CONTENTS

Cor	Contents			Pages	
Cha	Chapter 1: Introduction				
1.1	Biod	iesel: Ar	n overview	1-3	
1.2	Catalysts in biodiesel synthesis				
1.3	Literature review				
	1.3.1	Prepara	ation of plant-based heterogeneous catalyst for biodiesel synthesis	8	
	1.3.2	Compo	osition of solid catalyst obtained from plant materials	11	
	1.3.3	Waste	plant derived heterogeneous base catalyst in biodiesel synthesis	15	
	1.3.4	Biodie	sel properties	23	
1.4	Ratic	onale of t	the present work	25	
1.5	Obje	ctive of	the present study	25	
Cha	apter 2	2: Hetero	opanax fragrans (Kesseru) derived catalyst for biodiesel synthesis	26-68	
2.1	Intro	duction		26-27	
2.2	Mate	rials and	l methods	27-31	
	2.2.1	Materi	als	27	
	2.2.2	Metho	ds	28	
		2.2.2.1	Preparation of catalyst	28	
		2.2.2.2	Catalyst characterization	28	
		2.2.2.3	Transesterification of J. curcas oil and characterization of produced	29	
			biodiesel		
		2.2.2.4	Determination of activation energy and pre-exponential factor	30	
2.3	Resu	lts and d	liscussion	31-68	
	2.3.1	H. frag	grans catalyst characterization	31	
		2.3.1.1	XRD analysis	31	
		2.3.1.2	FT-IR study	33	
		2.3.1.3	Surface area, pore size and pore volume analysis	34	
		2.3.1.4	FESEM analysis	35	
		2.3.1.5	Analysis of elemental composition	37	
		2.3.1.6	HRTEM analysis	44	
		2.3.1.7	Measurement of pH value	45	
		2.3.1.8	Basicity study of <i>H. fragrans</i> catalyst	46	
	2.3.2	Cataly	tic activity of the Heteropanax fragrans catalyst	47	
		2.3.2.1	Effect of calcination temperature of the prepared catalyst	47	
		2.3.2.2	Effect of catalyst dosage	49	
		2.3.2.3	Effect of MTOR (methanol to oil ratio)	50	

		2.3.2.4	Effect of reaction temperature	51
		2.3.2.5	Determination of activation energy and pre-exponential factor	52
	2.3.3	Compara	ative study of Heteropanax fragrans catalyst with other reported	53
		basic het	terogeneous catalysts	
	2.3.4	Reusabil	lity study of <i>H. fragrans</i> catalyst	56
	2.3.5	Mechani	ism of transesterification catalysed by <i>H. fragrans</i> derived solid base	57
		catalyst.		
	2.3.6	Analysis	s of J. curcas biodiesel	59
		2.3.6.1	FT-IR analysis	59
		2.3.6.2	NMR analysis	60
		2.3.6.3	GC-MS study of J. curcas biodiesel	64
		2.3.6.4 .	J. curcas biodiesel properties	65
2.4	Conc	lusion		68
Cha	pter 3	8: Musa o	champa (Chinichampa) peduncle derived catalyst for biodiesel	69-109
syn	thesis			
3.1	Intro	luction		69-70
3.2	Mate	rials and 1	methods	70-72
	3.2.1	Material	ls	70
	3.2.2	Methods	S	71
		3.2.2.1	Preparation of catalyst	71
		3.2.2.2	Catalyst characterization	71
			Biodiesel synthesis and characterization	72
3.3	Resu	ts and dis	scussion	72-109
	3.3.1	Characte	erization of Musa champa peduncle catalyst	72
		3.3.1.1	Powder XRD analysis	72
		3.3.1.2	FT-IR analysis	73
			Determination of surface area, pore size and pore volume	74
		3.3.1.4	FESEM analysis	76
		3.3.1.5	Elemental composition studies	77
		3.3.1.6	HRTEM analysis	84
		3.3.1.7	Measurement of pH value	85
		3.3.1.8	Determination of soluble alkalinity	86
		3.3.1.9	Determination of basicity of the catalyst	87
		3.3.1.10	Determination of turnover frequency (TOF)	87
	3.3.2	-	c activity of the Musa champa peduncle catalyst in biodiesel	88
		synthesi		
			Effect of catalyst loading	88
		3.3.2.2	Effect of methanol to oil ratio (MTOR)	89

