CHAPTER-IV Result & Discussion

4.1 Analysis of Fish diversity

In the present work, the study of Ichthyofaunal diversity of the fish species reported that quantitatively seventy seven ichthyospecies belonged to 53 genera, 26 families and 9 orders from the different water bodies of Kokrajhrar District of BTAD, Assam, India. Table 1.11 illustrates the biological classification of the fish species including their scientific names, order, family, vernacular name (*Assamese* and *Bodo*), food status and conservation status (IUCN).

All the fish species were broadly categorized into seven groups. They are namely, Indian major/minor carps, Exotic carps established in Assam, Live fishes, Cat fishes, Feather back, Ornamental fishes and River fishes representing 10, 4, 10, 23, 2, 18 and 10 species respectively. Out of the nine orders, the most dominant was cypriniformes with thirty one species (40.26%) followed by Siluriformes with twenty three species (29.87%) (Fig 1.4a). The results were agreed to the previous reports (Chakravartty et al., 2012; Das and Sarmah, 2014). The order Perciformes, Synbranchiformes, Clupeiformes, Osteoglossiformes was represented by 12, 3, 3, 2 species respectively. Only one species had been recorded from the order Beloniformes, Cyprinodontiformes and Tertaodontiformes. Among the 26 families, Cyprinidae with 26 ichthyospecies (37.66%) was the most diverse followed by Bagridae with 7 species (9.09%) (Fig 1.4b). Dubey et al., 2012; Baro and Sharma, 2014; Das and Sarmah, 2014 had also similar observation. Channidae possesed six species. Four species belonged to Siluridae family whereas families Sisoridae and Schilbeidae contained three species each .Only two species were lodged by five families viz. Clariidae, Clupeidae, Mastacembelidae, Notopteridae and Osphronemidae. Labeo genus possessing seven species was highlighted to be the most diverse followed by the genus Channa with six species. Amongst the 77 recorded species, 74 were considered as food fish while only three species viz. Erethistes pusillus, Tetraodon cutcutia and Aplocheilus panchax as not food fishes. It was found that 36 fish species were recorded to be commercially important food fish (Biswas and Sugunan, 2008). In addition to the commercial importance Chitala chitala and Tor tor had sport values (Biswas and Sugunan, 2008)

Family	Name of the Species	Bodo name	Assamese name	Habitat/Water bodies	Con. status*
Cyprinidae	Labeo rohita (Hamilton, 1822)	Rhou	Rhou	Rivers/beels/tanks & ponds	LC
Cyprinidae	Labeo bata (Hamilton, 1822)	Bata	Bata	Rivers/beels/tanks & ponds	LC
Cyprinidae	Labeo calbasu (Hamilton, 1822)	Bahu	Kalbasu	Rivers/beels/tanks & ponds	LC
Cyprinidae	Labeo gonius (Hamilton, 1822)	Kursa	Gonia	Rivers/beels/tanks & ponds	LC
Cyprinidae	Bangana dero (Hamilton, 1822)	Maso	Gorea	River running water	Vu
Cyprinidae	Labeo dyocheilus (McClelland, 1839)		Lasu	Brahmaputra river	LC
Cyprinidae	Labeo pangusia (Hamilton, 1822)		Nandani	Rivers/beels/tanks & ponds	NT
Cyprinidae	Gibelion catla (Hamilton, 1822)	Catla	Catla	Rivers/beels/tanks & ponds	LC
Cyprinidae	Cirrhinus mrigala (Bloch, 1795)	Mirkha	Mirika	Rivers/beels/tanks & ponds	LC
Cyprinidae	Cirrhinus reba (Hamilton, 1822)	Lasim	Laseem	Rivers/beels/tanks & ponds	LC
Cyprinidae	Cyprinus carpio (Hamilton, 1822)	Common carp	Common carp	Rivers/beels/tanks & ponds	Vu
Cyprinidae	<i>Ctenophryngodon idella</i> (Valenciennes, 1844)	Grass carp	Grass carp	Rivers/beels/tanks & ponds	NE
Cyprinidae	<i>Hypothalmichthys molitrix</i> (Valenciennes, 1844)	Silver carp	Silver carp	Rivers/beels/tanks & ponds	NE
Cyprinidae	Hypothalmichthys nobilis (Richardson, (1845)	Popular large head carp	Popular large head carp	Rivers/beels/tanks & ponds	NE
Channidae	Channa punctata (Bloch, 1793)	Gwri	Goroi	Beels/low-lying area/tanks / ponds	LC
Channidae	Channa striata (Bloch, 1793)	Shol	Shol	Beels/low-lying area/tanks / ponds	LC
Channidae	Channa gachua (Hamilton, 1822)	Nasrai	Cheng	Beels/low-lying area/tanks / ponds	LC
Channidae	Channa marulius (Hamilton, 1822)	Nasrai nisla	Chengeli	Beels/low-lying area/tanks / ponds	LC
Channidae	Channa stewartii (Hamilton, 1822)	Sal	Sal	Beels/low-lying area/tanks / ponds	LC
Channidae	Channa barca (Hamilton, 1822)	Nasrai Borkhaw	Garaka cheng	Beels/low-lying area/tanks / ponds	DD
Synbrachidae	Monopterus cuchia (Hamilton, 1822)	Cuchia	Cuchia	Beels/low-lying area/tanks / ponds	LC
Mastacembelidae	Mastacembelus armatus (Hamilton, 1822)	Bami	Bami	River/beels/low-lying area/tanks / ponds	LC

Table 1.1: Showing the diversity of fishes with special reference to their taxonomic distribution, vernacular name, habitat and conservation status

Family	Name of the Species	Bodo name	Assamese name	Habitat/Water bodies	Con. status*
Mastacembelidae	Mastacembelus pancalus (Hamilton, 1822)	Thuri	Tura/Tora	River/beels/low-lying area/tanks / ponds	NE
Actinopterygii	Anabus testudineus (Bloch, 1792)	Kawai	Koi	Beels/low-lying area/tanks / ponds	NE
Siluridae	Wallago attu (Bloch and Schneider, 1801)	Borali	Borali	River/beels/low-lying area/tanks / ponds	NT
Siluridae	Ompok pabo (Hamilton, 1822)	Phabo	Pabhoh	River/beels/low-lying area/tanks / ponds	NT
Siluridae	Ompok pabda (Hamilton, 1822)	Phabo	Pabda	River/beels/low-lying area/tanks / ponds	NT
Siluridae	Ompok bimaculatus(Bloch, 1794)	Phabo	Pabhoh	River/beels/low-lying area/tanks / ponds	NT
Bagridae	Mystus tengra (Hamilton, 1822)	Thengana	Tingorah	River/beels/low-lying area/tanks / ponds	LC
Bagridae	Mystus cavasius (Hamilton, 1822)	Thengera gidid	Bor Singorah	River/beels/low-lying area/tanks / ponds	LC
Bagridae	Mystus vittatus (Bloch, 1794)	Thengera khujri	Haru Tingorah	River/beels/low-lying area/tanks / ponds	LC
Bagridae	Hemibagrus menoda (Hamilton, 1822)		Gagol	River/beels/low-lying area/tanks / ponds	LC
Bagridae	Aorichthyus aor (Hamilton, 1822)	Aari	Aari	River/beels/low-lying area/tanks / ponds	NE
Schilbeidae	Eutropiichthyus vacha (Hamilton, 1822)		Basa	River/beels/low-lying area/tanks / ponds	NE
Pangasiidae	Pangasius pangasius (Hamilton, 1822)	Pangas	Pangas	River/beels/low-lying area/tanks / ponds	LC
Clariidae	Clarias batrachus (Linneaeus, 1758)	Magur	Magur	Beels/low-lying area/tanks / ponds	LC
Clariidae	Clarias gariepinus (Burchell, 1822)	Thailand magur	Thailand magur	Beels/low-lying area/tanks / ponds	LC

