoting the existence of an
anisotropic phase of the Universe that approaches the isotropic phase
as suggested by Charles (Charles, 1968), Hinshaw et al. (Hinshaw
et al., 2003), Page et al. (Page et al., 2007). Anisotropy plays a vital role
in the early phase of the evolution of the Universe and so studying
homogeneous and anisotropic cosmological models is considered
important. Generally, the Bianchi-type models are spatially
homogeneous and are in general anisotropic. The simplicity of the
field equations made Bianchi type space-time useful in constructing
models which are spatially homogeneous and isotropic. For the
Bianchi type I cosmological models the corresponding anisotropy
parameters are time-dependent. As time increases, for a suitable
choice of the scalars, the Universe which was initially anisotropic
starts to become isotropic and finally attains isotropy after some large
cosmic time, which agrees with the present-day observational data
such as cosmic microwave background (CMB) and type Ia
supernovae.

We can find fascinating studies considering the anisotropic
Universe in Bianchi type-I space-time by Mohanty et al. (Mohanty
et al., 2002), Sahoo et al. (Sahoo et al., 2017). A Bianchi type-I
cosmological model in higher dimensional space-time with string was
investigated by Krori et al. (Krori et al., 1994) where they found that
the strings and matter coexist throughout the evolution of the
Universe. Rahaman et al.(Rahaman et al., 2003) obtained the exact

solutions of the field equations of a five-dimensional space-time
within the framework of Lyra manifold with massive string as a
source of gravitational field. Mohanty and Samanta (Mohanty and
Samanta, 2010a) constructed an LRS Bianchi type-I inflationary string
cosmological model in five-dimensional space-time with massive
scalar field in general relativity and obtained that the sum of
energy density and tension density is zero. Also, Mohanty and
Samanta (Mohanty and Samanta, 2010b) constructed string
cosmological models with massive scalar field in five dimensional
space-time considering Lyra manifold and obtained that the models
avoid the initial singularity. Bianchi type-III cosmological models in
five-dimensional space-time in general relativitywithmassive string as
an origin of gravitational field were constructed by Samanta et al.
(Samanta et al., 2011). Bianchi type-III string cosmological models in
general relativity in presence of magnetic field were investigated by
Kandalker et al. (Kandalkar et al., 2012), where they solved the field
equations by using the Reddy string condition (ρ + λ � 0). Samanta
andDebata (Samanta andDebata, 2011) constructed a five dimension
Bianchi type-I string cosmological model in the framework of Lyra
manifold. Singh and Mollah (Sing and Mollah, 2016) studied an LRS
Bianchi type-I cosmological model with perfect fluidity in the
framework of Lyra geometry in five dimensional space-time by
using constant deceleration parameter. Kaiser (Kaiser and Stebbins,
1984), Banerjee (Banerjee et al., 1990), Wang (Wang, 2005), Bali et al.
(Bali et al., 2007), Power and Deshmukh (Pawar and Deshmukh,
2010), Sahoo and Mishra (Sahoo and Mishra, 2015), Singh (Singh,
2013), Goswami (Goswami et al., 2016), Reddy (Reddy and Naidu,
2007), Khadekar (Khadekar et al., 2005; Khadekar et al., 2007;
Khadekar and Tade, 2007), Yadav (Yadav et al., 2011), Ladke
(Ladke, 2014), Singh and Baro (Singh and Baro, 2020), Baro and
Singh (Baro and Singh, 2020) are some of the authors who studied
different string cosmological models within the general relativity in a
different contexts in various space-times. In addition to the above
mentioned authors, recently Choudhury (Choudhury, 2017), Tripathi
(Tripathi et al., 2017), Dubey et al. (Dubey et al., 2018), Tiwari et al.
(Tiwari et al., 2019), Ram et al. (Ram and Verma, 2019), Mollah et al.
(Mollah et al., 2019), and Baro et al.(Baro et al., 2021) investigated
different string cosmological models in various space times.

The above discussion motivated us to investigate here the five-
dimensional string cosmological models with particles attached
to them in Bianchi type-I space-time in general relativity to
investigate the different possibilities of the Bianchi type model
Universe which transitions from anisotropic in early evolution to
isotropic at a later time point where the survival field equations
are solved by making some simplifying assumptions. Also, the
physical and geometrical properties of some parameters of our
model Universe are discussed in detail.

2 THE METRIC AND FIELD EQUATIONS

We consider the Bianchi type-I metric in five dimensional space-
time in the form of

ds2 � −dt2 + a2dx2 + b2dy2 + c2dz2 +D2dm2 (1)

where a, b, c and D are the metric functions of cosmic time ‘t′
only. Here the extra (fifth) coordinate ‘m’ is taken to be space-like.
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The Einstein’s field equation in general relativity is given by

Rij − 1
2
Rgij � −8πTij (2)

The energy-momentum tensor for a cloud string is taken as

Tij � ρuiuj − λxixj (3)

where ρ, λ, ρp are the energy density of cloud of strings, tension
density, particle density of the string respectively and they satisfy
the equation ρ � ρp + λ. The co-ordinates are co-moving, xi is a
unit space-like vector towards the direction of strings and ui is the
five velocity vector which satisfies the conditions given below.

uiui � −xixi � −1 (4)

and uixi � 0 (5)

ui � (0, 0, 0, 0, 1) and xi � a−1, 0, 0, 0, 0( ) (6)

For the metric 1 by using Equations 3–6 in the field Equation
2 yields

€b

b
+ €c

c
+ €D

D
+

_b _c

bc
+

_b _D

bD
+ _c _D

cD
� 8πλ (7)

€a

a
+ €c

c
+ €D

D
+ _a _c

ac
+ _a _D

aD
+ _c _D

cD
� 0 (8)

€a

a
+
€b

b
+ €D

D
+ _a _b

ab
+ _a _D

aD
+

_b _D

bD
� 0 (9)

€a

a
+
€b

b
+ €c

c
+ _a _b

ab
+ _a _c

ab
+

_b _c

bc
� 0 (10)

_a _b

ab
+ _a _c

ac
+ _a _D

aD
+

_b _c

bc
+

_b _D

bD
+ _c _D

cD
� 8πρ (11)

where an over dot and double over dot denote the first derivative
and the second derivative w.r.t. cosmic time ‘t’ respectively.

3 SOLUTION OF THE FIELD EQUATIONS

In this section we find physically meaningful solutions of the set
of field Equations 7–11 by taking some simplifying assumptions.

3.1 Case-I(Isotropic Model)
Let us consider the Isotropic Model as

a � b � c � tl1 and D � tl2 (12)

where l1 and l2 are arbitrary constants.
By using Eq. 12 in Equations 7–11, we get

1
t2

3l21 + 2l1l2 − 2l1 − l2 + l22( ) � 8πλ (13)

1
t2

3l21 + 2l1l2 − 2l1 − l2 + l22( ) � 0 (14)

1
t2

2l21 − l1( ) � 0 (15)

1
t2

3l21 + 3l1l2( ) � 8πρ (16)

Now from Equation 15 we get.
l1 � 0 or l1 � 1

2
For l1 � 0, from (14) we obtained
For l1 � 1

2, from (14) we obtained.
l2 � 1

2 or l2 � −1
2

Eq. 12 shows that, with the increases of time t the Universe
expands indefinitely if l1 > 0 and the extra dimension “m”
contract to a Planckian length as t → ∞ if l2 < 0. The
string cosmological model will be physically realistic only if we
take l1 � 1

2> 0 and l2 � −1
2< 0.

In this case the geometry of the model is described by the metric

ds2 � −dt2 + t dx2 + dy2 + dz2( ) + t−1dm2 (17)

Using l1 � 1
2 and l2 � −1

2 in Equation 13, the string tension
density is obtained as

λ � 0 (18)

Using l1 � 1
2 and l2 � −1

2 in Equation 16, the energy density is
obtained as

ρ � 0 (19)

And using 18 and 19, the particle density is obtained as

ρp � 0 (20)

This shows that the five-dimensional isotropic Bianchi type-I
model in general relativity with strings do not survive and so it
results in the five-dimensional vacuum Universe in the context of
the general theory of relativity.

3.2 Case-II(Anisotropic Model)
The models with the anisotropic background are the most
suitable models to describe the early stages of the Universe.
Bianchi type-I models are among the simplest models with the
anisotropic backgrounds.