		3.3.2.3	Effect of temperature on the reaction	90	
	3.3.3	Compa	rison of <i>M. champa</i> peduncle catalyst with other reported catalysts	92	
	3.3.4	3.3.4 Reusability study of <i>Musa champa</i> peduncle catalyst			
	3.3.5	Kinetic	e and thermodynamic study	96	
		3.3.5.1	Determination of rate constant and order of reaction	96	
		3.3.5.2	Determination of activation energy (Ea) and pre-exponential factor	101	
			(A)		
		3.3.5.3	Study of thermodynamic parameters	101	
	3.3.6	Charac	terization of J. curcas biodiesel	103	
		3.3.6.1	FT-IR analysis	103	
		3.3.6.2	FT-NMR analysis	105	
		3.3.6.3	GC-MS analysis of J. curcas biodiesel	105	
	3.3.7	Fuel pr	operties of the J. curcas biodiesel	106	
3.4	Conc	lusion		109	
Cha	apter 4	: Sesan	num indicum derived catalyst for biodiesel synthesis	110-141	
4.1	Intro	duction		110-111	
4.2	Mate	rials and	methods	111-112	
	4.2.1	Materia	als	111	
	4.2.2	Method	ds	111	
		4.2.2.1	Preparation of catalyst	111	
		4.2.2.2	Catalyst characterization	111	
		4.2.2.3	Transesterification of sunflower oil and characterization of the	112	
			produced biodiesel		
		4.2.2.4	Determination of biodiesel fuel properties	112	
		4.2.2.5	Determination of activation energy and pre-exponential factor	112	
4.3	Resu	lts and d	iscussion	113-141	
	4.3.1	Sesamı	um indicum catalyst characterization	113	
		4.3.1.1	Powder XRD analysis	113	
		4.3.1.2	FT-IR analysis	114	
		4.3.1.3	Surface area, pore size and pore volume analysis	115	
		4.3.1.4	Thermogravimetric analysis	117	
		4.3.1.5	SEM analysis	117	
		4.3.1.6	Analysis of elemental composition	118	
		4.3.1.7	HRTEM analysis	124	
		4.3.1.8	pH measurement	125	
	4.3.2	Catalyt	ic activity analysis of Sesamum indicum catalyst	125	
		4.3.2.1	Effect of catalyst load dosage	125	
		4.3.2.2	Effect of methanol to oil ratio (MTOR)	126	

		4.3.2.3	Effect of reaction temperature	127
	4.3.3	Compar	rison of Sesamum indicum catalyst with other reported waste plant	128
		derived	catalyst	
	4.3.4	Reusabi	ility study of the Sesamum indicum catalyst	131
	4.3.5	Determi	ination of activation energy and pre-exponential factor	132
	4.3.6	Charact	erization of sunflower oil biodiesel	133
		4.3.6.1	FT-IR analysis	133
		4.3.6.2	NMR analysis	135
		4.3.6.3	GC-MS study	138
		4.3.6.4	Properties of sunflower oil biodiesel	139
4.4	Conc	lusion		141
Cha	apter 5	: Brassi	ica nigra derived catalyst for biodiesel synthesis	142-170
5.1	Intro	luction		142-143
5.2	Mate	rials and	methods	143-144
	5.2.1	Materia	ls	143
	5.2.2	Method	S	143
		5.2.2.1	Preparation of catalyst	143
		5.2.2.2	Catalyst characterization	143
		5.2.2.3	Biodiesel synthesis and characterization	143
		5.2.2.4	Determination of activation energy and pre-exponential factor	144
5.3	Resu	ts and di	scussion	144-169
	5.3.1	Brassice	a nigra catalyst characterization	144
		5.3.1.1	XRD analysis	144
		5.3.1.2	FT-IR analysis	145
		5.3.1.3	Surface area, pore size and pore volume analysis	146
		5.3.1.4	SEM analysis	148
		5.3.1.5	Analysis of elemental composition	148
		5.3.1.6	TEM analysis	153
		5.3.1.7	pH measurement	154
	5.3.2	Catalyti	c activity study of Brassica nigra catalyst	155
		5.3.2.1	Effect of catalyst load dosage	155
		5.3.2.2	Effect of methanol to oil ratio (MTOR)	156
		5.3.2.3	Effect of reaction temperature	157
	5.3.3	Compar	rison of Brassica nigra catalyst with other reported waste plant	158
		derived	catalyst.	
	5.3.4	Reusabi	ility study of the Brassica nigra catalyst	160
	5.3.5	Determi	ination of activation energy and pre-exponential factor	162
	5.3.6	Charact	erization of soyabean oil biodiesel	163