Family	Name of the Species	Bodo name	Assamese name	Habitat/Water bodies	Con. status*
Heteropneustidae	Heteropneustes fossilis (Bloch, 1794)	Singi	Singi	Beels/low-lying area/tanks / ponds	LC
Sisoridae	Gagata cenia (Hamilton, 1822)		Keyakatta	Beels/low-lying area/tanks / ponds	LC
Sisoridae	Gagata gagata (Hamilton, 1822)		Keyakatta	Beels/low-lying area/tanks / ponds	LC
Sisoridae	Bagarius bagarius (Hamilton, 1822)		Garua	River/beels/low-lying area/tanks / ponds	NT
Schilbeidae	Cluisoma garua(Hamilton, 1822)		Neria	River/beels/low-lying area/tanks / ponds	NE
Chacidae	Chaca chaca (Hamilton, 1822)		Kurkuri	River/beels/low-lying area/tanks / ponds	LC
Bagridae	Rita rita (Hamilton, 1822)	Ritha	Ritha	River/beels/low-lying area/tanks / ponds	LC
Erithistidae	Erithistes pusillus (Bleeker, 1854)		Sakmaka	River/beels/low-lying area/tanks / ponds	NE
Bagridae	Batasio batasio (Hamilton, 1822)		Batachi	River/beels/low-lying area/tanks / ponds	LC
Schilbeidae	Ailia coila (Hamilton, 1822)		Kadali	River/beels/low-lying area/tanks / ponds	NT
Notopteridae	Chitala chitala (Hamilton, 1822)	Sital	Chital	River/beels/low-lying area/tanks / ponds	NT
Notopteridae	Notopterus noptopterus (Pallas, 1769)		Kanduli	River/beels/low-lying area/tanks / ponds	NE
Osphronemidae	<i>Trichogatser fasciata</i> (Bloch & Schneider, 1801)		Kholihana	Beels/low-lying area/tanks / ponds	NE
Osphronemidae	Trichogatser colisa (Hamilton, 1822)		Bhasaylee	Beels/low-lying area/tanks / ponds	NE
Tetraodontidae	<i>Tertradon cutcutia</i> (Hamilton, 1822)	Gangatopa	Gangatope	Beels/low-lying area/tanks / ponds	NE
Ambassidae	Chanda nama (Hamilton, 1822)	Chanda	Chanda	Beels/low-lying area/tanks / ponds	LC
Cichlidae	Oreochromis mossambicus (Peters, 1852)	Japani Kawai	Japani Koi	Beels/low-lying area/tanks / ponds	NT
Cobitidae	Neoeucirrhichthys maydelli (Hamilton, 1822)	Bala Bothia	Botia	Beels/low-lying area/tanks / ponds	LC

Family	Name of the Species	Bodo name	Assamese name	Habitat/Water bodies	Con. status*
Botiidae	Botia dario (Hamilton, 1822)	Bala Khwa	Rani botia	Beels/low-lying area/tanks / ponds	LC
Cyprinidae	Pethia ticto ticto (Hamilton, 1822)	Pitikri	Puthi	Beels/low-lying area/tanks / ponds	LC
Cyprinidae	Systomus sarana (Hamilton, 1822)	Chinese puthi	Cheniputhi	River/beels/low-lying area/tanks / ponds	LC
Cyprinidae	Barbonymus gonionotus	Jaba puthi	Java puthi	Beels/low-lying area/tanks / ponds	LC
Cyprinidae	Rasbora daniconius (Hamilton, 1822)	Donkina	Darikona	Beels/low-lying area/tanks / ponds	LC
Cyprinidae	Rasbora elanga (Hamilton, 1822)	Eleng	Eleng	Beels/low-lying area/tanks / ponds	NE
Cyprinidae	Danio dangila (Hamilton, 1822)		Laupati	Beels/low-lying area/tanks / ponds	LC
Cyprinidae	<i>Amblypharyngodon mola</i> (Hamilton, 1822)	Mawa	Mola	Beels/low-lying area/tanks / ponds	LC
Cyprinidae	Aspidoparia morar (Hamilton, 1822)	Boirali	Boriala	Beels/low-lying area/tanks / ponds	LC
Nandidae	<i>Nandus nandus</i> (Hamilton-Buchanan 1822)	Thothajambhi	Bhetki	Beels/low-lying area/tanks / ponds	LC
Clupeidae	Gudusia chapra (Hamilton, 1822)	Korti	Karoti	Beels/low-lying area/tanks / ponds	LC
Engraulidae	Setipinna phasa (Hamilton, 1822)		Salo/Chato	Beels/low-lying area/tanks / ponds	LC
Clupeidae	Tenualosa ilisha (Hamilton, 1822)	Ilish	Ilish	Brahmaputra river	LC
Cyprinidae	Chela atpar (Hamilton, 1822)		Selkona	Brahmaputra river	NE
Cyprinidae	Chela cachius (Hamilton, 1822)		Laupati	Brahmaputra river	LC
Cyprinidae	Oxygatser gora (Hamilton, 1822)		Gora Chela	Brahmaputra river	NE
Cyprinidae	Tor tor (Hamilton, 1822)		Pithia	River running water	NT
Cyprinidae	Tor putitora (Hamilton, 1822)	Jonga	Jonga pithia	River running water	EN
Belonidae	Xenentodon cancila (Hamilton, 1822)	Khankhila	Kokila	River/beel/tanks & ponds	LC
Aplocheilidae	Aplocheilus panchax (Hamilton, 1822)		Kanopna	River	LC
Cyprinidae	Barilius barna (Hamilton, 1822)		Balisonda	River	LC
Cyprinidae	Barilius bendelisis (Hamilton, 1807)			River running water	LC

Con. Status: Conservation status based on IUCN report (2010); EN: Endangered; Vu: Vulnerable; NT: Near threatened; LC: Least concern; NE: Not evaluated; DD: Data deficient

As per the conservation status (IUCN), *Tor putitora* was found to be the only fish species that placed under endangered category. Out of the remaining 76 recorded species *Bangana* (*Labeo*) *dero* was marked as vulnerable (Vu) (2.60%), 10 near threatened (NT) (12.99%), 47 least concerned (LC) (61.04%), 16 not evaluated (NE) (20.78%) and the single species *Channa barca* was recorded to be data deficient (Fig 1.4c).

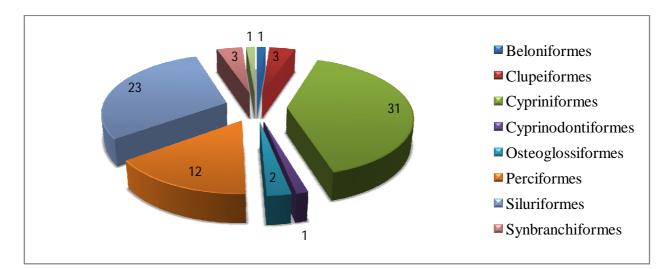


Fig.: 1.4a Number of species under various orders

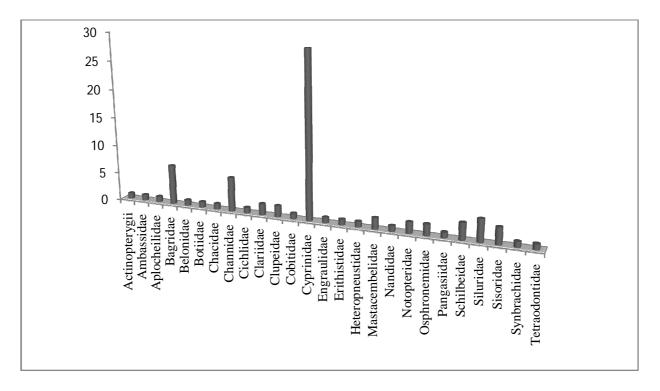


Fig.: 1.4b Number of species distributed under each family

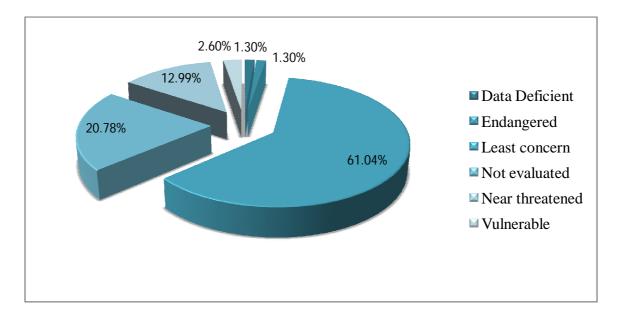


Fig.: 1.4c Percentage of species under various categories as per IUCN status

4.2 Survey on fish species consumed by the Bodo communities:

The response of the field survey was positive. People were very much interested regarding catching the small fishes available in nearby river, beel and other wetlands. They consume these small fishes in their daily diet. The responses are summarized below:-

- (i) What are the different types of fishes available in the water bodies of your locality? Ans: The small fishes like moa, puthi, bothia, borali, chanda, ptimutura, kawai, cheng, goroi, kokila, darikona, turi, kholihona, tengera etc. are very much available in the local ponds and nearby wetlands.
- (ii) How do you catch the fish for your dietary item?Ans: We use different gears of bamboo.
- (iii) What fishes you generally prefer in your daily diet?Ans: Local small living fishes are very much appreciated in our daily diet.
- (iv) Whether the popular large fishes are used in your regular diet?Ans: We cannot afford to purchase the popular large fishes regularly.
- (v) What are the small fishes you consume regularly?Ans: The small fishes like cheng, goroi, mola, chanda etc. are commonly included in our regular meal.
- (vi) Whether the small fishes which you consume have any commercial value?Ans: The fishes which we regularly consume are having very less commercial value

because these are accepted mainly by the poorers.

(vii) Where from you collect the small fishes for regular consumption?