In this case, let us consider

a � tk1 , b � tk2 , c � tk3 and D � tk4 (21)

Where k1, k2, k3 and k4 are arbitrary constants.
Now from Equations 7, 11, by the use of 21, we find

λ � 1
8πt2

k22 + k23 + k24 + k2k3 + k3k4 + k4k2 − k2 + k3 + k4( )[ ]
(22)

ρ � 1
8πt2

k1 k2 + k3 + k4( ) + k2k3 + k3k4 + k4k2[ ] (23)

and particle density is

ρp � 1
8πt2

k1 + 1( ) k2 + k3 + k4( ) − k22 + k23 + k24( )[ ] (24)

We observed that the anisotropic three space will expand as
t→∞ when k1, k2 and k3 are all positive and the extra dimension
will contract as t → ∞ if k4 < 0.

The Geometry of the model is described by the metric

ds2 � −dt2 + t2k1dx2 + t2k2dy2 + t2k3dz2 + t2k4dm2 (25)
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The Scalar Expansion θ for model 25 is given by

θ � l

t
(26)

Where, l � k1 + k2 + k3 + k4
The Hubble Parameter is given by

H � l

4t
(27)

The Spatial Volume of the Universe is obtained as

V � tl (28)

The Shear Scalar is obtained as

σ2 � 1
2t2

k21 + k22 + k23 + k24 −
1
4

[ ] (29)

Deceleration Parameter q is given by

q � 4
l
− 1 (30)

In this case, it is observed that the value of the deceleration
parameter q is a positive constant when l < 4 which implies that
our model Universe 25 decelerates in the standard way and the value
of the deceleration parameter q is a negative constantwhen l> 4which
implies that our model Universe accelerates in the standard way.
However, in the early stage of the evolution of the Universe the
Bianchi type models represent the cosmos and though the Universe
decelerates in the standard way in the early Universe, it will accelerate
in finite time because of cosmic recollapse where theUniverse in turns
inflates “decelerates and then accelerates” (Kandalkar and Samdurkar
(Kandalkar and Samdurkar, 2015)).

4 PHYSICAL INTERPRETATIONS OF THE
SOLUTIONS

Case I: From the case I, it is observed that ρ � λ � ρp � 0, which
results in the five-dimensional vacuum Universe in general
relativity. So, the isotropic Bianchi type-I five dimensional
cosmic strings Universe do not survive in general Relativity.

Case II: In case II, we have constructed the anisotropic
Bianchi type-I string cosmological model in general relativity

in five-dimensional space-time given by Equation 25. Taking
k1 � 2

5, k2 � 3
5, k3 � 1

4 and k4 � −1
4 , the variation of the

parameters of model 25 are shown by Figures 1, 2. The
physical and geometrical behavior of the model can be
discussed as.

1) We observed that our model expanded along x, y, and z axes as
t → ∞ when, k1, k2 and k3 are all positive and the extra
dimension contracts and becomes unobservable at t → ∞,
when k4 < 0.

2) It is observed that at the initial epoch, i.e., t � 0, the energy
density ρ→∞ and ρ→ 0 as t→∞(shown by Figure 1) and it
satisfies the reality condition when, k1 + k2k3 + k3k4 + k4k2 > k21

3) It is also observed that at the initial epoch, i.e., t � 0, the string
tension density λ → − ∞ and λ → 0 as t → ∞ (Figure 1).
From Eqs. 22, 23, we obtained an equation of state ρ + λ � 0,
which occurs naturally in our case.

4) Also from Figure 1, it is observed that the particle density (ρp)
is infinite when t � 0 and as time increases it decreases and
finally it becomes 0 as t→∞. It satisfies the reality condition
when, (k21 + k22 + k23 + k24)< 1

5) The spatial volume V in this model is 0 at initial epoch t � 0,
and it increases w. r.t time which shows that our model
Universe is expanding with the evolution of time, which is
clearly shown in Figure 2.

6) The expansion scalar θ →∞ at initial epoch t � 0, and as the time
progresses gradually it decreases and finally it becomes 0 when t→
∞(as shown inFigure 2).Hence themodel shows that theUniverse
is expanding with the increase of time but the rate of expansion is
slower as time increases and the expansion stops at t → ∞.

7) It is observed that the value of deceleration parameter q is
positive when l < 4 which implies that our model Universe
decelerates for an instant. It is also observed that the value of
deceleration parameter q is negative when l > 4, which implies
that our model Universe accelerates in the standard way which
is in accordance with the present-day observational scenario of
accelerating Universe. Here, for our proposed model it may be
noted that Bianchi type models represent the cosmos in its
initial stage of evolution and there may be some possibilities to
have an anisotropic Universe for some finite duration but the
initial anisotropy of the Bianchi type -I Universe quickly dies
away and the Universe turns to an isotropic one in the late

FIGURE 1 | Variation of ρ, λ, ρp, σ vs time t.
FIGURE 2 | Variation of θ, H, V vs time t.
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Universe. However, though the Universe decelerates in the
standard way for an instant, it will accelerate in finite time
because of cosmic recollapse where the Universe in turns
inflates “decelerates and then accelerates” (Kandalkar and
Samdurkar (Kandalkar and Samdurkar, 2015)). The
decelerating behavior of the expansion in the early stage and
the accelerating behavior of the expansion of the present Universe
has been indicated by many cosmological observations such as
cosmic microwave background (CMB), clusters of galaxies, and
type Ia supernovae, etc. which have suggested that the reason for
this transition from deceleration to acceleration may be due to
the presence of an anti-self attraction of matter. This shows that
the Universe attains isotropy at late times and transits to the
accelerating Universe which is consistent with the present day
observational data such as cosmicmicrowave background (CMB)
and type Ia supernovae. We may note that according to CMB
and Planck results, our Universe is homogeneous and isotropic
on a large scale, however, no physical evidence denies the chances
of an anisotropic Universe. In fact, theoretical arguments are
presently promoting the existence of an anisotropic phase of the
Universe that approaches the isotropic phase as suggested by
Charles (Charles, 1968), Hinshaw et al. (Hinshaw et al., 2003),
Page et al. (Page et al., 2007).

5 CONCLUSION

Here we investigated an anisotropic five dimensional Bianchi
type-I string cosmological model in the context of the general

theory of relativity. The model represents an expanding Universe
that starts at the time t � 0 with a volume V � 0 and expands with
acceleration after an epoch of deceleration. Our model Universe
satisfies the energy conditions ρ ≥ 0 and ρp ≥ 0. The model
Universe can represent a stage of evolution from deceleration to
acceleration. The deceleration parameter “q” is decelerating at the
initial stage of the evolution of the Universe and then accelerates
after some finite time because of the cosmic recollapse, indicating
inflation in the model after an epoch of deceleration which is in
accordance with the present-day observational scenario of the
accelerated expansion of our Universe as claimed by type Ia
supernovae [Riess et al. (Riess et al., 1998) and Perlmutter et al.
(Perlmutter et al., 1999)]. It is observed that our model Universe
is anisotropic, expanding, shearing, and the sum of the energy
density (ρ) and the string tension density (λ) vanishes (ρ + λ � 0)
for this model.
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ABSTRACT. Here, we have studied a Bianchi type-III string cosmologicl model
with bulk viscous fluid and negative constant DP in general relativity consider-
ing five dimensional space-time. To get the exact solutions of the survival field
equations, we assume that (i) DP is a constant and negative quantity and (ii)
the shear scalar and expansion scalar are proportional. Some of the most im-
portant parameters of the model are obtained and their behaviors are studied.
The model universe obtained here is expanding, shear free throughout the evo-
lution, anisotropic at late time when n 6= 1 and the late universe is dominated
by the particles.

1. INTRODUCTION

It is now almost proved from observational and theoretical fact that the uni-
verse is expanding with acceleration from the big-bang till today. However, no
one can guarantee for forever expansion because there is no final conclusion
about the expansion or contraction of universe till today. From various litera-
tures and opinions it can be belief that the acceleration of present universe may
be accompanied by way of deceleration. But the precise motive of this expand-
ing universe is not known to us till today which inspired all the cosmologists and
physicists for similarly research within the area of studies on this field. In the
recent past years, several models in cosmology has been proposed by different
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authors in order to explain the hidden reasons of expansion of the existing uni-
verse with the acceleration in the framework of string theory. The string theory
is one of the most important theories in cosmology that study about the un-
known facts of the universe. In latest years, the string cosmological problem has
attracted huge interest in the field of research because of their great position
in the evolution of the universe in early era. Cosmic strings are topologically
stable defects, which are probably formed at some stage of the phase transi-
tion or earlier the introduction of particles in the early universe. In the field
of general relativity, Stachel [1] and Letelier [2] initiated the study on strings.
Spatially homogeneous and anisotropic Bianchi type cosmological model plays
a great function to describe the large-scale behavior of the universe. Further-
more, from several kinds of literature and findings one can actually locate that
the anisotropic model had been taken as possible models to initiate the expan-
sion of the universe.