	5.3.6.1	FT-IR analysis	163	
	5.3.6.2	NMR analysis	164	
	5.3.6.3	GC-MS study	167	
	5.3.6.4	Properties of soyabean oil biodiesel	168	
5.4	Conclusion		170	
Chapter 6: Summary and conclusion				
6.1	Summary		171-176	
6.2 Conclusion				
6.3	Future work		178	
List of publications				
Pre	sentations in c	conference / seminar	180	
References			181-196	

List of Tabl	les		Pages
Table 1.1	:	Chemical/elemental composition of catalyst derived from agricultural waste plants	12
Table 1.2	:	Performances of agricultural waste plant based heterogeneous catalysts in biodiesel synthesis from various oil feedstocks	20
Table 1.3	:	Comparison of properties of biodiesel produced using various heterogeneous base catalysts derived from agro-wastes	24
Table 2.1	:	FESEM-EDX analyses of <i>H. fragrans</i> catalysts	39
Table 2.2	:	Elemental composition comparison of <i>H. fragrans</i> catalyst with other reported agro-wastes ash catalysts	41
Table 2.3	:	XPS analyses of <i>H. fragrans</i> catalysts	44
Table 2.4	:	Activity comparison of <i>H. fragrans</i> derived base catalyst in biodiesel synthesis with other reported agro-wastes ash catalysts	55
Table 2.5	:	NMR spectra analyses of <i>J. curcas</i> oil and biodiesel synthesised by <i>H. fragrans</i> catalyst	61
Table 2.6	:	Composition of <i>J. curcas</i> biodiesel produced via <i>H. fragrans</i> catalysed transesterification	65
Table 2.7	:	Comparison of properties of <i>J. curcas</i> biodiesel produced by <i>H. fragrans</i> catalysed transesterification with standards (ASTM D6751, EN 14214) and reported biodiesel properties	66
Table 3.1	:	FESEM-EDX analyses <i>M. champa</i> peduncle catalysts	78
Table 3.2	:	Elemental composition comparison of <i>Musa champa</i> peduncle catalyst with other reported agro-wastes ash catalysts	79
Table 3.3	:	XPS analysis of Musa champa peduncle catalyst	84
Table 3.4	:	Activity comparison of <i>Musa champa</i> peduncle derived base catalyst in biodiesel synthesis with other reported agro-wastes ash catalysts	93
Table 3.5	:	Rate constant (k), correlation coefficient (R^2), activation energy (E_a) and pre-exponential factor (A) of various kinetic models for <i>Musa champa</i> peduncle burnt ash catalyst	100
Table 3.6	:	Rate constant (k), correlation coefficient (\mathbb{R}^2), activation energy (Ea) and pre-exponential factor (A) of various kinetic models for <i>Musa champa</i> peduncle catalyst calcined at 550 °C	100
Table 3.7	:	Thermodynamic parameters of the reaction catalysed by <i>Musa champa</i> peduncle burnt ash and calcined at 550 °C	102

Table 3.8: GC-MS analysis of jatropha biodiesel106

CONTENTS

Table 3.9	:	Comparison of fuel properties of the produced biodiesel with ASTM	107
		D6751, EN 14214 and reported properties	
Table 4.1	:	Elemental composition of calcined Sesamum indicum catalyst	120
Table 4.2	:	XPS analysis of surface composition of S. indicum catalyst	122
Table 4.3	:	Comparison of elemental composition of the ash catalyst derived from various agro-wastes	123
Table 4.4	:	Comparison of activity of waste Sesamum indicum derived catalyst with	130
		other reported heterogeneous catalyst in biodiesel synthesis	
Table 4.5	:	GC-MS analysis of chemical composition of biodiesel	138
Table 4.6	:	Comparison of properties of produced biodiesel with ASTM D6751 and reported biodiesel properties	140
Table 5.1	:	Elemental composition of calcined Brassica nigra catalyst	150
Table 5.2	:	XPS analysis of surface composition of the Brassica nigra catalyst	151
Table 5.3	:	Comparison of activity of the catalyst derived from waste Brassica nigra	159
		plant with reported heterogeneous base catalysts for biodiesel synthesis	
Table 5.4	:	GC-MS analysis of chemical composition of biodiesel	168
Table 5.5	:	Comparison of properties of produced biodiesel with ASTM D6751, EN 14214 and reported biodiesel properties	169
Table 6.1	:	Comparative elemental compositions of the prepared waste plant derived	173
		catalysts studied by EDX technique	
Table 6.2	:	Surface elemental composition of the prepared waste plant derived catalysts studied by XPS technique	174
Table 6.3	:	BET surface area, pore diameter, pore volume, pH value and basicity of catalysts	175
Table 6.4	:	Performance of the prepared catalysts in biodiesel synthesis at optimum conditions	175
Table 6.5	:	Reusability of catalysts in biodiesel synthesis at optimum conditions	176