Ans: The fishes are easily collected from ponds, ditches, small rivers and the nearby waterlogged areas.

After analyzing the survey report it is justified that the small fishes available in the local area were of keen interest to the Bodo communities. Due to their extreme availability and lower market price these fishes are regularly included in their diet. The local people cannot afford to the costly popular large fishes which are well known to be one of the good supplement for the protein and many other health nutrients. Keeping in mind about the specific time period of the research work, out of these available fishes only ten small fishes were selected for study in the current work. These fishes are widely consumed by the local Bodo people. The selected species were enlisted in table 1.2 below.

Sample No	Scientific name of species
1	Barilius vagra (Hamilton, 1822)
2	Neoeucirrhichthys maydelli (Hamilton, 1822)
3	Chanda nama (Hamilton, 1822)
4	Channa gachua (Hamilton, 1822)
5	Rasbora daniconius (Hamilton, 1822)
6	Channa punctatus (Bloch, 1793)
7	Trichogaster fasciata (Bloch & Schneider, 1801)
8	Xenentodon cancila (Hamilton, 1822)
9	Amblypharyngodon mola (Hamilton, 1822)
10	Macrognathus pancalus (Hamilton, 1822)

Table: 1.2 List of fish species selected for the present work

Fig.:1.5.1 Fish Catching area in Diplai Beel

Fig.: 1.5.2 People catching fish in Gaurang river

Fig.: 1.5.3 People catching fish in wetlands

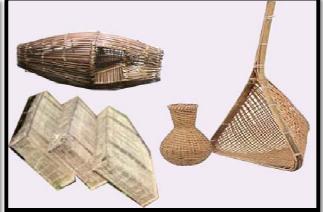


Fig.: 1.5.4 Some fish gears commonly used by bodo people

Fig.: 1.5.5 Chanda nama collected at fishing sites

Fig.: 1.5.6 Some fishes selling in village market

4.3 Description of the selected fish

Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Cypriniformes Family: Cyprinidae Genus: Barilius Scientific Name: *Barilius vagra* (Hamilton, 1822) Local Name: Boroli

Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Cypriniformes Family: Cobitidae Genus: *Neoeucirrhichthys* ScientificName: N. Maydelli (Hamilton, 2822) Local Name: Bothia

Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Perciformes Family: Abassidae Genus: Chanda Scientific Name: *Chanda nama* (Hamilton, 1822) Local Name: Chanda

Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Perciformes Family: Channidae Genus: Channa Scientific Name: *Channa gachua* (Hamilton, 1822) Local Name: Cheng

Fig.: 2.1.1 Barilius vagra

Fig.: 2.1.2 N. maydelli

Fig.: 2.1.3 Chanda nama

Fig.: 2.1.4 Channa gachua

Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Cypriniformes Family: Cypriniformes Genus: Rasbora Scientific Name: *Rasbora daniconius* (Hamilton, 1822) Local Name: Darikana

Fig.: 2.1.5 Rasbora daniconius

Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Perciforms Family: Channadae Genus: Channa Scientific Name: *Channa punctatus* (Bloch, 1793) Local Name:Goroi

Kingdom: Animalia Phylum: Chordata Class: Osteichthyes Order: Perciformes Family: Anabantidae Genus: Colisa Scientific Name: *Trichogaster fasciata* (Bloch & Schneider,1801) Local Name:Kholihona

Kingdom: Beloniforms Phylum: Chordata Class: Actinopterygii Order: Family: Belonidae Genus: Xenentodon Scientific Name: *Xenentodon cancila* (Hamilton, 1822) Local Name:Kokila

Fig.: 2.1.6 Channa punctatus

Fig.: 2.1.7 Trichogaster (Colisa) fasciata

Fig.: 2.1.8 *Xenentodon cancila* 44

Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Cypriniformes Family: Cyprinidae Genus: Amblypharyngodon Scientific Name: *Amblypharyngodon mola* (Hamilton, 1822) Local Name:Mola

Fig.: 2.1.9 Amblypharyngodon mola

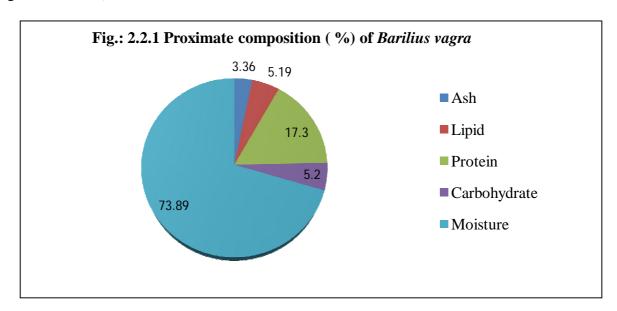
Fig.: 2.1.10 Macrognathus pancalu

The mean total length, breadth and somatic weight of all the species were noted down and reported in table 4.3.

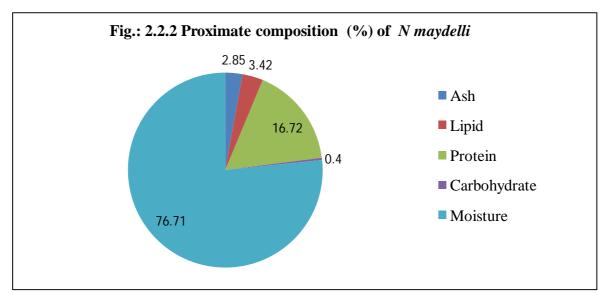
SI No	Scientific name of species	Local Name	Length(cm)	Breadth(cm)	Weight(g)
1	Barilius vagra	Bhoroli	7.2 ± 0.6	1.3 ± 0.2	3.22 ± 0.40
2	N. maydelli	Bothia	8.4 ± 0.5	1.4 ± 0.3	5.21 ± 0.75
3	Chanda nama	Chanda	6.6 ± 0.4	2.1 ± 0.2	2.06 ± 0.51
4	Channa gachua	Cheng	11.3 ± 0.8	1.7 ± 0.05	13.41 ± 0.63
5	Rasbora daniconius	Darikana	4.5 ± 0.5	0.8 ± 0.02	0.85 ± 0.07
6	Channa punctatus	Goroi	12.6 ± 0.6	2.1 ± 0.2	17.15 ± 0.42
7	Trichogatser fasciata	Kholisa	6.3 ± 0.4	2.4 ± 0.2	5.44 ± 0.34
8	Xenentodon cancila	Kokila	18.1 ± 1.4	1.8 ± 0.3	18.79 ± 1.61
9	Amblypharyngodon mola	Mola	6.8 ± 0.4	1.9 ± 0.4	13.58 ± 0.52
10	Macrognathus pancalus	Turi	11.8 ± 0.8	1.7 ± 0.2	10.06 ± 1.05

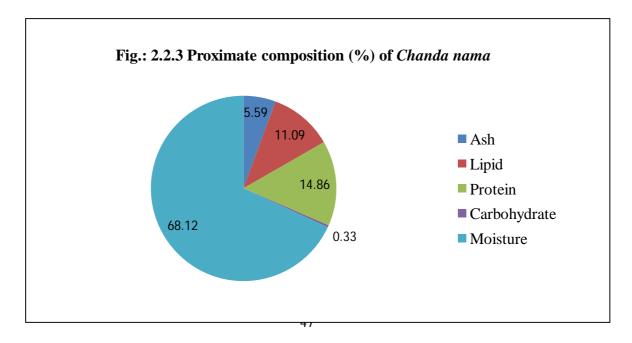
Table 1.3. Measurement of le	ength, breadth and weight
------------------------------	---------------------------

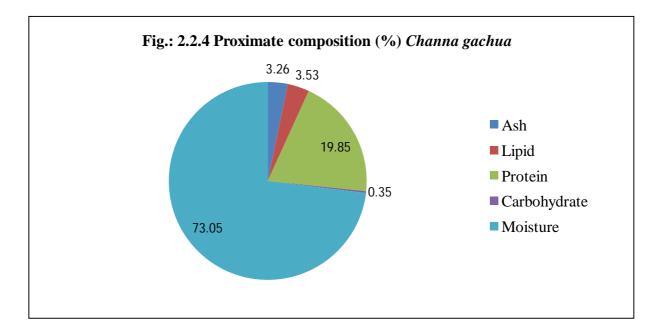
45

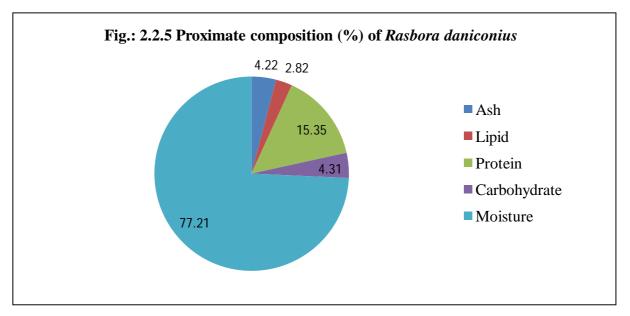

Kingdom: Animalia Phylum: Chordata Class: Actinopterygii Order: Synbranchiformes Family: Mastacembelidae Genus: Macrognathus Scientific Name: *Macrognathus pancalus* (Hamilton, 1822) Local Name:Turi

