
Bianchi Type-III Spacetime and

Generalized Cosmic Chaplygin Gas

7.1 Introduction

The most recent notable observational discoveries have shown that our universe is

presently accelerating. In order to explain why the cosmic acceleration happens, many

theories have been proposed. The main stream explanation for this is known as theories

of dark energy. The existence of dark energy fluids appear from the observations of

the accelerated expansion of the universe. The isotropic-pressure cosmological models

give the best fitting of the observations. However, some authors have suggested a

cosmological model with anisotropic and viscous dark energy in order to explain an

anomalous cosmological observation, in the cosmic microwave background (CMB) at

the largest angles. The Bianchi universe anisotropies give rise to CMB anisotropies

depending on the model type. The isotropization of the Bianchi metrics is due to the

implicit assumption that the dark energy is isotropic in nature. It is well known that the

exact solution of general theory of relativity for the homogeneous space time belongs

to either Bianchi type or Kantowski-Sachs spacetime. Singh and Singh [1991a, 1991b]

have presented Bianchi type-I,III,V,V I0 and Kantowski-Sachs cosmological model

with time-dependent displacement field and have presented a comparative study of

Robertson-Walker models with constant deceleration parameter in the presence of
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cosmological term in Einstein theory with the cosmological theory based on Lyra

geometry. Bali et al. [2010] have described Bianchi type-III cosmological models

for barotropic perfect fluid distribution with variable G and Λ in general relativity.

Yadav and Yadav [2011] have investigated Bianchi type-III bulk viscous and barotropic

perfect fluid cosmological models in Lyra geometry. Bianchi type-III cosmological

model in f(R,T) theory of gravity have been discussed by Reddy et al. [2012] Pradhan

et al. [2012] discussed anisotropic Bianchi type-III string cosmological models in

normal gauge for Lyra’s manifold with electromagnetic filed. Adhav et al. [2015]

discussed the Bianchi type-III cosmological with quadratic equation of state. Singh

and Rani [2015] studied Bianchi type-III cosmological model with modified Chaplygin

gas in Lyra geometry. Adhav et al. [2014] discussed the Bianchi type-III cosmological

model with linear equation of state. Behera et al. discussed bulk viscous Bianchi

type III models with time dependent G and Λ in the framework of Einstein’s general

relativity. Vidyasagar et al. have discussed Bianchi type III bulk viscous fluid in

presence of one dimensional cosmic string in Saez-Ballester theory. Sahoo and Mishra

studied Bianchi type III viscous fluid models in bimetric theory of gravitation.

In this chapter we consider the generalized cosmic Chaplygin gas in Bianchi

type-III universe for perfect fluid. The generalized cosmic Chaplygin gas is

p = −ρ−α
[
C +

(
ρ1+α − C

)−ω] (7.1)

This is the generalization of Chaplygin gas equation of state and is suitable for

representing dark energy. The statefinder parameters are given by

r =

...

R

RH3
, and s =

r − 1

3(q − 1/2)
(7.2)

7.2 Metric and field equations:

The homogeneous Bianchi type III spacetime is

ds2 = dt2 − a21dx2 − a22e−2mxdy2 − a23dz2 (7.3)
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where a1(t), a2(t) and a3(t) are function of cosmic time t only and m 6= 0 is a

constant.

The energy momentum tensor is given by

Tij = (ρ+ p)uiuj − pgij (7.4)

The Einstein’s field equations are

Gij = Rij −
1

2
Rgij = −Tij (7.5)

where

giju
iuj = 1 (7.6)

The Einstein’s field equations for the metric (7.2) using equations (7.3) and (7.4)

can be written as

ȧ1ȧ2
a1a2

+
ȧ1ȧ3
a1a3

+
ȧ2ȧ3
a2a3

− m2

a21
= ρ (7.7)

ä2
a2

+
ä3
a3

+
ȧ2ȧ3
a2a3

= −p (7.8)

ä1
a1

+
ä3
a3

+
ȧ1ȧ3
a1a3

= −p (7.9)

ä1
a1

+
ä2
a2

+
ȧ1ȧ3
a1a3

− m2

a21
= −p (7.10)

m

(
ȧ1
a1
− ȧ2
a2

)
= 0 (7.11)

where dot denotes the derivative with respect to time.