List of Figu	res		Pages
Scheme 1.1	:	Transesterification of oil or fat to biodiesel	4
Scheme 1.2	:	Homogeneous acid catalysed transesterification of vegetable oil to biodiesel (FAME)	5
Scheme 1.3	:	Homogeneous base catalysed transesterification of vegetable oil to biodiesel (FAME)	6
Fig. 1.1	:	Waste plant to sustainable value-added products	9
Fig. 1.2	:	Preparation of heterogeneous catalysts from waste plants	11
Fig. 2.1	:	Preparation of Heteropanax fragrans catalyst	28
Fig. 2.2	:	XRD patterns of <i>H. fragrans</i> catalysts calcined at 850 °C, 550 °C, and burnt ash catalyst	33
Fig. 2.3	:	FT-IR spectra of <i>H. fragrans</i> catalysts calcined at 850 °C (A), 550 °C	34
		(B), burnt ash catalyst (C) and 3 rd recycled catalyst (D)	
Fig. 2.4	:	N_2 adsorption-desorption isotherms (A–C) and adsorption pore size distributions (D–F) of <i>H. fragrans</i> catalysts calcined at 850 °C (A, D),	35
		550 °C (B, E), and burnt ash catalyst (C, F)	
Fig. 2.5	:	FESEM images (A, C, E) and EDX spectra (B, D, F) of <i>H. fragrans</i> catalysts calcined at 850 °C (A, B), 550 °C (C, D), and burnt ash catalyst (E, F)	36
Fig. 2.6	:	FESEM images (A–C) and EDX spectrum (D) of 3 rd recycled of 550 °C calcined <i>H. fragrans</i> catalyst	37
Fig. 2.7	:	XPS survey spectra (A) of <i>H. fragrans</i> catalysts calcined at 850 °C, 550 °C, and burnt ash catalyst; High resolution XPS spectra of O 1s (B), C 1s (C), K 2p (D), Ca 2p (E) and Si 2p (F)	43
Fig. 2.8.	:	HRTEM images of <i>H. fragrans</i> catalysts calcined at 850 °C (A, B, C), 550 °C (E, F, G) and burnt ash catalyst (I, J, K), and their respective SAED patterns–D (850 °C), H (550 °C) and L (burnt ash catalyst)	45
Fig. 2.9.	:	Variation of pH value of <i>H. fragrans</i> calcined catalysts (850 °C and 550 °C) and burnt ash catalyst (1 g) with different volume of water	46
Fig. 2.10.	:	Effect of catalyst calcination temperatures (850 °C, 550 °C and burnt ash) of catalyst on <i>J. curcas</i> biodiesel production via transesterification	48
Fig. 2.11.	:	Effect of <i>H. fragrans</i> calcined catalyst (550 °C) loading on <i>J. curcas</i> biodiesel production	49
Fig. 2.12.	:	Effect of MTOR on <i>J. curcas</i> biodiesel production via transesterification	51
Fig. 2.13.	:	Effect of reaction temperatures (32, 45, 55, 65 and 75 °C) on <i>J. curcas</i> biodiesel production via transesterification	52