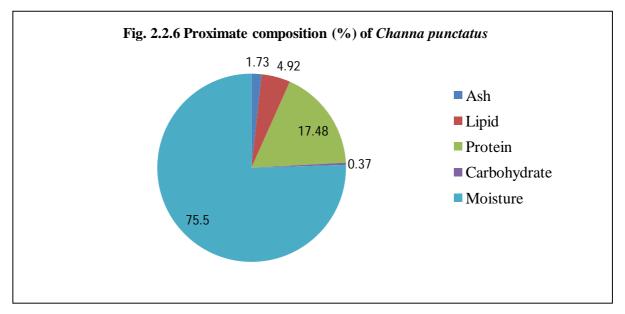
4.4 Proximate composition

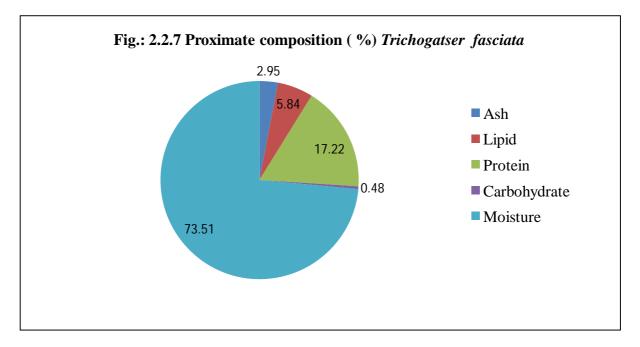

The proximate composition of all the fish species selected for the study are shown in table:4.4 below

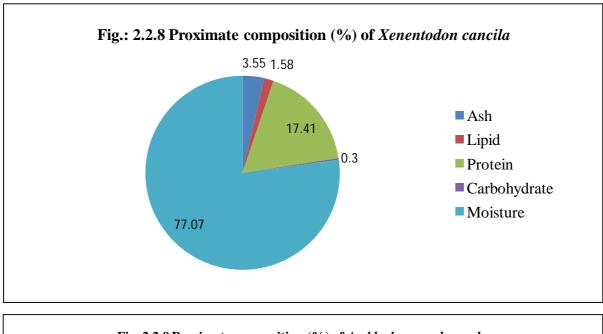

Sl	Scientific name of	Protein	Crude Lipid	Moisture	Ash	Carbohydr ate
no.	species	(g/100g)	(g/100g)	(g/100g)	(g/100g)	(g/100g)
1	Barilius vagra	17.30±0.02	5.19±0.02	73.89±0.08	3.36±0.01	5.20±0.08
2	N. maydelli	16.72±0.02	3.42±0.02	76.71±0.06	2.85±0.03	0.40±0.06
3	Chanda nama	14.86±0.02	11.09±0.01	68.12±0.12	5.59±0.02	0.33±0.04
4	Channa gachua	19.85±0.01	3.53±0.02	73.05±0.08	3.26±0.01	0.35±0.04
5	Rasbora daniconius	15.35±0.01	2.82±0.01	77.21±0.05	4.22±0.02	4.31±0.06
6	Channa punctatus	17.48±0.02	4.92±0.03	75.50±0.10	1.73±0.02	0.37±0.03
7	Trichogatser fasciata	17.22±0.04	5.84±0.03	73.51±0.15	2.95±	0.48±0.03
8	Xenentodon cancila	17.41±0.01	1.58±0.01	77.07±0.05	3.55±0.02	0.30±0.03
9	Amblypharyngodon mola	15.43±0.02	2.94±0.02	71.50±0.12	3.94±.003	6.19±0.06
10	Macrognathus pancalus	14.26±0.02	5.08±0.04	70.96±0.05	5.79±0.04	3.91±0.04

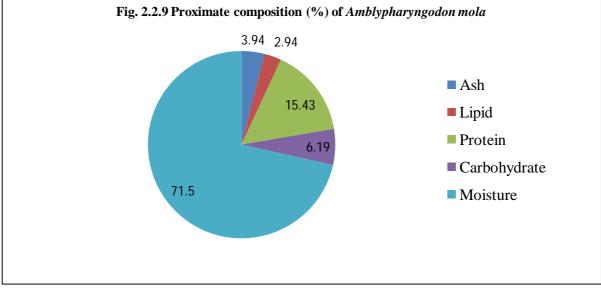

Amongst the ten fish species, *Channa gachua* (Cheng) contained the maximum content of protein (19.85 g/100g) whereas the lowest value (14.26g/100g) of the same was possessed by *Macrognathus pancalus*. The amount of protein content ranged from 14.26 to 19.85g/100g. All the fish species were rich in protein and can be regarded as vital source of protein for human nutrition. The value of the protein contents of the selected fish species did not differ too much. It might be due to their similar absorption capability and conversion potentials of essential nutrients from the local environment (Adewole et. al., 2003). The good amounts of protein provided they are having a balanced amino acid. Fishes are advantageous due to their proteins of high digestibility (Albert, 1998). Several researchers have found richer protein contents when they investigated on fresh water fish species collected from different countries of the world (Aboluade & Abdullahi, 2005). For daily consumption, 24-56 g, 13-19 g and 71 g proteins are required by adult pregnant and lactating mothers respectively (Anon, 2002). It has been found

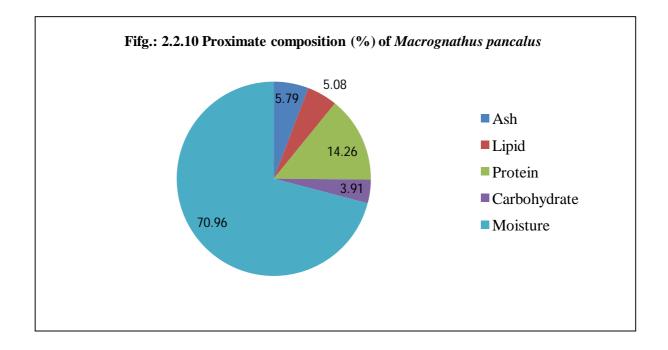



that protein-calories malnutrition stands as primary factor responsible for nutritional pathology (Roger et al., 2005).









The lipid contents of the fish species experimentally ranges from 1.58 to 11.09 g/100g. The highest amount of lipid was shown by Chanda nama. Amongst them, Xenentodon cancila (Kokila) fish possessed the least amount of lipid. The difference in the lipid contents may be explained by the fact that the fishes show variations in their nutrition contents with the variation of season, species and geographical changes. Moreover, age variation and maturity in the same species may highlight significant changes in the total lipid (Piggot and Tucker, 1990). Usually the fat content changes more than any other proximate components of fish and it flashes on the variation in the way of storing fat in the particular species and the content are varied by the changing lifecycle and the availability of food of the species at the time when, sampled (Ababouch, 2005). The species of indigenous major carps are familiar as lean fish which store fat on the liver (Abobouch, 2005), whereas the migratory fishes like Ilish having high amount of dark muscle are said to be highly fatty (Alamentals, 2012). High lipid content of H. Ilisha was reported by many workers (Rao et al., 2012, Mohanty et al., 2012). The higher lipid content of Chanda nama could be attributed to relative feeding habits (Orban et al., 2007). Lipids and fatty acids play a vital role in membrane biochemistry and membrane mediated processes like as osmoregulation, nutrient assimilation and transport in fishes. The amount of lipids in fish also changes within species and habitat (Kumaran et al., 2013 and Das et al., 1978).

The amount of lipid contents in fishes differ greatly from species to species which is keenly related to food intake, sexual changes in context to spawning (Oduor-Odote et al, 2008). Within different parts of body also lipid contents show variation and even in different seasons the contents of lipid are differed. Higher lipids may be caused due to preparation for spawning. It was reported by Asma and Ashraf (2010) that there exists a linear relation between protein and age/size of fish in three carnivorous fish species (*Wallagn altu, Mystus seenghala & Channa morutius*) but totally opposite in case of lipid contents as there was steady decline in this parameter with increase in size.

The lipid contents of fish species were enormously varied as documented by many workers. Hossain et al. (2015) reported that *Amblypharyngodon mola* showed the maximum (6.28 ± 0.75) lipid content but in present study the same fish species possessed only 2.94% of lipid. The difference in value might be justified by different geographical positions. The highest lipid contents of *Chanda nama* (11.09%) followed by *Macrognathus pancalus*, *Trichogaster fasciata*, *Barilius vagra*, *N. maydelli* and *Channa gachua* indicated the particular small indigenous species to be nutritionally enriched and decent food suppliments.