Bulk viscosity performed a great role in the evolution of the early universe.
Its impact on the evolution of universe has been studied by means of several
researchers in the frame work of well known concept of general relativity. Mis-
ner [3] studied about the consequences of bulk viscosity in the cosmological
evolution of the universe. Some of the famous researchers [4-8], who have
studied several Bianchi models in the field of general relativity with bulk viscos-
ity.

A cosmological model in higher-dimensions performs a crucial role in differ-
ent aspects of the early phases of the cosmological evolution of the universe.
It is not possible to unify the gravitational forces in nature in typical four-
dimensional space-times. So the theory in higher dimensions may be applicable
in the early evolution. The study on higher-dimensional space-time gives us an
important idea about the universe that our universe was much more smaller
at initial epoch than the universe observed in these days. Many researchers
motivated to enter into the theory of higher dimensions to discover the hid-
den phenomenon of the universe. Subsequently, many researchers have already
investigated various cosmological models in five dimensional space-time with
various Bianchi type models in different aspects [9-12].

Inspired by the above studies, here in this article we have investigated the
higher dimensional bulk viscous cosmological model with string in Bianchi type
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III space–time considering constant DP. In this paper, Sec. 2 describes the for-
mulation of problem. Sec.3. gives the solutions of the cosmological problems.
Some of the important physical and geometrical parameters are derived in sec.4.
The results found are discussed in Sec.5. Finally, in last Sec., concluding points
are provided.

2. METRIC AND FIELD EQUATIONS

Here Bianchi type-III metric in 5-dimension is considered as

(2.1) ds2 = a2dx2 + b2(e−2xdy2 + dz2) + c2dm2 − dt2.

Here a, b and c are the functions of t and ’m’ is the extra dimensions(space-like).
The EFE in general relativity with 8πG = 1, C = 1 is

(2.2) Rij −
1

2
Rgij = −Tij.

The energy-momentum tensor with bulk viscosity is

(2.3) Tij = ρuiuj − λxixj − ξθ(gij + uiuj).

Here, ρ = λ + ρp is the energy density, λ is the tension density and ρp is the
particle density, θ is expansion scalar and ξ is the bulk viscosity coefficient. Also
ui = (0, 0, 0, 0, 1) is the five velocity vector of particles and xi = (0, 0, c−1, 0, 0)

represent the unit vector which is space-like and this represents the direction of
the strings such that uiuj = −1 = −xixj and uixi = 0.

If R(t)be the average scale factor then the spatial volume is

(2.4) V = ab2c = R4.

Using the equations (2.1)-(2.3) we obtain

(2.5) 2
b̈

b
+
c̈

c
+
ḃ2

b2
+ 2

ḃċ

bc
= ξθ,

(2.6)
ä

a
+
b̈

b
+
c̈

c
+
ȧḃ

ab
+
ȧċ

ac
+
ḃċ

bc
= ξθ,

(2.7)
ä

a
+
b̈

b
+
c̈

c
+
ȧḃ

ab
+
ȧċ

ac
+
ḃċ

bc
− 1

a2
= λ+ ξθ,

(2.8)
ä

a
+ 2

b̈

b
+ 2

ȧḃ

ab
+
ḃ2

b2
− 1

a2
= ξθ,
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(2.9) 2
ȧḃ

ab
+
ȧċ

ac
+ 2

ḃċ

bc
+
ḃ2

b2
− 1

a2
= ρ,

(2.10)
ȧ

a
=
ḃ

b
.

The overhead dots here denotes the order of derivative w.r.t. time ‘t’.

3. SOLUTION OF THE FIELD EQUATIONS

Eqn.(2.10) yields a = lb, l is integration constant. We take l = 1, then

(3.1) a = b

By the use of (3.1) in the equations (2.5)-(2.9) we get

(3.2) 2
b̈

b
+
c̈

c
+
ḃ2

b2
+ 2

ḃċ

bc
= ξθ,

(3.3) 2
b̈

b
+
c̈

c
+
ḃ2

b2
+ 2

ḃċ

bc
− 1

b2
= λ+ ξθ,

(3.4) 3
b̈

b
+ 3

ḃ2

b2
− 1

b2
= ξθ,

(3.5) 3
ḃċ

bc
+ 3

ḃ2

b2
− 1

b2
= ρ.

We have 4 highly nonlinear independent differential equations (3.2)-(3.5) with
variables b, c, λ, ρ, ξ and θ which are unknown. So to get the exact solutions of
above equations we must have two extra conditions.

Berman’s [13] suggestion regarding variation of Hubble’s parameter H pro-
vides us a model universe that expands with constant DP. So for the determinate
solution, let us take DP to be a negative constant,

(3.6) q = −RR̈
Ṙ2

= h (constant).

The shear and expansion scalar are proportional (σ ∝ θ) [Thorne [14], Collins
et al. [15]]. This leads to the equation

(3.7) b = cn,where, n 6= 0 is a constant.

Solving (3.6), we get

R = (αt+ β)
1

1+h h 6= −1, α and β are constants of integration.
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Using (2.4), (3.1) and (3.7) we get,

a = b = (αt+ β)
4n

(1+h)(3n+1) , c = (αt+ β)
4

(1+h)(3n+1) .

With the suitable choice of coordinates and constant we take (α = 1, β = 0)

a = b = t
4n

(1+h)(3n+1) , c = t
4

(1+h)(3n+1)

Which gives the geometry of the metric (2.1)as

(3.8) ds2 = t
8n

(1+h)(3n+1) (dx2 + e−2xdy2 + dz2) + t
8

(1+h)(3n+1)dm2 − dt2.

4. PHYSICAL AND GEOMETRIC PARAMETERS

We obtained some of the important physical and geometrical parameters which
are useful for the discussion on the evolution of the universe.

(4.1) ρ =
48n(n+ 1)

(1 + h)2(3n+ 1)2t2
− t−

8n
(1+h)(3n+1) ,

λ = −t−
8n

(1+h)(3n+1) ,

(4.2) ρp =
48n(n+ 1)

(1 + h)2(3n+ 1)2t2
,

V = t
4

(1+h) , θ =
4

(1 + h)t
,

H =
1

(1 + h)t
,

ξ =
(2n+ 1)(3n2 − 3nq − q) + 3

(1 + h)(3n+ 1)2t
,

(4.3) σ =

√
6(n− 1)

(1 + h)(3n+ 1)t
.
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FIGURE 1. Variation of
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FIGURE 2. Variation of
θ, H, σ, V vs. t.

5. PHYSICAL INTERPRETATIONS

The equation (3.8) here represents a Bianchi type-III cosmological model with
string in general relativity with constant DP (q=constant) in presence of bulk
viscosity in 5-D space-time. The variation of parameters with time for the model
are shown above by taking n = 1

2
, h = −1

2
.

i. From Fig. 1. and Eqn.(4.1) we have observed that the energy density
ρ is negative at the initial epoch and it changes sign from negative to
positive after some finite time and finally becomes 0 when t → ∞. Also
it is seen that the tension density λ of string is negative(Fig1). It is
mentioned by Letelier [2] that λ can be < 0 or > 0. The phase of string
disappears when λ < 0. The strong energy condition ρ ≥ 0, λ < 0 as
given by Hawking and Ellis [16] are satisfied for the model in the late
time universe.

ii. From (4.2), we note ρp ≥ 0 for all time t and ρp decreases with time
(Fig1). It is also observed that ρp

|λ| > 1 which shows that λ diminishes
more faster than ρp. This tells us that the late universe is particle domi-
nated.

iii. The bulk viscosity ξ →∞ when t=0 and it decreases with the increasers
of t and finally when t→∞ bulk viscosity ξ demises (Fig. 2). The func-
tion of the bulk viscosity is to retard the expansion of the universe and
since bulk viscosity deceases with the time so retardness also decreases
which supports in the expansion in faster rate in the late time universe.
From the above discussion it can be seen that the bulk viscosity plays a
great function in the evolution of the universe.
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iv. The volume V=0 at initial epoch t=0 and the volume increases with the
increases of the t and it become∞ when time t→∞. So the universe is
expanding with time. The size of the universe was very small just after
the big bang exploitation then the size continuously increasing till now
and it will increase late time also.

v. At t = 0, the Hubble parameter H and scalar expansion θ, both are
infinite and as the time increases gradually they decreases and finally
they become 0 at t→∞ (Fig. 2). Hence the model shows that with the
increases of time the universe expands but the expansion rate becomes
slower as time increases and at t → ∞, the expansion stops. And since
dH
dt
< 0 which also tells us that our present universe is in the accelerated

expanding mode.
vi. In equation (4.3) and Fig. 2. it seen that the value of the shear scalar

σ → ∞ at initial epoch and it decreases as the time increases and be-
come zero at late universe showing that the universe obtained here is
shear free in the late time.

vii. The mean anisotropy parameter ∆ = 3(n−1)2
(3n+1)2

= constant 6= 0 for n 6= 1

and ∆ = 0 for n = 1. Also as t → ∞ the value of σ2

θ2
= constant 6= 0

for n 6= 1 and σ2

θ2
= 0 for n = 1. From both statements we can conclude

that this model is anisotropic for large value of t when n 6= 1 but it is
isotropic for n = 1.