Fig. 2.14.	:	Arrhenius plot of ln k vs 1/T for H. fragrans catalysed	53
		transesterification of J. curcas oil to biodiesel	
Fig. 2.15.	:	Reusability study of H. fragrans catalyst calcined at 550 °C on J.	57
		curcas biodiesel production	
Scheme 2.1	:	Solid base catalyst derived from <i>H. fragrans</i> utilized in biodiesel synthesis	58
Scheme 2.2	:	Heterogeneous solid base catalysed transesterification of vegetable oil to biodiesel (FAME)	59
Fig. 2.16.	:	FT-IR spectra of <i>J. curcas</i> oil and biodiesel synthesised by <i>H. fragrans</i>	60
8		catalyst	
Fig. 2.17.	:	¹ H-NMR spectrum of J. curcas oil (A) and J. curcas biodiesel (B)	62
Fig. 2.18.	:	¹³ C-NMR spectrum of J. curcas oil (A) and J. curcas biodiesel (B)	63
Fig. 2.19.	:	GC chromatogram of <i>J. curcas</i> biodiesel produced from <i>H. fragrans</i> catalysed transesterification	64
Fig. 3.1	:	M. champa peduncle (B) obtained from harvesting fruit (A), cut into	71
		pieces (C), sun dried (D), burnt ash (E) and calcined catalyst (F)	
Fig. 3.2	:	XRD pattern of <i>M. champa</i> peduncle catalyst calcined at 550 °C	73
Fig. 3.3	:	FT-IR spectra of <i>M. champa</i> catalyst calcined at 550 °C (A), and burnt	75
		ash (B)	
Fig. 3.4	:	N_2 adsorption-desorption isotherm (A) and adsorption pore size	76
		distribution (B) of <i>M. champa</i> peduncle catalyst calcined at 550 $^{\circ}$ C	
Fig. 3.5	:	SEM images (A, B, C) and EDX patterns (D, E, F) of M. champa	77
		peduncle burnt ash (A, D), catalyst calcined at 550 °C (B, E), and its	
		3 rd recycled of catalyst (C, F)	
Fig. 3.6	:	XPS survey spectra and XPS spectra of O 1s (B), C 1s (C), K 2p (D),	83
		Ca 2p (E) and Si 2p (F) of <i>M. champa</i> peduncle catalysts	
Fig. 3.7	:	HRTEM images (A, B, C) of M. champa peduncle catalyst calcined at	85
		550 °C and its SAED patterns (D)	
Fig. 3.8	:	Variation of pH value of M. champa peduncle catalysts (1 g) with	86
		different volume of water	
Fig. 3.9	:	Effect of peduncle calcined catalyst load on biodiesel production	88
Fig. 3.10	:	Effect of MTOR on biodiesel production	90
Fig. 3.11	:	Effect of reaction temperatures (25, 35, 45, 55, 65 and 75 °C) on	91
		biodiesel production using <i>M. champa</i> peduncle catalyst calcined at $550 \ ^{\circ}C$	
Fig. 3.12	:	Effect of reaction temperatures (25, 35, 45, 55, 65 and 75 $^{\rm o}{\rm C})$ on	92
		biodiesel production using M. champa peduncle burnt ash catalyst	
Fig. 3.13	:	Reusability study of <i>M. champa</i> peduncle catalyst calcined at 550 °C in jatropha biodiesel production	96