The moisture contents of the small fish species under experimentation ranged from (68.12%) to (77.21%). The highest moisture value was contained by *Rasbora daniconius* and the lowest in *Chanda nama*, The moisture contents of the selected fishes were negatively correlated with the lipid contents and this fact was agreed with many previous researches (Jessica R. Begard et al, 2015). According to the study of Mazumder et al, the fish moisture steadily decreases with increase in body lipid. As per the report of Marichamy et al 2012, the value of moisture content of marine fishes averaged (74%). Generally freshwater fishes were experimentally established to have low lipid content (Zhimin Jhang et al. 2014) and high moisture contents. Present study revealed the finding of previous researchers to highlight good moisture contents of all the selected small fishes for study.

The ash contents of the fishes under study ranged from (1.73 %) to (5.79 %). The present report revealed the findings of previous researchers. According to the research work of Mazumder et al, 2008, the ash contents of *A. Coila* and *Amblypharyngodon mola* were also varied within (1.6 % to 3.2 %. Lower values of ash contents were reported in the experiment of Devadsan et al. (1978) on six freshwater fishes, *L. rohita* (1.31%), *Catla Catla* (0.93%), *Cirrihinus cirrhosus* (0.91%) and *Wallagn atta* (0.72%). The ash contents reflect the mineral concentration present in the fish species (Eddy et al., 2004, FAO, 2005).

All the ten fish species under study showed low carbohydrate contents except *Amblypharyngodon mola* (6.19%), *Barilius vagra* (5.20%), *Rasbora daniconius* (4.31%) and Macrognathus *pancalus* (3.91%) and. Usually fishes have very low carbohydrate contents

(USDA 2010). The poor contents of carbohydrates in the fishes may be attributed to the fact that glycogen has not much contribution to the reserves in the tissues of fish body (Das and Sahu, 2001 & Jayasre et al., 1994). There are very few fish species which are having higher values of carbohydrate contents. In the research report of Kumar et al., 2014, *Sardinella longiceps & Stolephorus* were having the values of carbohydrate contents 0.358% and 0.332% respectively. The present report of the lower carbohydrate contents of the studied fish species agreed with the research finding of S. Sutharsiny et al 2011. As a whole the proximate composites of fishes are widely varied with variations of enviormental conditions (Boran and Karacham, 2011).

4.5 Amino acid profile

The following are the HPLC Chromatogram of amino acid profile of standard amino acid solutions along with those of the different fish samples.