6. CONCLUSION

In this article, we have attempted to present a new solution to the field equa-
tions obtained for Bianchi type-III universe with bulk viscosity by using the law
of variation of H which yields constant DP. This variational law for H in equation
(3.8) explicitly determine the values of the scale factors(R). So here, we have
constructed a 5D Bianchi type-III string universe with bulk viscosity and constant
DP in general relativity by the use of certain physically plausible assumptions,
that agrees with the present day observational data in general relativity. The
model is expanding, non shearing, anisotropic for n 6= 1 and isotropic for n = 1

in the late universe which is also in accordance to the present day observational
data made by WMAP and COBE. The present universe starts at initial epoch
t = 0 with 0 volume and then expand with accelerated motion and the expan-
sion rate slows down with increase of time. The bulk viscosity coefficient plays
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a great role in the cosmological consequences. The tension density is negative
quantity showing that the string phase disappears and present day universe is
particle dominated.
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Abstract
Objective: To present a new solution to the field equations obtained for higher
dimensional LRS Bianchi type-I universe generated by means of a cloud of
strings with particles connected to themwith bulk viscosity in general relativity.
Methods: To obtain the solutions of field equations of higher dimensional
LRS Bianchi type-I universe we consider that the shear scalar of the model is
proportional to the scalar expansion of themodel (σαθ ), which leads to, c= b∧n.
The physical and geometrical behaviors of the model universe are studied by
comparing with the present cosmological scenario and observations. Findings:
It is observed that our model is anisotropic, expanding and decelerates at
early stage and then accelerates in late universe giving the inflation model
universe. Novelty:We obtained new solution to the field equations for higher
dimensional LRS Bianchi type-I generated by means of a cloud of strings with
bulk viscous fluid in general relativity.

Keywords: LRS Bianchi TypeI Metric; Bulk Viscous Fluid; Strings

1 Introduction
Still now it is an interesting area for the cosmologists to study and discover the unknown
phenomenon of the universe that have yet to observe to study and explore its hidden
knowledge. So cosmologists have taken considerable interest to understand the past
evolution, present state and evolution in the future of the universe. Before the formation
of particles, the strings took major role in the creation and evolution of the universe
in early era. Authors in (1,2)initiated the general relativistic study of the strings, and
they developed the classical theory of the geometric strings. Because of the major role
of strings in describing the evolution of our universe in the early epoch, in recent
times,many famous researchers are interested in cosmic strings in general relativity (3,4).
Strings give rise to density perturbations leading to the creation of Large Scale Structures
(like galaxies) of the universe (5,6) which does not oppose present day observational
findings of the universe and results in an anisotropy in the space-time though the strings
are unobservable in the present day’s universe. These strings possess stress energy and
are named as geometric strings and massive strings. After the big-bang explosion there
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was symmetry breaking of the universe spontaneously during the transition of phase in the very early stages of the universe
and these cosmic strings which are very important topological defect arose in the early universe as the cosmic temperature went
down below some critical point temperatures according to grand unified theories (7–9).

The bulk viscosity assumes an extraordinary part in the development of the early universe. There are numerous events
inside the development of the universe wherein the bulk viscosity could emerge. The size of the viscous stress comparative
with the expansion is controlled by the coefficients of bulk viscosity. Spatially homogeneous and anisotropic Bianchi type-
I models are attempted to comprehend the universe in its beginning phase of the evolution of the universe. The various
pictures of the universe may show up at the beginning phase of the cosmological development of the universe because of
the dissipative process brought about by viscosity which counteracts the cosmological breakdown (collapse). A few authors
endeavored to find the specific solutions of field equations by considering viscous effects in general relativity in isotropic as well
as anisotropic cosmologicalmodel universes. Authors in (10) have constructedBianchi type-I cosmologicalmodels in presence of
bulk viscosity. Bulk viscous fluid Bianchi Type-I string cosmological model in general relativity have been investigated by (11).
A new class of LRS Bianchi type-V cosmological model with string dust as a source of gravitational field was investigated
in (12). In (13) the authors have endeavored to introduce another solution for the field equations obtained for Bianchi type-III
cosmological model in Lyra manifold by utilizing the law of variation of Hubble’s Parameter (H), which yields constant DP.

Nowadays it is very interesting to study string cosmology in five-dimensional space-time in general relativity. The possibility
of space-time having more than four dimensions (Extra dimensions) has fascinated many researchers. In the recent years,
to study cosmological models, the higher dimensional space-time has been given more importance. Generally, the higher
dimensional model was introduced by (14) and (15) in an effort to unify gravity with electromagnetism. Higher dimensional
model can be regarded as a tool to illustrate the late time expedited expanding paradigm (16). Investigation of higher dimensional
space-time can be regarded as a task of paramount importance as the universemight have come across a higher dimensional era
during the initial epoch (17). Marciano (18) asserts that the detection of a time varying fundamental constants can possibly show
us the proof for extra dimensions. According to (19) and (20), extra dimensions generate huge amount of entropy which gives
possible solution to atness and horizon problem. Since we are living in a 4D space-time, the hidden extra dimension in 5D is
highly likely to be associated with the invisible DM andDE (21). Several authors have investigated various Bianchi type problems
in the field of higher dimensional space-time. An in homogeneous higher dimensional cosmological model with massive string
in general relativity was constructed by (22). An LRS Bianchi type-I inflationary string Cosmological model with massive scalar
field in general relativity in the field of five-dimensional space-time was constructed by (23) and found that, ρ +λ = 0. In (24)

the authors constructed some Bianchi type-III cosmological models with massive string as a source of gravitational field in
five-dimensional space-time in general relativity. A Bianchi type-III cosmological models with string in general relativity with
magnetic field is obtained by (25), where they used the condition ρ +λ = 0 to solve the field equations. An LRS Bianchi type-
I model in cosmology with bulk viscous fluid in Lyra geometry with the help of displacement vector depending upon time
was constructed in (26) and found that the bulk viscosity decreases with time. In (27) a perfect fluid cosmological model in Lyra
Geometrywas studied by using constant deceleration parameter in five dimensional LRSBianchi type-I Space-time.Considering
reasonable cosmological assumptions within the limit of the present cosmological scenario, a spherically symmetric metric in
five dimensional setting in the framework of Lyra geometry is analysed (28). A cosmological model in 5D spherically symmetric
space-time with energy momentum tensors of minimally interacting fields of dark matter and holographic dark energy in
Brans-Dicke theory was constructed by (29). Authors in (30–37) are the authors who studied different string cosmological models
in general relativity in different context in various space-times.

Above discussion and investigations motivated us to study the five-dimensional LRS Bianchi type-I string model in
cosmology with particles attached to them in general relativity. The paper is presented as: In Section 1, a brief presentation
of strings, bulk viscosity and their importance are discussed. In Section 2, the five-dimensional LRS Bianchi type-I metric is
introduced and the field equations in the framework of general relativity are determined; In Section 3, using some simplifying
assumptions we find the determinate solutions of the survival field equations. In Section 4, we examined the geometrical and
physical properties of our model universe with the help of graphs; In Section 5 conclusions are presented.