The conservation law for the energy momentum tensor gives

ρ̇+

(
ȧ1
a1

+
ȧ2
a2

+
ȧ3
a3

)
(ρ+ p) = 0 (7.12)

The average scale factor and the spatial volume are defined as

R = 3
√
a1a2a3, V = R3 = a1a2a3 (7.13)
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The generalized mean Hubble parameter H is given by

H = 1
3

(Hx +Hy +Hz), where, Hx = ȧ1
a1
, Hy = ȧ2

a2
, Hx = ȧ3

a3

H =
1

3

V̇

V
=
Ṙ

R
=

1

3
(Hx +Hy +Hz) (7.14)

Deceleration parameter in cosmology is the measure of the cosmic acceleration of

the universe expansion and is defined as

q = −R̈R
Ṙ2

(7.15)

The relation between average Hubble’s parameter and average scale factor is given

by

H = DR−m (7.16)

where D > 0 and m ≥ 0.

From (7.13) and (7.15) we get,

Ṙ = DR−m+1 (7.17)

Integrating equation (7.16) we get,

R = l0e
Dt,m = 0 (7.18)

R = (mDt+ l1)
1
m ,m 6= 0 (7.19)

where l0 and l1 are constants of integration. The two values of the average scale factors

correspond to two different models of the universe.

7.3 GCCG model of the universe when m = 0

The average scale factor of the universe when m = 0 is R = l0e
Dt.

From equations (7.13) and (7.17) we get,

V = R3 = a1a2a3 = l30e
3Dt = c1e

3Dt (7.20)
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where c1 = l30.

Since the shear scalar σ is proportional to scalar expansion θ, which gives

a3 = an1 (7.21)

where, n > 1 is a constant. Integrating equation (7.10) we get,

a2 = d1a1 (7.22)

where d1 is the constant of integration and let d1 = 1 then a2 = a1

From equations (7.19)− (7.22) we get,

a1 = c2e
3Dt
n+2 , where c2 = (c1)

1
n+2

where c1 is an arbitrary integration constant.

From equations (7.1), (7.11), (7.12) and (7.13) we get,

ρ =

[
C +

{
1 +

B

V (1+α)(1+ω)

} 1
1+ω

] 1
1+α

(7.23)

where B is an arbitrary integration constant.

Case(i): For small values of the scale factors a1(t), a2(t) and a3(t) we have

ρ ∼=
B

(1+α)(1+w)

V
(7.24)

which is a very large value and corresponds to the universe dominated by an equation

of state

p = − 1

ρα(1+w)+w
(7.25)

From (7.19) and (7.25) we get,

ρ ∼=
B

(1+α)(1+w)

c1e3Dt
(7.26)

p = − 1[
B

(1+α)(1+w)

c1e3Dt

]α(1+w)+w (7.27)
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The physical parameters expansion scalar θ, mean anisotropy parameter ∆ and

shear scalar σ2 are

θ = 3H = 3D (7.28)

∆ =
1

3

3∑
i=1

(
∆Hi

H

)2

=
3(n2 + 2)

(n+ 2)2
− 1 (7.29)

σ2 =
1

2

(
3∑
i=1

H2
i − 3H2

)
=

3

2
D2

(
n− 1

n+ 2

)2

(7.30)

The values of statefinder parameters using (7.2) and (7.17) are given by r = 1 and

s = 0.

Case(ii): For large values of the scale factors we have

ρ ∼= (C + 1)
1

(1+α) (7.31)

For this value of ρ, the value of p is p = −ρ

p = − (C + 1)
1

(1+α) (7.32)

The expansion scalar θ, mean anisotropy parameter ∆ and shear scalar σ2 remain

same.

7.4 GCCG model of the universe when m 6= 0:

The average scale factor of the universe when m 6= 0 is R = (mDt+ l1)
1
m .