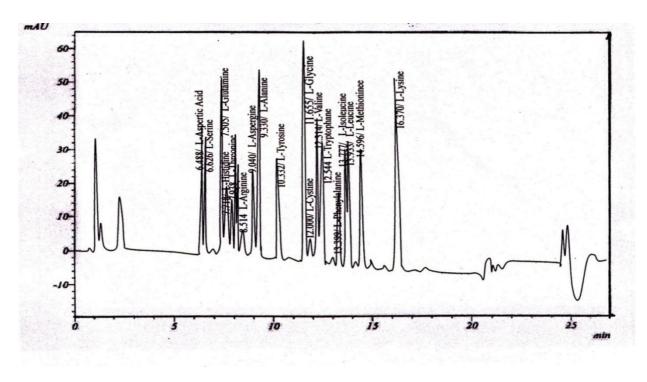


Fig.: 2.3.1 HPLC Chromatogram of Amino acids of Standard Amino acid solution

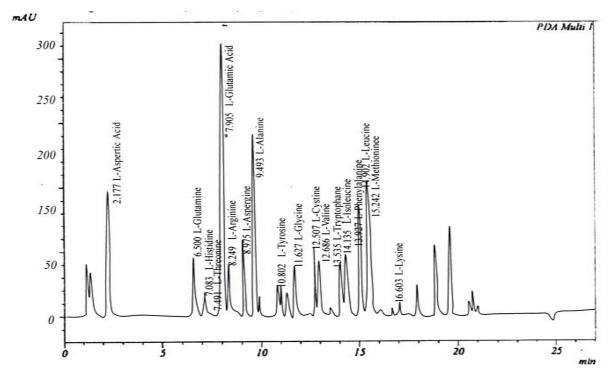


Fig.: 2.3.2 HPLC Chromatogram of Amino acids of Barilius vagra

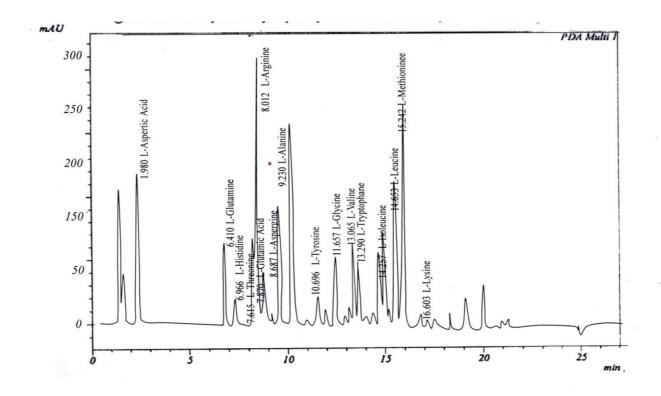


Fig.: 2.3.3 HPLC Chromatogram of Amino acids of Neoeucirrhichthys maydelli

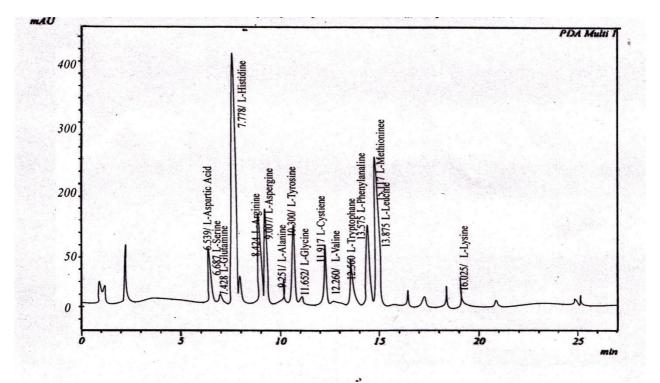


Fig.:2.3.4 HPLC Chromatogram of Amino acids of Chanda nama

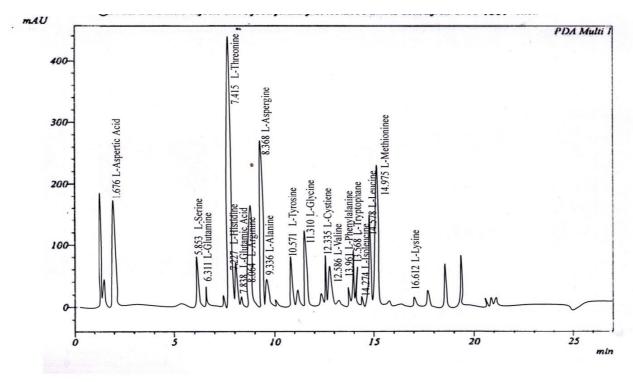


Fig.: 2.3.5 HPLC Chromatogram of Amino acids of Channa gachua

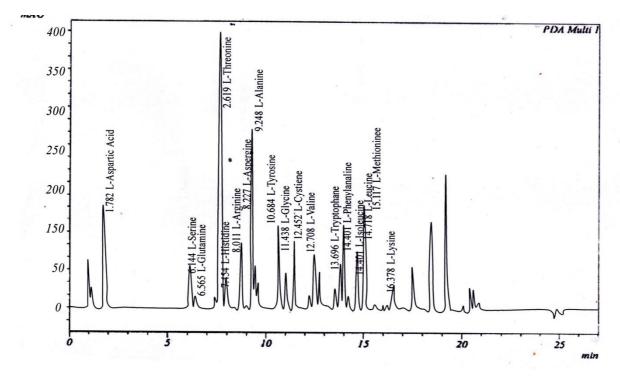


Fig.:. 2.3.6 HPLC Chromatogram of Amino acids of Rasbora daniconius

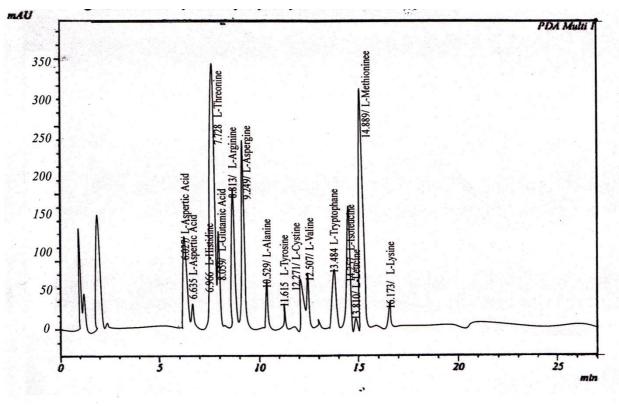


Fig.: 2.3.7 HPLC Chromatogram of Amino acids of Channa punctatus

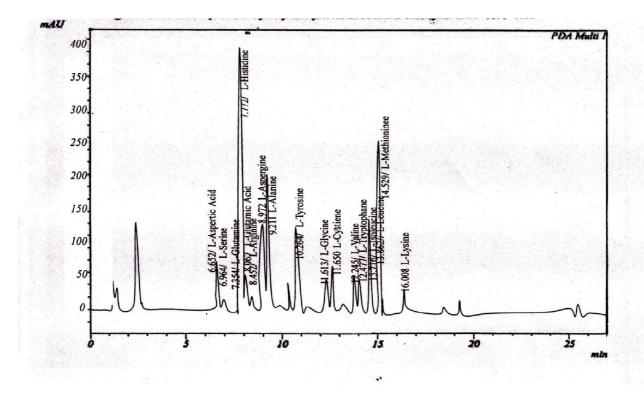


Fig.:. 2.3.8 HPLC Chromatogram of Amino acids of Trichogaster fasciata

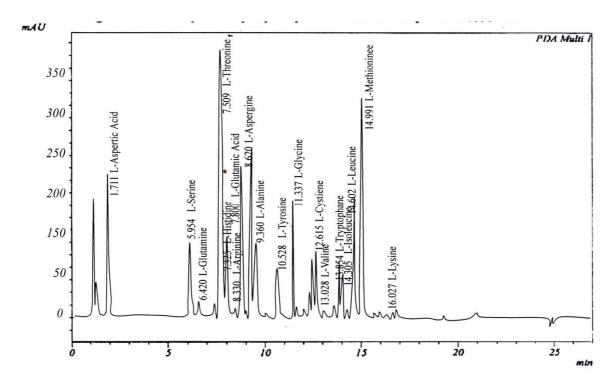


Fig.: 2.3.9 HPLC Chromatogram of Amino acids of Xenentodon cancila

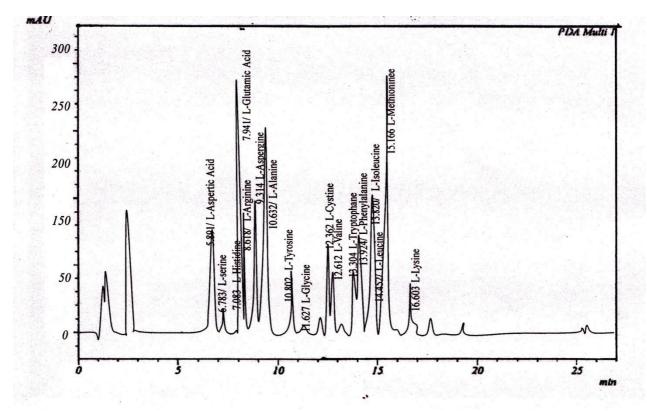


Fig.: 2.3.10 HPLC Chromatogram of Amino acids of Amblypharyngodon mola

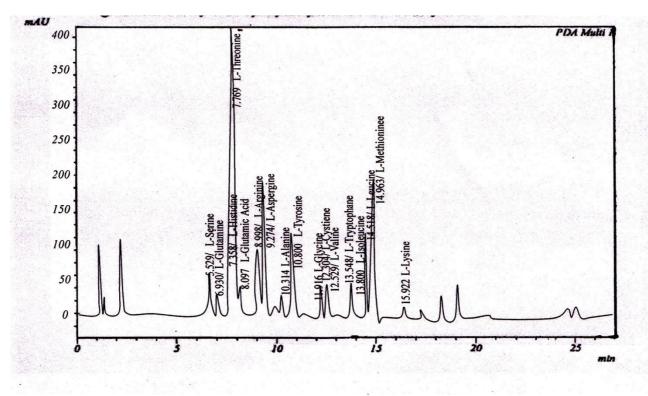


Fig.: 2.3.11 HPLC Chromatogram of Amino acids of Macrognathus pancalus

The data obtained from the HPLC chromatogram of standard amino acid solutions along with those of the different fish samples are shown in the following tables.

Peak#	Name	Ret.	Area	Area %
		Time		
1	L-Aspertic acid	6.488	205025	5.706
2	L-Serine	6.628	177134	4.930
3	L-Glutamine	7.502	252449	7.026
4	L-Hisidine	7.718	102270	2.846
5	L-Threonine	7.938	84588	2.354
6	L-Glutamic acid	8.158	201573	5.610
7	L-Arginine	8.514	74724	2.080
8	L-Aspergine	9.040	156411	4.353
9	L-Alanine	9.330	301622	8.394
10	L-Tyrosine	10.332	146217	4.069
11	L-Glycine	10.655	362129	10.078
12	L-Cystiene	12.000	47427	1.320
13	L-Valine	12.314	256453	7.137
14	L-Tryptophane	12.544	205993	5.733
15	L-Phenylalanine	13.399	111644	3.107
16	L-Isoleucine	13.777	191301	5.324
17	L-Leucine	13.933	193695	5.390
18	L-Methionine	14.596	207553	5.776
19	L-Lysine	16.370	315002	8.767
Total			3593175	100.000

Table: 1.5 PeakTable for HPLC Data of amino acid/Mix std 10ppm solution

Table: 1.6 PeakTable for HPLC Data of amino acid of Barilius vagra

Peak #	Name	Area	Area %
1	L-Alanine	1686235	6.574
2	L-Arginine	581975.1	2.269
3	L-Asperginine	1104260	4.305
4	L-Aspartic acid	2327900	9.075
5	L-Cystine	89534.63	1.349
6	L-Glutamic acid	7834280	30.541
7	L-Glutamine	671509.7	2.618
8	L-Glycine	343216.1	1.338
9	L-Tyrosine	417828.3	1.629
10	L-Histidine	223836.6	0.873
11	L-Isoleucene	596897.5	2.327
12	L-Leucine	1477321	5.759
13	L-Methionine	7311995	28.505
14	L-Phenylalanine	149224.4	0.582
15	L-Valine	835656.5	3.258
Total		25651671	100.000

Peak #	Name	Area	Area %
1	L-Alanine	880423.8	1.999
2	L-Arginine	5610837	12.741
3	L-Asperginine	149224.4	0.339
4	L-Aspartic acid	3148634	7.150
5	L-Glutamic acid	268603.9	0.610
6	L-Glutamine	1149028	2.609
7	L-Glycine	104457.1	0.237
8	L-Histidine	343216.1	0.779
9	L-Isoleucene	19399169	44.053
10	L-Leucine	850579	1.932
11	L-Methionine	10147258	23.043
12	L-Tryptophan	940113.6	2.135
13	L-Valine	1044571	2.372
Total		44036114	100.000

Table: 1.7 PeakTable for HPLC Data of amino acid of Neoeucirrhichthys maydelli

Table: 1.8 PeakTable for HPLC Data of amino acid of Chanda nama

Peak #	Name	Area	Area %
1	L-Alanine	1999607	8.634
2	L-Arginine	238759	1.031
3	L-Asperginine	1581778	6.830
4	L-Aspartic acid	119379.5	0.515
5	L-Glutamic acid	417828.3	1.804
6	L-Proline	298448.8	1.289
7	L-Serine	969958.5	4.188
8	L-Tyrosine	492440.5	2.126
9	L-Histidine	12475158	53.866
10	L-Isoleucene	701354.6	3.028
11	L-Leucine	432750.7	1.869
12	L-Lysine	432750.7	1.869
13	L-Phenylalanine	1716080	7.411
14	L-Threonine	149224.4	0.644
15	L-Tryptophan	552130.2	2.384
16	L-Valine	581975.1	2.513
Total		23159624	100.000

Peak #	Name	Area	Area %				
1	L-Alanine	208914.1	0.712				
2	L-Asperginine	1432554	4.885				
3	L-Aspartic acid						
4	L-Cystine	432750.7	1.475				
5	L-Glutamic acid	999803.3	3.410				
6	L-Glutamine	179069.3	0.611				
7	L-Glycine	1.832					
8	L-Serine	805811.6	2.748				
9	L-Tyrosine	925191.1	3.155				
10	L-Histidine	0.407					
11	Leucine	1074416	3.664				
12	L-Methionine	6849399	23.359				
13	L-Phenylalanine	552130.2	1.883				
14	L-Threonine	12937754	44.122				
15	L-Tryptophan	298448.8	1.018				
16	L-Valine	402905.8	1.374				
Total		29322590	100.000				