2 The Metric and Field Equations
We consider the 5-dimensional LRS Bianchi type-I metric as

ds2 =−dt2 +a2dx2 +b2
(
dy2 +dz2

)
+ c2dm2 (1)

Here a, b and c are the metric functions of cosmic time t alone and the extra coordinate ”m” is taken to be space-like.
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For the above metric lets

x1 = x,x2 = y,x3 = z,x4 = m and x5 = t

In general relativity the Einstein’s field equation is written as

Ri j −
1
2

Rgi j =−Ti j (2)

For a cloud string the energy-momentum tensor is

Ti j = ρuiu j −λxix j −ξ θ (uiu j +gi j) (3)

Where, ρ is the energy density and λ the tension density of the string and they are related as ρ = λ +ρp, where ρp is the particle
density of matter, ξ is the coefficient of viscosity and θ is the expansion scalar. The co-ordinates are co-moving, xi is the unit
space-like vector indicating the direction of strings and ui is the five velocity vector which satisfies the conditions-

uiui =−1 =−xixi (4)

and uixi = 0 (5)

Here without loss of generality we can take

ui = (0,0,0,0,1) and xi =
(
a−1,0,0,0,0

)
(6)

The spatial volume is given by

V = ab2c = R4 (7)

Where R(t) is the average scale factor of the universe.
The Scalar Expansion is given by

θ =
ȧ
a
+2

ḃ
b
+

ċ
c

(8)

Hubble Parameter is given by

H =
1
4

(
ȧ
a
+2

ḃ
b
+

ċ
c

)
(9)

Deceleration parameter is

q =−RR̈
Ṙ2

(10)

The shear scalar is given by

σ2 =
1
2

σi jσ i j =
1
2

[(
ȧ
a

)2

+2
(

ḃ
b

)2

+

(
ċ
c

)2
]

(11)

And the mean anisotropy parameter is given by

∆ =
1
4

4

∑
i=1

(
Hi −H

H

)2

(12)

Where, Hi (i=1,2,3,4) represents the directional Hubble Parameters in the directions of x, y, z and m axes and are defined as
H1 =

ȧ
a , H2 = H3 =

ḃ
b and H4 =

ċ
c for the metric (1).
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Using the equations (3)-(6), the field equation (2) takes the form

2
b̈
b
+

c̈
c
+

ḃ2

b2 +2
ḃċ
bc

= λ +ξ θ (13)

ä
a
+

b̈
b
+

c̈
c
+

ȧḃ
ab

+
ȧċ
ac

+
ḃċ
bc

= ξ θ (14)

ä
a
+2

b̈
b
+

ḃ2

b2 +2
ȧḃ
ab

= ξ θ (15)

2
ȧḃ
ab

+
ȧċ
ac

+2
ḃċ
bc

+
ḃ2

b2 = ρ (16)

Here, the overhead dots mean differentiation with time ‘t’.

3 Solutions of the Field Equations
In this part, we intend to derive the solutions of the four highly non-linear independent equations (13)-(16) with 6 unknown
variables a, b, c, ξ , λ and ρ . For deterministic solution we considered the following physical plausible conditions:

We consider that the shear scalar and expansion scalar are proportional, which leads to

c = bn, (17)

Here,
The reason of assuming the above condition depends on observations of the velocity red-shift relation for extragalactic

sources recommended that the Hubble expansion of the universe is isotropic today to within 30% (38–40). If H is Hubble constant
and σ is the shear then the red-shift studies limit σ

H ≤ 0.30 . If θ is expansion scalar, the normal to the spatially homogeneous
metric is congruence to the homogeneous hyper-surface that satisfies the condition σ

θ is constant (41).
From (14),(15) by using (17), we get

ḃ
b

[
b̈
b
(n+1)

ḃ
b
+

ȧ
a

]
= 0 (18)

Using (17) in (14) and comparing with (15), we get n=1.
From (17) we get

b = c (19)

Equation (18) yields the following cases:

CaseI :
b̈
b
+2

ḃ
b
+

ȧ
a
= 0, and CaseII :

ḃ
b
= 0 (20)

We intend to determine the cosmological models for the above two cases separately.

CaseI: b̈
b +2 ḃ

b +
ȧ
a = 0

Solving we get,

b(t) =
[

3
(∫ K

a(t)
dt +K1

)]1
3 (21)
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Clearly, the solution are not unique because b(t) can be obtained for any given a(t). So for further studies here we consider (42)

b̈
b
+2

ḃ
b
=− ȧ

a
= k (Cons tan t) (22)

Now solving (22) and using (19) we get,

a = k1e−kt (23)

b =

3
(

k2

k
ekt + k3

]1
3 (24)

c =

3
(

k2

k
ekt + k3

]1
3 (25)

Here, k1(̸= 0),k2 and k3 are constants of integrations.
The following metric describes the geometry of the model

ds2 =−dt2 + k2
1e−2ktdx2 +

3
(

k2

k
ekt + k3

]2
3 (

dy2 +dz2 +dm2
)

(26)

The tension density of the string is obtained as

λ =
kk2ekt(

k2

k
ekt + k3

) − k2
(27)

The energy density of the string is

ρ =
k2

2e2kt

3
(

k2

k
ekt + k3

)2 − kk2ekt(
k2

k
ekt + k3

)
(28)

The particle density is given by

ρp =
k2

2e2kt

3
(

k2

k
ekt + k3

)2 − 2kk2ekt(
k2

k
ekt + k3

) + k2

(29)

From (15) we get

ξ θ = k2 − k2
2e2kt

3
(

k2

k
ekt + k3

)2 (30)

The spatial volume is obtained as

V = 3k1e−kt
(

k2

k
ekt + k3

)
(31)
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The scalar expansion is obtained as

θ =
k2ekt(

k2

k
ekt + k3

) − k (32)

Using (32) in (30) we get

ξ =
−k2

2e2kt

3kk3

(
k2

k
ekt + k3

)2 − k2

k3
ekt − k

(33)

The Hubble parameter is obtained as

H =
k2ekt

4
(

k2

k
ekt + k3

) − k
4 (34)

The deceleration parameter is

q =−
[

4k2ekt

kk3
+1

]
(35)

The shear scalar of the model is

σ2 =
1
8

3k2 +
k2

2e2kt

3
(

k2

k
ekt + k3

)2 +
2kk2ekt(

k2

k
ekt + k3

)
 (36)

3.2 CaseII: ḃ
b = 0

Solving it we get,

b = k4 (37)

From the equation (19) together with (37) we have,

c = k4 (38)

Now using equations (37)-(38) in the field equations (13)-(16) we get,

λ +ξ θ = 0 (39)

ä
a
= ξ θ (40)

ρ = 0 (41)

Here ξ , λ , ρ and a are four unknowns involved in three equation (39)-(41). To obtain a determinate solution we have assumed
following different plausible conditions of equations of state as Geometric String

ρ = λ (Geometric String) (42)

And ρ = (1+ω)λ (p-string) (43)

Where, ω > 0 is a constant.
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3.2.1 ρ = λ (Geometric String)
This yields,

ρ = λ = 0 (44)

ξ = 0 (45)

and a = lt +m (46)

Where, l ̸= 0 and m are integrating constants.
This case leads to the five-dimensional LRS Bianchi type-I vacuum model universe in Einstein’s theory of relativity.
The following metric described the geometry of our model,

ds2 =−dt2 +(lt +m)2dx2 + k2
4
(
dy2 +dz2 +dm2

)
(47)

3.2.2 ρ = (1+ω)λ (p-string)
Using (41) in (43) we get,

(1+ω)λ = 0 (48)

Which yields either ω =−1 or λ = 0. But ω =−1 is not acceptable as ω > 0 .
Since, λ = 0 the model in this case also reduces to the model already obtained in above case.

4 Interpretations of the Results
In case I we have obtained a five-dimensional LRS Bianchi type-I cosmological model universe with string in general relativity
given by (26). The variation of parameters with time for this model are shown below by taking, k =−1,k1 = k2 = k3 = 1 and
the physical and geometrical behavior of the model are discussed as

• At initial epoch t=0, the metric (model) (26) becomes flat.
• It is seen that at time t=0 the evolution of energy density ρ is infinite and it decreases gradually as the time t increases

and become constant after some finite time (Figure 1). This model satisfies the conditions ρ ≥ 0 and ρp ≥ 0 (Known as
energy density conditions).