From equations (7.2) and (7.18) we get,

V = R3 = a1a2a3 = (mDt+ l1)
3
m (7.33)

From equations (7.21), (7.22) and (7.33) we get,

a1 = (mDt+ l1)
3

m(n+2) (7.34)

Case(i): For small values of the scale factors a1(t), a2(t) and a3(t) we have
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ρ ∼=
B

(1+α)(1+w)

V
(7.35)

which is a very large value and corresponds to the universe dominated by an equation

of state

p = − 1

ρα(1+w)+w
(7.36)

From (7.33), (7.35) and (7.36) we get,

ρ ∼=
B

(1+α)(1+w)

(mDt+ l1)
3
m

(7.37)

p = − 1[
B

(1+α)(1+w)

(mDt+l1)
3
m

]α(1+w)+w (7.38)

The physical parameters expansion scalar θ, mean anisotropy parameter ∆ and

shear scalar σ2 are

θ = 3H =
3D

mDt+ l1
(7.39)

∆ =
1

3

3∑
i=1

(
∆Hi

H

)2

=
3(n2 + 2)

(n+ 2)2
− 1 (7.40)

σ2 =
1

2

(
3∑
i=1

H2
i − 3H2

)
=

3(n− 1)2D2

(n+ 2)2(mDt+ l1)2
(7.41)

and q = m− 1

The values of statefinder parameters are given by

r = (1−m)(1− 2m) (7.42)

s =
(1−m)(1− 2m)− 1

3
(
m− 3

2

) (7.43)

Case(ii): For large values of the scale factors we have

ρ ∼= (C + 1)
1

(1+α) (7.44)
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For this value of ρ, the value of p is p = −ρ

p = − (C + 1)
1

(1+α) (7.45)

The expansion scalar θ, mean anisotropy parameter ∆ and shear scalar σ2 remain

same.

7.5 Stability analysis:

The sound speed is given as

C2
s =

dp

dρ
(7.46)

When C2
s ≥ 0, the model becomes physically acceptable. To obtain C2

s , for gen-

eralized cosmic Chaplygin gas model of the universe corresponding to m = 0 we

use equations (7.1), (7.20) and (7.23) for the model of the universe corresponding to

m 6= 0 we use equations (7.1), (7.20) and (7.32). We plotted the resulting C2
s in terms

of time as shown in fig. 1 and fig. 2 and for both the models we get, 0 ≤ C2
s ≤ 1.

Thus we can say that the generalized cosmic Chaplygin gas model is satable.
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Figure-1 : Variation of C2
s vs. time t when m = 0
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Figure-2 : Variation of C2
s vs. time t when m 6= 0

7.6 Discussions and Conclusions:

In this chapter we explored the cosmological solutions of Bianchi type-III universe

filled with generalized cosmic Chaplygin gas. The exact solutions of this models have

been investigated for small and large values of the scale factor and also we examined

the stability of the models.

For m 6= 0 : In this case, at t = 0, the energy density almost takes a constant

value until it reaches a singularity at time given by where it faces a bounce. After

that the density gradually decreases until it (the density) tends to zero as t→∞, thus

undergoing a period of expansion. In this type of universe the expansion gradually

decreases with time until at t→∞ the expansion almost stops ready for a contraction

phase. On the other hand, for our model to be a realistic model we know that it must

undergo accelerating expansion which imposes that m < 1. Though the model here

seems to be anisotropic, it gradually becomes isotropic until at m = 1 it becomes

totally isotropic.
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For m = 0 : For large values of the scale factor our model becomes a pressureless

universe if c = −1 and if this event is taken to be happened at an early stage of the

universe and also since here p
ρ

= −1 at other times which shows that the Chaplygin

gas here behaves as a cosmological constant, we can conveniently take the modified

Chaplygin gas in our model as a possible unification of dark energy and dark matter.

For small values of the scale factor the density of the universe has a fixed value at

t = 0 and tends to zero as t→∞ which shows the behavior of an oscillating universe,

ofcourse without a bigbang, but with a bounce. From examining the statefinder

parameters this universe seems to be filled with the cosmological constant type of dark

energy.
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