Table: 1.9 PeakTable for HPLC Data of amino acid of Channa gachua

Table: 1.10 PeakTable for HPLC Data of amino acid of Rasbora daniconius

Peak #	Name	Area	Area %	
1	L-Alanine	1313175	5.110	
2	L-Arginine	343216.1	1.336	
3	L-Asperginine	880423.8	3.426	
4	L-Aspartic acid	1432554	5.575	
5	L-Cystine	358138.5	1.394	
6	L-Glutamine	89534.63	0.348	
7	L-Glycine	417828.3	1.626	
8	L-Serine	522285.3	2.033	
9	L-Tyrosine	1283330	4.994	
10	L-Histidine	134301.9	0.523	
11	L-Leucine	805811.6	3.136	
12	L-Methionine	4043981	15.738	
13	L-Phenylalanine	3715687	14.460	
14	L-Threonine	9714507	37.805	
15	L-Tryptophan	328293.6	1.278	
16	L-Valine	313371.2	1.220	
Total		25696438	100.000	

Peaks	Name	Area	Area%
1	L-Aspertic Acid	10661	1877
2	L-Serine	726918	124491
3	L- Glutamine	7208	1533
4	L- Histidine	118965	26831
5	L- Glutamic Acid	456009	95177
6	L- Arginine	822052	190481
7	L- Aspergine	1873421	267301
8	L-Alanine	299843	64764
9	L-Tyrosine	7448	1504
10	L- Glycine	28736	6432
11	L- Cystiene	563620	96844
12	L- Valine	364923	74289
13	L- Tryptophane	52106	9022
14	L- Phenylalanine	444185	82791
15	L- Isoleucine	399426	70377
16	L- Leucine	1156676	179436
17	L- Methionine	2122639	344415
18	L- Lysine	13773	2277
19	L- Threonine	2748204	373777
Total		12216812	2013619

Table: 1.11 PeakTable for HPLC Data of amino acid of Channa punctatus

Table: 1.12 PeakTable for HPLC Data of amino acid of Trichogaster fasciata

Peaks #	Name	Area	Area%		
1	L-Aspertic Acid	557604	5.445		
2	L-Serine	73029	0.713		
3	L- Glutamine	3882	0.038		
4	L- Histidine	3750594	36.624		
5	L- Glutamic Acid	291258	2.844		
6	L- Arginine	56746	0.554		
7	L- Aspergine	835431	8.158		
8	L-Alanine	1586643	15.494		
9	L-Tyrosine	250786	2.449		
10	L- Glycine	4334	0.042		
11	L- Cystiene	9535	0.093		
12	L- Valine	541874	5.291		
13	L- Tryptophane	360751	3.523		
14	L- Phenylalanine	62757	0.613		
15	L- Isoleucine	385485	3.764		
16	L- Leucine	321482	3.764		
17	L- Methionine	1135823	11.091		
18	L- Lysine	12658	0.123		
Total		10240670	100.000		

Peak #	Name	Area	Area %		
1	L-Alanine	447673.1	1.713		
3	L-Asperginine	1611623	6.168		
4	L-Aspartic acid	1507166	5.768		
5	L-Cystine	402905.8	1.542		
6	L-Glutamic acid	1089338	4.169		
7	L-Glutamine	89534.63	0.343		
8	L-Glycine	626742.4	2.399		
10	L-Serine	865501.4	3.312		
11	L-Tyrosine	492440.5	1.885		
12	L-Histidine	119379.5	0.457		
14	L-Leucine	1119183	4.283		
16	L-Methionine	8580402	32.838		
17	L-Phenylalanine	895346.3	3.427		
18	L-Threonine	7729823	29.583		
19	L-Tryptophan	552130.2	2.113		
Total		26129189	100.000		

Table: 1.13 PeakTable for HPLC Data of amino acid of Xenentodon cancila

Table: 1.14 PeakTable for HPLC Data of amino acid of Amblypharyngodon mola

Peaks	Name	Area	Area%		
1	L-Aspertic Acid	6380	0.000		
2	L-Serine	4554	0.000		
3	L- Glutamine	49764	0.000		
4	L- Histidine	1911	0.000		
5	L- Glutamic Acid	110495	0.000		
6	L- Arginine	1901102	0.000		
7	L- Aspergine	23662	0.000		
8	L-Alanine	1653280	0.000		
9	L-Tyrosine	333664	0.000		
10	L- Glycine	2961	0.000		
11	L- Cystiene	602640	0.000		
12	L- Valine	379990	0.000		
13	L- Tryptophane	53454	0.000		
14	L- Phenylalanine	18344	0.000		
15	L- Isoleucine	367135	0.000		
16	L- Leucine	31106	0.000		
17	L- Methionine	1883656	0.000		
18	L- Lysine	30757	0.000		
Total		7454856			

Peaks	Name	Area	Area%		
#					
1	L-Serine	514099	4.149		
2	L- Glutamine	89692	0.724		
3	L- Histidine	2728	0.022		
4	L- Threonine	4239364	34.210		
5	L- Giutamic	227660	1.837		
	Acid				
6	L- Arginine	702832	5.672		
7	L-Aspergine	1766264	14.253		
8	L-Alanin	186753	1.507		
9	L- Tyrosine	774386	6.249		
10	L- Glycine	5530	0.045		
11	L- Cystiene	401298	3.283		
12	L- Valine	282856	2.283		
13	L-Trytophane	58992	0.476		
14	L- phenylanine	360275	2.907		
15	L- Isoleucine	251355	2.028		
16	L- leucine	1000536	8.074		
17	L-Methionine	1514883	12.225		
18	L- Lysine	12533	0.101		
Total		12392037	100.000		

Table: 1.15 PeakTable for HPLC Data of amino acid of <i>Macrognathus pancalus</i>

	*	L-	L-	L-	L-Aspartic	L-	L-Glutamic	L-	L-	L-	L-
Sl. No.	Fish species	Alanine	Arginine	Asparagine	acid	Cystine	acid	Glutamine	Glycine	Proline	Serine
		g/100g	g/100g	g/100g	g/100g	g/100g	g/100g	g/100g	g/100g	g/100g	g/100g
1	Barilius vagra	1.13	0.39	0.74	1.56	0.06	5.25	0.45	0.23	BDL	BDL
2	N. maydelli	0.59	3.76	0.10	2.11	BDL	0.18	0.77	0.07	BDL	BDL
3	Chanda nama	1.34	0.16	1.06	0.08	BDL	0.28	BDL	BDL	0.20	0.65
4	Channa gachua	0.14	BDL	0.96	1.05	0.29	0.67	0.12	0.36	BDL	0.54
5	Rasbora daniconius	0.88	0.23	0.59	0.96	0.24	BDL	0.06	0.28	BDL	0.35
6	Channa punctatus	0.26	0.72	0.78	BDL	0.31	0.31	BDL	0.14	0.12	0.47
7	Trichogatser fasciata	1.43	0.21	1.46	0.74	BDL	0.39	BDL	BDL	0.24	0.11
8	Xenentodon cancila	0.30	BDL	1.08	1.01	0.27	0.73	0.06	0.42	BDL	0.58
9	Amblypharyngodon mola	0.37	BDL	0.89	BDL	0.43	1.66	BDL	0.43	1.66	BDL
10	Macrognathus pancalus	0.09	1.33	1.59	BDL	1.19	0.16	BDL	BDL	0.11	0.41

Table: 2.1a Amino acid profile of the selected fish species

Table: 2.1b Amino acid profile of the selected fish species

Sl. No	Fish species	L-Tyrosine (g/100g)	L- Histidine (g/100g)	L- Isoleucine (g/100g)	L- Leucine (g/100g)	L- Lysine (g/100g)	L-Meth- -ionine(g/100g)	L-Phenyl- -alanine (g/100g)	L- Threonine (g/100g)	L-Trypto- phan (g/100g)	L- Valine (g/100g)
1	Barilius vagra	0.28	0.15	0.40	0.99	BDL	4.90	0.10	BDL	BDL	0.56
2	N maydelli	BDL	0.23	0.13	0.57	BDL	6.80	BDL	BDL	0.63	0.70
3	Chanda nama	0.33	8.36	0.47	0.29	BDL	1.15	0.10	BDL	0.37	0.39
4	Channa gachua	0.62	0.08	BDL	0.72	BDL	4.59	0.37	8.67	0.20	0.27
5	Rasbora daniconius	0.86	0.09	BDL	0.54	BDL	2.71	0.49	6.51	0.22	0.21
6	Channa punctatus	BDL	0.18	0.24	2.68	BDL	9.42	0.30	3.27	0.06	0.23
7	Trichogatser fasciata	0.47	10.0	0.51	0.45	BDL	1.49	0.15	BDL	0.48	0.58
8	Xenentodon cancila	0.33	0.08	BDL	0.75	BDL	5.75	0.60	5.18	0.37	BDL
9	Amblypharyngodon mola	BDL	0.16	BDL	BDL	BDL	0.29	BDL	0.17	0.07	0.31
10	Macrognathus pancalus	0.75	BDL	0.19	0.73	BDL	1.03	0.46	7.07	BDL	1.03

BDL=Below Detectable Limit

The amino acid contents of the fish species selected is shown in table 1.4 (a) and 1.4 (b) Dietery protein provide substrates needed for synthesizing body proteins and also other nitrogencontaining compounds and the amount of amino acid contents in food proteins determine the nutritional quality of protein (Young et al., 1994). In the present study the amount of almost all the essential and non essential amino acids in the selected fish species were recorded. The presence of non essential amino acids like Alanine, Aspartic acid, glycine, serine, Tyrosine were recorded to be in less quantity in the fish species. Fair content of glutamic acid in *Barilius vagra* was resulted by the present study. The highest contents (10.0%) of essential amino acid histidine was found in *Trichogatser fasciata* which was followed by (8.36%) in *Chanda nama*. Another essential amino acid Methionine was highly quantified (9.42%) in *Channa gachua* followed by (6.80%) & (5.75%) in N. maydelli and *Xenentodon cancila* respectively. Threonine, the another non essential amino acid was high in *Channa gachua* (8.67%) followed by (7.07%), (6.51%) & (5.18%) in *Macrognathus pancalus*, *Rasbora daniconius* and *Xenentodon cancila* respectively. Body composition is found to be changing from one species to another species and also habite (Ashraf et al., 2011).