Fig 1. Variation of ρ,λ ,ρp Vs. time t
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• It is also seen from Figure 1 that ρ > 0,λ < 0 and ρp > 0 showing that at early era particles exists with positive ρp but
strings exist with negative λ . The particle density ρp has a large value during the time of big-bang when t = 0 and as the
evolution of time it decreases and moves to a finite value (constant) at t → ∞ , which corresponds to total constant finite
number of particles in the late universe. This may correspond to the matter dominated era. From the comparative study
of tension density λ and particle density ρpwith time as shown in Figure 1, it is seen that |λ |<

∣∣ρp
∣∣ which describes that

in the late time the string vanishes, leaving particles only.
• Initially at t = 0 the expansion scalar θ is finite and very large and as the time progresses gradually it decreases and

it becomes a small constant after some finite time (as shown in the Figure 2 ) explaining the Big-Bang scenario of the
universe. So, this model shows that the universe is expanding with the increase of time but the rate of expansion becomes
slower than time increases and the expansion becomes finite at t → ∞.

Fig 2. Variation of θ ,H Vs. time t

• The averageHubble parameterH is a decreasing function of time. It is large constant when t → 0 but as the time progresses
gradually it also decreases and reached to a small constant value after some finite time as shown by Figure 2 and at t → ∞,
the value of dH

dt → 0,which also shows the expanding universe of our model.
• Since, σ2

θ 2 = Constant(̸= 0) as t → ∞ and hence our model universe obtained here is anisotropic one. Though the
anisotropy is included, it does not make any contradiction with the present day observational findings that the universe is
isotropic one.This is due to the reason that during the process of evolution of our universe, the initial anisotropy disappears
after some epoch and approaches to the isotropy in late time universe.

• From the Figure 3 it is seen that the spatial volume V is finite at initial epoch t = 0 and it increases exponentially as t
increases and becomes infinite as t → ∞, which shows the expanding universe of our model.

Fig 3. Variation of Volume (V) Vs. time t.

• The DP “q” in the model is decelerating q > 0 at t = 0 and it decreases as time increases and becomes accelerating q < 0
after some finite time as shown in Figure 4. Also q → −1 at t → ∞ , which indicates that the present model universe
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has a transition from decelerating phase to accelerating phase, indicating the inflation in the model after an epoch of
deceleration.

Fig 4. Variation of DP (q) Vs. time t.

• Thebulk viscosity for thismodel is decreasing function of time.The function of the bulk viscosity is to retard the expansion
of the universe and since bulk viscosity deceaseswith the time so retardness also decreaseswhich supports in the expansion
in faster rate in the late time universe. From the above discussion it can be seen that the bulk viscosity plays a great function
in the evolution of the universe.

The case II, leads to LRS Bianchi type-I vacuum model in Einstein’s theory of relativity in five-dimensional space-time
represented by which is not realistic because strings don’t survive for this model.

5 Conclusions
In this study, we have investigated a five-dimensional LRS Bianchi type-I String cosmological model in general theory of
relativity in presence of bulk viscous fluid given by (26) which is an inflationary model. The model universe obtained here is
anisotropic, accelerating and expanding. The DP “q” obtained here is decelerating at initial stage and accelerates after some
finite time, indicating inflation in the model after an epoch of deceleration which is in accordance with the present day
observational scenario of the accelerated expansion of our universe as type la supernovae (43,44). The model universe obtained
here is anisotropic one in the early epoch but the recent observations tell us that there is disparity in the measurement of
intensities of microwaves coming from the sky in different directions, which urge us to study about the universe with LRS
Bianchi type-I metric to describe the universe in more reasonable circumstances. During the inflation, shear decreases with
time and then it turns into an isotropic universe with very small shear. As expected our model satisfies the energy conditions
ρ ≥ 0 and ρp ≥ 0 which in turn imply that our derived models are physically realistic as the present day observational data.
The tension density and the particle density are comparable and the model represents a matter dominated universe in the late
time which agrees with the present-day observational findings. Also, themodel represents an exponentially expanding universe
that starts with big-bang at cosmic time t = 0 giving inflationary model. The bulk viscosity is the decreasing function of time
(t). Thus, our model universe has cosmological importance since it is clarifying the early universe and it should be a sensible
representation of the universe at early age.Finally, we may conclude that all the above solutions and results presented in the
paper are new, are in good agreement with the present-day cosmological observations and useful for a better understanding
of the evolution of the universe in Bianchi type-I space-time with bulk viscous fluid. This study is likely to be useful for the
analysis of different kinds of Bianchi Models in various space-times. The model needs further deep study in higher dimensional
space-time considering all the observational findings, which will be our upcoming work.
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Abstract: Higher dimensional Bianchi type-V cosmological model in the general theory of relativity with quadratic 

equation of state interacting with perfect fluid has been studied. For higher dimensional Bianchi type-V space time, 

the general solutions of the Einstein's field equations have been obtained under the assumption of quadratic equation 

of state (EoS) 𝑝 = αρ2 − ρ, where 𝛼 ≠ 0 is arbitrary constant. The physical and geometrical aspects of the model 

are discussed. 
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1. INTRODUCTION 

It is now almost proved from theoretical and astronomical observations such as type Ia 

supernovae (Riess et al. [1], Perlmutter et al. [2], Riess et al. [3]) that the universe is expanding 



3156 

J. BARO, K.P. SINGH, T.A. SINGH 

with acceleration from the big-bang till today. However, no one can guarantee for forever 

expansion because there is no final conclusion about the expansion or contraction of universe till 

today and represents an open question for theoretical physicists which inspired numerous 

cosmologists and physicists for similarly research within the area of studies on this field to 

resolve this problem including the modified theory of gravity and possible existence of dark 

energy (DE). From various literatures and opinions it can be belief that the acceleration of 

present universe may be accompanied by way of deceleration. In the recent past years, several 

models in cosmology has been proposed by different authors in order to explain the hidden 

reasons of expansion of the existing universe with the acceleration in the framework of general 

theory of relativity and modified theories. Spatially homogeneous and anisotropic Bianchi type 

cosmological model plays a great role to describe the large-scale behavior of the universe. 

Modern cosmology revolves around the study about the past and present state of the universe and 

how it will evolve in future. 

In the study of universe, among different models of Bianchi types, Bianchi type-V cosmological 

models is the natural generalization of the open Friedmann-Robertson-Walker(FRW) model 

which plays an important role in the description of universe and more interesting is that these 

models contain isotropic special cases and it may permit small anisotropy levels at some of time. 

There are theoretical arguments from the recent experimental data which support the existence of 

an anisotropic phase approaching to isotropic phase leading to the models of the universe with 

anisotropic background. Cosmological models which are spatially homogeneous and anisotropic 

play significant roles in the description of the universe at its early stages of evolution. Some 

authors such as Maartens and Nel [4], Meena and Bali [5] have studied Bianchi type-V models in 

different contexts. Coley [6] have investigated Bianchi type-V spatially homogeneous universe 

model with perfect fluid cosmological model which contains both viscosity and heat flow. In 

recent years, the solution of Einstein's field equation for homogeneous and anisotropic Bianchi 

type models have been studied by several authors such as Hajj-Boutros [7], Shri Ram [8,9], 

Pradhan and Kumar [10] by using different generating techniques. Ananda and Bruni [11] 
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discussed the cosmological models by considering different form and non-linear quadratic 

equation of state. A few models that describe an anisotropic space time and generate particular 

interest are among Lorenz and Pestzold [12], Singh and Agrawal[13], Marsha [14], Socorro and 

Medina [15]. Furthermore, from several kinds of literature and findings one can actually locate 

that the anisotropic model had been taken as possible models to initiate the expansion of the 

universe. Banerjee and Sanyal [16] have considered Bianchi type-V cosmological models with 

bulk viscosity and heat flow. Conformally flat tilted Bianchi type-V cosmological models in the 

presence of a bulk viscous fluid are investigated by Pradhan and Raj [17]. Kandalkar et al. [18] 

discussed the variation law of Hubble's parameter, average scale factor in spatially homogeneous 

anisotropic Bianchi type-V space time filled with viscous fluid where the universe exhibits 

power law and exponential expansion. 

In relativity and cosmology, the equation of state is nothing but the relationship among combined 

matter, pressure, temperature, energy and energy density for any region of space, plays an 

important role in the study about universe. For the study of dark energy and general relativistic 

dynamics in different cosmological models, the quadratic EoS plays an important role. Many 

researchers like Ivanov [19], Sharma and Maharaj [20], Thirukkanesh and Maharaj [21], Varela 

et al. [22] etc. studied cosmological models with linear and non-linear equation of states. Various 

authors like Nojiri and Odintsov [23,24,25], Nojiri et al. [26], Capozziello et al. [27], Bamba et 

al. [28] already discussed dark energy universe with different equations of state(EoS). 