Fig. 3.14	:	Arrhenius plot (ln k versus $1/T \times 10^3$) employing <i>M. champa</i> peduncle catalysts for the zero-order rate model	98
Fig. 3.15	:	Arrhenius plot (ln k versus $1/T \times 10^3$) employing <i>M. champa</i> peduncle	98
116.0110	•	catalysts for the first order rate model	70
Fig. 3.16	:	Arrhenius plot (ln k versus $1/T \times 10^3$) employing <i>M. champa</i> peduncle	99
Fig. 5.10	•		77
D' 015		catalysts for the pseudo-first order rate model	00
Fig. 3.17	:	Arrhenius plot (ln k versus $1/T \times 10^3$) employing <i>M. champa</i> peduncle	99
-		catalysts for the second order rate model	
Fig. 3.18	:	Eyring-Polanyi plot (ln (k/T) versus $1/T \times 10^3$) of Musa champa	102
		peduncle burnt ash and calcined at 550 °C catalyst	
Fig. 3.19	:	FT-IR spectra of jatropha oil (A) and its biodiesel (B)	103
Fig. 3.20	:	¹ H-NMR spectrum of jatropha oil	104
Fig. 3.21	:	¹ H-NMR spectrum of jatropha biodiesel	104
Fig. 3.22	:	GC spectra of jatropha biodiesel	105
Fig. 4.1	:	Powder XRD pattern of calcined Sesamum indicum catalyst.	114
Fig. 4.2	:	FT-IR spectrum of calcined Sesamum indicum catalyst	115
Fig. 4.3a	:	Adsorption pore size distribution of calcined Sesamum indicum catalyst	116
Fig. 4.3b	:	N ₂ adsorption-desorption isotherm of calcined <i>Sesamum indicum</i>	116
C		catalyst	
Fig. 4.4	:	TGA thermogram of S. indicum burnt ash catalyst	117
Fig. 4.5	:	SEM (A–C) and EDX (D) images of calcined Sesamum indicum	118
U		catalyst	
Fig. 4.6.	:	(A) XPS survey spectra of calcined Sesamum indicum catalyst and 3rd	121
-		recycled catalyst; XPS spectra of (B) O 1s, (C) C 1s, (D) K 2p, (E) Ca	
		2p and (F) Si 2p	
Fig. 4.7.	:	TEM images (A–E) and SAED pattern (F) of calcined Sesamum	124
8		indicum catalyst	
Fig. 4.8.		Variation of pH value with volume of water dissolving 1 g of calcined	125
1.8. 100	•	catalyst	120
Fig. 4.9.	:	Effect of catalyst loading on reaction time and yield of biodiesel	126
Fig. 4.10.	:	Effect of methanol to oil ratio on reaction time and yield of biodiesel	127
Fig. 4.11.	:	Effect of temperature on the reaction of biodiesel synthesis	128
Fig. 4.12.	:	Reusability study of <i>Sesamum indicum</i> catalyst in biodiesel synthesis	132
Fig. 4.13	:	Arrhenius plot of ln k vs 1/T for <i>S. indicum</i> catalysed transesterification	132
1 19, 1910	•	of <i>J. curcas</i> oil to biodiesel	155
Fig. 4.14	:	FT-IR spectrum of sunflower oil	134
Fig. 4.15	:	FT-IR spectrum of biodiesel obtained from sunflower oil	135
Fig. 4.16	•	¹ H NMR spectrum of sunflower oil	136
1 18. 4.10	•	A rank spectrum of sumfower on	150

Fig. 4.17	:	¹ H NMR spectrum of biodiesel obtained from sunflower oil	137
Fig. 4.18	:	¹³ C NMR spectrum of sunflower oil	137
Fig. 4.19	:	¹³ C NMR spectrum of biodiesel obtained from sunflower oil	138
Fig. 5.1.	:	XRD pattern of Brassica nigra catalyst calcined at 550 °C	145
Fig. 5.2.	:	FT-IR spectrum of Brassica nigra catalyst calcined at 550 °C	146
Fig. 5.3.	:	N2 adsorption-desorption isotherm of calcined Brassica nigra catalyst	147
Fig. 5.4.	:	Adsorption pore size distribution of calcined Brassica nigra catalyst	148
Fig. 5.5.	:	SEM (A-C) and EDX (D) images of calcined Brassica nigra catalyst	149
Fig. 5.6.	:	(A) XPS survey spectrum of calcined Brassica nigra catalyst; XPS	152
		spectra of (B) O 1s, (C) C 1s, (D) K 2p, (E) Ca 2p and (F) Cl 2p	
Fig. 5.7.	:	(A) XPS survey spectrum of recycled catalyst (3 rd cycle); XPS spectra	153
		of (B) O 1s, (C) C 1s, (D) K 2p, (E) Ca 2p and (F) Cl 2p	
Fig. 5.8.	:	TEM images (A-C) and SAED pattern (D) of calcined Brassica nigra	154
		catalyst	
Fig. 5.9.	:	Variation of pH value with volume of water dissolving 1 g of calcined	155
		Brassica nigra catalyst	
Fig. 5.10.	:	Effect of catalyst loading (wt.%) on reaction time and biodiesel yield	156
Fig. 5.11.	:	Effect of methanol to oil ratio on reaction time and biodiesel yield	157
Fig. 5.12.	:	Effect of temperature on reaction time and biodiesel yield	158
Fig. 5.13.	:	Reusability of calcined Brassica nigra catalyst	162
Fig. 5.14.	:	Arrhenius plot of ln k vs 1/T for pseudo-first order kinetic reaction	163
Fig. 5.15.	:	FT-IR spectra of soybean oil and biodiesel	164
Fig. 5.16.	:	¹ H NMR spectrum of soybean oil	165
Fig. 5.17.	:	¹ H NMR spectrum of biodiesel obtained from soybean oil	166
Fig. 5.18.	:	¹³ C NMR spectrum of soybean oil	166
Fig. 5.19	:	¹³ C NMR spectrum of biodiesel obtained from soybean oil	167