The general form of quadratic equation of state(EoS) 

𝑝 = 𝜌0 + αρ + βρ2 

is nothing but the first term of the Taylor’s expansion of an equation of state of the form 𝑝 =

𝑝(ρ) about the α = 0, where 𝜌0, α and β are the parameters. 

Ananda and Bruni[29] investigated the general relativistic dynamics of Robertson-Walker 

models considering a non-linear equation of state(EoS) in the form of a quadratic equation 𝑝 =

𝜌0 + αρ + βρ2. They have shown that in general relativistic theory setting, the anisotropic 

behavior at the singularity obtained in the Brane Scenario can be reproduced. In the general 
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theory of relativity, they have also discussed the anisotropic homogeneous and inhomogeneous 

cosmological models with the consideration of quadratic equation of state of the form  

𝑝 = αρ +
ρ2

ρc
 and attempted to isotropize the model universe in the initial stages when the initial 

singularity is approached. In this paper, we have considered the quadratic equation of state of the 

form 𝑝 = αρ2 − ρ, where 𝛼 ≠ 0 is a constant quantity, here we take 𝜌0 = 0 to make our 

calculations easier without affecting the quadratic nature of the equation of state. 

Chavanis[30] investigated a four-dimensional Friedmann-Lemaitre-Roberston-Walker (FLRW) 

cosmological model unifying radiation, vacuum energy and dark energy by considering an 

equation of state in quadratic nature. Again, by using a quadratic form of equation of state, 

Chavanis[31] formulated a cosmological model that describes the early inflation, the 

intermediate decelerating expansion, and the late-time accelerating expansion of the universe. 

Many authors like Maharaj et al.[32], Rahaman et al.[33], Feroze and Siddiqui[34] have 

investigated cosmological models on the basis of EoS in quadratic form under different 

circumstances. Recently, V. U. M. Rao et al.[35], Reddy et al.[36], Adhav et al.[37], MR Mollah 

and KP Singh[38], MR Mollah et al.[39],  Beesham et al.[40] studied different space-time 

cosmological models with a quadratic EoS in general and modified theories of relativity. 

A cosmological model in higher-dimensions performs a crucial role in different aspects of the 

early phases of the cosmological evolution of the universe and are not observable in real universe. 

It is not possible to unify the gravitational forces in nature in typical four-dimensional 

space-times. So the theory in higher dimensions may be applicable in the early evolution. The 

study on higher-dimensional space-time gives us an important idea about the universe that our 

universe was much smaller at initial epoch than the universe observed in these days. Due to these 

reasons studies in higher dimensions inspired and motivated many researchers to enter into such 

a field of study to explore the hidden knowledge of the present universe. Subsequently, many 

researchers have already investigated various cosmological models in five dimensional 

space-time with various Bianchi type models in different aspects [35,38,41,42,43,44]. 

Inspired by the above studies, here in this article we have investigated the higher dimensional 
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cosmological model in Bianchi type-V space–time considering quadratic equation of state(EoS) 

interacting with perfect fluid . In this paper, Sec. 2 describes the formulation of problem.  Sec.3. 

gives the solutions of the cosmological problems. In sec.4, some of the important physical and 

geometrical parameters are derived. The results found are discussed in Sec.5. Finally, in Sec.6, 

concluding points are provided.  

 

2. THE METRIC AND FIELD EQUATION 

We consider the higher dimensional Bianchi type-V cosmological model in the form 

(1)                𝑑𝑠2 = −𝑑𝑡2 + 𝑎2𝑑𝑥2 + 𝑒−2𝑥(𝑏2𝑑𝑦2 + 𝑐2𝑑𝑧2 + 𝐷2𝑑𝑚2) 

Where a, b, c and D are functions of time only and m is the extra dimension (Fifth dimension) 

which is space-like. 

The energy momentum tensor for the perfect fluid is given by 

(2)                  𝑇𝑖𝑗 = (𝑝 + 𝜌)𝑢𝑖𝑢𝑗 + 𝑝𝑔𝑖𝑗 

Where ρ is the energy density, p is the pressure and 𝑢𝑖 = (0,0,0,0,1) is the five velocity vector 

of particles. 

Also 

(3)                         𝑔𝑖𝑗𝑢𝑖𝑢𝑗 = 1 

We have assumed an equation of state in the general form 𝑝 = 𝑝(𝜌) for the matter distribution. 

In this case, we consider the quadratic form as 

(4)                                   𝑝 = αρ2 − ρ 

Where 𝛼 ≠ 0 is arbitrary constant. 

The Einstein's field equations in general relativity is given by 

(5)                                 𝑅𝑖𝑗 −
1

2
𝑔𝑖𝑗𝑅 = −𝑇𝑖𝑗 

If R(t) be the average scale factor, then the spatial volume is given by 

(6)                                   𝑉 = 𝑎𝑏𝑐𝐷 = 𝑅4 

Where R(t) is given by 
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(7)                                   𝑅(𝑡) = (𝑎𝑏𝑐𝐷)
1

4 

The expansion scalar is defined as 

(8)                              𝜃 =
�̇�

𝑎
+

�̇�

𝑏
+

𝑐̇

𝑐
+

�̇�

𝐷
 

The Hubble's parameter is defined as 

(9)                               𝐻 =
�̇�

𝑅
=

1

4
𝜃 =

1

4
(

�̇�

𝑎
+

�̇�

𝑏
+

𝑐̇

𝑐
+

�̇�

𝐷
) 

Also we have 

(10)                                𝐻 =
1

4
(𝐻1 + 𝐻2 + 𝐻3 + 𝐻4) 

Here, 𝐻1 =
�̇�

𝑎
, 𝐻2 =

�̇�

𝑏
, 𝐻3 =

𝑐̇

𝑐
  and  𝐻4 =

�̇�

𝐷
 are directional Hubble's factors in the directions 

of x, y, z and m respectively. 

Deceleration parameter q is defined as 

(11)                                      𝑞 = −
𝑅�̈�

𝑅2  

The mean anisotropy parameter is defined as 

(12)                                    ∆=
1

4
∑ (

𝐻𝑖−𝐻

𝐻
)

2
4
𝑖=1  

The shear scalar is defined as 

(13)                            𝜎2 =
1

2
𝜎𝑖𝑗𝜎𝑖𝑗 =

1

2
(

�̇�2

𝑎2 +
�̇�2

𝑏2 +
𝑐̇2

𝑐2 +
�̇�2

𝐷2 −
𝜃2

4
) 

Using the equations (1)-(3) and (5) we obtain 

(14)                   
�̈�

 𝑏
+

𝑐̈

𝑐
+

�̈�

𝐷
+

�̇�𝑐̇

𝑏𝑐
+

�̇��̇�

𝑏𝐷
+

𝑐̇�̇�

𝑐𝐷
−

3

𝑎2 = −𝑝 

(15)                   
�̈�

𝑎
+

𝑐̈

𝑐
+

�̈�

𝐷
+

�̇�𝑐̇

𝑎𝑐
+

�̇��̇�

𝑎𝐷
+

𝑐̇�̇�

𝑐𝐷
−

3

𝑎2 = −𝑝 

(16)                   
�̈�

𝑎
+

�̈�

𝑏
+

�̈�

𝐷
+

�̇��̇�

𝑎𝑏
+

�̇��̇�

𝑎𝐷
+

�̇��̇�

𝑏𝐷
−

3

𝑎2 = −𝑝 

(17)                  
�̈�

𝑎
+

�̈�

𝑏
+

𝑐̈

𝑐
+

�̇��̇�

𝑎𝑏
+

�̇�𝑐̇

𝑎𝑐
+

�̇�𝑐̇

𝑏𝑐
−

3

𝑎2 = −𝑝 

(18)                  
�̇��̇�

𝑎𝑏
+

�̇�𝑐̇

𝑎𝑐
+

�̇��̇�

𝑎𝐷
+

�̇�𝑐̇

𝑏𝑐
+

�̇��̇�

𝑏𝐷
+

𝑐̇�̇�

𝑐𝐷
−

6

𝑎2
= 𝜌 

(19)                        3
�̇�

𝑎
=

�̇�

𝑏
+

𝑐̇

𝑐
+

�̇�

𝐷
 

The overhead dots here denote the order of differentiation with respect to time `t’. 
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The conservational law of the energy momentum tensor is 

(20)                �̇� + (𝜌 + 𝑝) (
�̇�

𝑎
+

�̇�

𝑏
+

𝑐̇

𝑐
+

�̇�

𝐷
)

̇
= 0 

 

3. COSMOLOGICAL SOLUTION 

From Equation (19) we get 

(21)        𝑎3 = 𝑘𝑏𝑐𝐷 

Here, 𝑘 is the constant of integration. Without loss of generality we can choose 𝑘 = 1 and so 

we get 

(22)        𝑎3 = 𝑏𝑐𝐷 

Subtracting (14) from (15), we get 

(23)      
�̈�

𝑎
−

�̈�

𝑏
+

�̇�𝑐̇

𝑎𝑐
−

�̇�𝑐̇

𝑏𝑐
+

�̇��̇�

𝑎𝐷
−

�̇��̇�

𝑏𝐷
= 0 

Subtracting (15) from (16), we get 

(24)      
�̈�

𝑏
−

𝑐̈

𝑐
+

�̇��̇�

𝑎𝑏
−

�̇�𝑐̇

𝑎𝑐
+

�̇��̇�

𝑏𝐷
−

𝑐̇�̇�

𝑐𝐷
= 0 

Subtracting (16) from (17), we get 

(25)                   
𝑐̈

𝑐
−

�̈�

𝐷
+

�̇�𝑐̇

𝑎𝑐
−

�̇��̇�

𝑎𝐷
+

�̇�𝑐̇

𝑏𝑐
−

�̇��̇�

𝑏𝐷
= 0 

Subtracting (17) from (14), we get 

(26)       
�̈�

𝐷
−

�̈�

𝑎
+

�̇��̇�

𝑏𝐷
−

�̇��̇�

𝑎𝑏
+

𝑐̇�̇�

𝑐𝐷
−

�̇�𝑐̇

𝑎𝑐
= 0 

From the equations (23)-(26) the following equations are obtained 

(27)                               
�̇�

𝑎
−

�̇�

𝑏
=

𝑘1

𝑎𝑏𝑐𝐷
 

(28)                                
�̇�

𝑏
−

𝑐̇

𝑐
=

𝑘2

𝑎𝑏𝑐𝐷
 

(29)                                
𝑐̇

𝑐
−

�̇�

𝐷
=

𝑘3

𝑎𝑏𝑐𝐷
 

(30)                                
�̇�

𝐷
−

�̇�

𝑎
=

𝑘4

𝑎𝑏𝑐𝐷
 

Here 𝑘1, 𝑘2, 𝑘3 and 𝑘4 are the constant of integration. Without loss of generality, we can 

choose 𝑘1 = 𝑘2 = 𝑘3 = 𝑘4 = 𝑘(say) 
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The Equations (27)-(30) yields 

(31)                                 𝑎 = 𝑏 = 𝑐 = 𝐷 

We consider negative constant deceleration parameter model defined by 

(32)                                  𝑞 = −
𝑅�̈�

𝑅2 =constant 

The solution of above equation is 

(33)                                   𝑅 = (𝐿𝑡 + 𝑀)
1

1+𝑞 

Where 𝐿 ≠ 0, 𝑀 are constants and 𝑞 + 1 ≠ 0 

Using (7), (22), (31) and (33) we obtain 

(34)                                𝑎 = 𝑏 = 𝑐 = 𝐷 = (𝐿𝑡 + 𝑀)
1

1+𝑞 

The model is described by the following metric 

(35)        𝑑𝑠2 = −𝑑𝑡2 + (𝐿𝑡 + 𝑀)
2

1+𝑞𝑑𝑥2 + 𝑒−2𝑥(𝐿𝑡 + 𝑀)
2

1+𝑞(𝑑𝑦2 + 𝑑𝑧2 + 𝑑𝑚2 

 

4. COSMOLOGICAL PARAMETERS 

Some of the important Physical and Geometrical Parameters are obtained bellow: 

Volume element of the model is 

(36)                                     𝑉 = (𝐿𝑡 + 𝑀)
4

1+𝑞 

The Hubble’s Parameter is given by 

(37)                                     𝐻 =
𝐿

(𝑞+1)(𝐿𝑡+𝑀)
 

The expansion scalar (𝜃) is given by 

(38)                                     𝜃 =
4𝐿

(𝑞+1)(𝐿𝑡+𝑀)
 

Using equation (4), (34) the equation (20) yields 

(39)                                 𝜌 =
𝑞+1

4𝛼 log(𝐿𝑡+𝑀)+(𝑞+1)𝑘5
 

Where 𝑘 are arbitrary constant. 

From equations (4) and (39) becomes 
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(40)                             𝑝 = −
(𝑞+1)[3𝛼 log(𝐿𝑡+𝑀)−(𝑞+1)(𝑘5+𝛼)]

[3𝛼 log(𝐿𝑡+𝑀)+(𝑞+1)𝑘5]2
 

The shear scalar is 

(41)                                        𝜎2 = 0 

The average anisotropy parameter is 

 (42) 

                                                 ∆= 0 

 

5. DISCUSSION 

The variation of some of the important cosmological parameters (Physical and Geometrical) with 

respect to time for the model are shown below by taking, 𝑞 = −0.5, 𝐿 = 𝑀 = 1,  𝑘5 = 2 and 

𝛼 = 1. 

From the equation (36) it is seen that the spatial volume 𝑉 is finite when time, 𝑡 = 0. With the 

increases of the time the spatial volume V also increases and it becomes infinitely large as 𝑡 →

∞, so spatial volume expands as shown in fig.1. This shows that the universe is expanding with 

the increases of time. 

 

Fig1.Variation of Volume ‘V’ Vs. Time t. 

From the equations (37) and (38) we observed that the quantities like Hubble's parameter 𝐻 and 

expansion scalar 𝜃 are decreasing functions of time and they are finite when, 𝑡 = 0 and are 

vanishing for infinitely large value of  ′𝑡′ which are shown in the fig2 bellow. Also, since 
𝑑𝐻

𝑑𝑡
<

0 which also tells us that our present universe is in the accelerated expanding mode. 
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Fig2.Variation of H, θ Vs. Time ‘t’. 

We observe from fig.3 or from equation (39), that the evolution of the energy density 𝜌 is large 

constant at the time 𝑡 = 0 and with increases of time the energy density decreases and finally 

when time 𝑡 → ∞  the energy density 𝜌  becomes zero. This shows that the universe is 

expanding with time. 

 

Fig3.Variation of energy density ‘ρ’ Vs. Time ‘t’. 

While from the equation (40) it is observed that the isotropic pressure p is a small positive 

constant at initial epoch, 𝑡 = 0  and it decreases with progresses of time and changes sign from 

positive to negative as shown in the fig4. Thus the present model universe passes through the 

transition from matter dominated era to inflationary era.  

 

Fig4.Variation of p Vs. Time t. 
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For this model the value of shear scalar 𝜎 is zero throughout the evolution as seen from the 

equation (41), so the model is shear free. The ratio 
𝜎2

𝜃2 tends to zero as time tends to infinity, 

showing that the model approaches isotropy at the late time universe, which agrees with Collins 

and Hawking [45]. 

From the equation (42) it is seen that average anisotropy parameter, ∆= 0, so the model is 

isotropic one and this model also shows the late time acceleration of the universe. 

It is observed that the spatial volume, all the three scale factors and all other physical and 

kinematical parameters are constant at initial epoch, 𝑡 = 0. This shows that the present model is 

free from the initial singularity. 

 

6. CONCLUSION 

Here in this paper we studied a Bianchi type-V cosmological model in the context of general 

theory of relativity with quadratic EoS interacting with perfect fluid in five-dimensional 

space-time. The general solutions of the Einstein's field equations have been obtained under the 

assumption of quadratic EoS, 𝑝 = αρ2 − ρ, where 𝛼 ≠ 0 is arbitrary constant considering the 

deceleration parameter as a constant quantity. The model obtained here is expanding with 

accelerated motion which agrees the recent observational data. The model is isotropic throughout 

the evolution, non-sharing and free from the initial singularity. We observe from eqn. (39) that 

the evolution of the energy density 𝜌 is constant at the time 𝑡 = 0 and when time 𝑡 → ∞ the 

energy density 𝜌 decreases to a finite constant value. While eqn. (40) indicates that the isotropic 

pressure (p) is a negative quantity and it decreases when time 𝑡 → ∞. Such type of solution is 

consistent with recent observational data like SNe1a. The negative pressure may be a possible 

cause of the accelerated expansion of the universe. Also, generally the negative pressure can 

resist the attractive gravity of matter. 
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