As per the report of Joint FAO/WHO/UNU Expert consultation on protein and amino acid requirements in human nutrition, WHO Technical Report Series No. 935, 2007, the necessary amounts of amino acid required by healthy living of an adult body are as follows : Histidine (15), isolucine (30), Leucine (59), lysine (45), methionine (16), cystine (6), threonine (15), tryotophan (60) and valine (26). Oluwaniyi et al., 2009 found the presence of higher amount of glutamic acid in their four studied species Clupea harengus, Scomber scombrus, Trachurus trachurus and Urophycis tenuis. This result shows similarity with the present work that among all the non essential amino acids, glutamic acid was highlighted in all the ten studied species. In the language of Ashraf et al., 2011, the amount of phenylalanine, valine, arginine, lysine and tyrosine were in higher contents in grass carp whereas the contents of alanine, glutamic acid, and methylalanine and valine were mostly prominent in silver carp. This was justified by limiting feeding scope of grass crap than silver carp. It was concluded the grass crap we superior to silver crap. The fishes which feed on low protein diet get more effected by essential amino acids than the fishes which consume high protein diet (Ashraf et al., 2011).

Fish muscle is made of very good composition of amino acid. It is the vital source of nutrients as well as requisite contents of amino acid that are easy to digest by all age groups of human being (Venugopal et al., 1996 & Yanez, et al., 1976). Fish bodies are covered by a shawl of water mass, hence the muscle fibres need lesser structural support compared to the muscles of

land animals (Huttin et al., 1976). In the present work of the essential amino acids like phenylalanine, valine, tryptophan, threonine, isolucine, methionine, histidine, arginine, leucine and lysine were detected.

Methionine is one of the most important amino acid lacking of which shows deficiency symptoms prominently. It helps in the production of sulphur which helps normal metabolism. It is also required for the synthesis of haemoglobin and glutathione which fight against free radicals (Akhirevbulu et al., 2013). The dominating amino acids of proteins are known to be the precursors of several coenzymes, hormones , nucleic acids and other molecules which meet the essential requirement for life. A sufficient intake of dietary protein is needed to strength cellular integrity and function and also for good health and reproduction (Haeaibam Romsharsha et al., 2014).

As per the data the Hawaibam Romharsha et al., 2014, glutamic acid was amounted to be the highest (20.04%) in semiplotus manipurensis in comparison to other two studied fish species N. stracheyi & L. pangusia. In the present study, Barilius vagra contained the highest content of glutamic acid (5.25 gm) amongst the ten studied species. Aspartic acid was recoded to be in significant contents in all the studied fish species in the work of Hawaibam et al 2014. But in the present work the said non essential amino acid, was found to be of lower amounts. It may be explained by the differences in their feeding habits. The essential amino acids like Methionine, Thremine, Valine, Histidine, Phenylalanine, Leucine were recorded to be present in more or less good amounts. Histidine was recorded to be highest in Trichogatser fasciata (10.0) followed by *Chanda nama* (8.36). Threonine was found to be mostly contained by *Channa gachua* (8.67) which was followed by Macrognathus pancalus (7.07), Rasbora daniconius (6.51) and Xenentodon cancila (5.18). Threonine is widely used for the treatment of nerve disorders including spinal spasticity, multiple sclerosis familial spastic paraparesus and also amyotrophic lateral sclerosis (K. Hyland, 2007). In accordance with the result analysis of Mahanty et al., 2014, amongst 27 food fishes, the species S. Waitei contained the highest content of Threonine. From the present investigation it may be concluded that the small food fish Channa gachua of BTAD, Kokrajhar area can be used to serve as a natural supplementation for threonine. Another very important branched chain amino acid, isoleucine is required for the formation of muscle as well as propagation of the normal growth of the same (Charlton, 2006). Although in lesser amount, Isoleucine was found to be present in all the studied species. The patients having chronic renal failure face the complicacy of low plasma level of the branched chain amino acids like leucine, isoleucine and valine when they are under hemodialysis. The crucial abnormalities in the plasma amino acid pool can be recovered with the proper high protein supplementation (Bordin et al., 2013). The studied food fishes can be recommended as ideal dietary supplementations for human health.

4.6 Fatty acid Profile

The following are the GC-MS Chromatogram of fatty acids profile of the different fish samples.

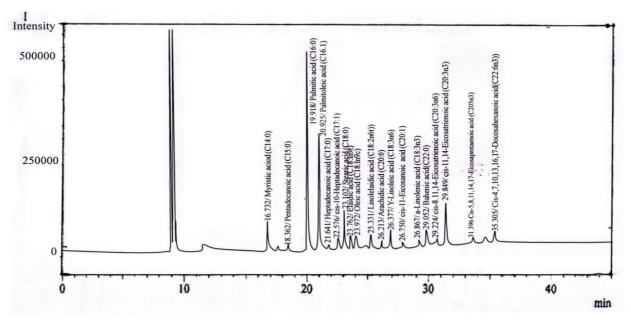


Fig.: 2.4.1 GC-MS Chromatogram of Fatty acids in Barilius vagra

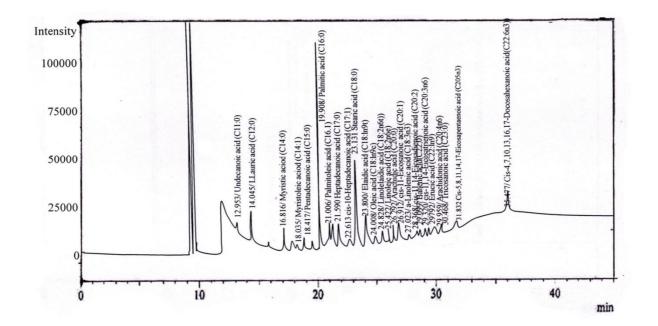


Fig.: 2.4.2 GC-MS Chromatogram of Fatty acids in Neoeucirrhichthys maydelli

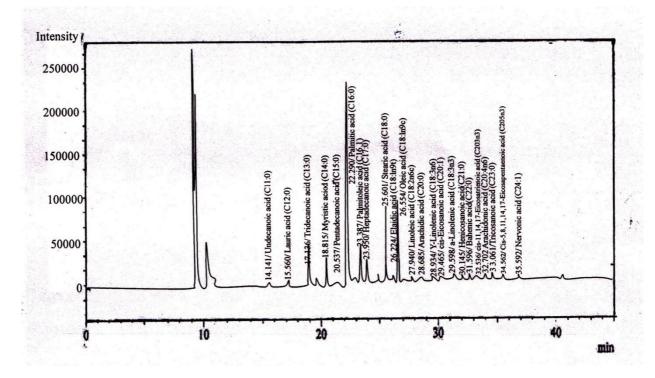


Fig.: 2.4.3 GC-MS Chromatogram of Fatty acids in Chanda nama



Fig.: 2.4.4 GC-MS Chromatogram of Fatty acids in Channa gachua

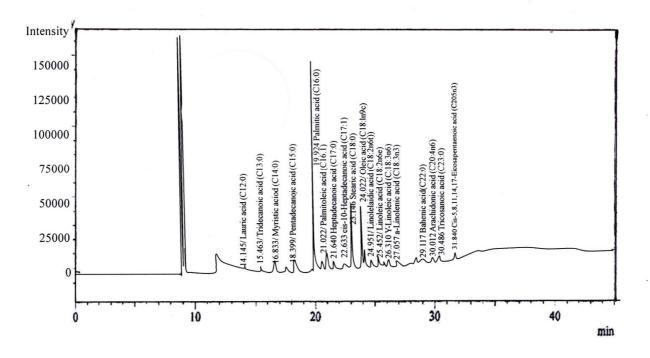


Fig.: 2.2.4 GC-MS Chromatogram of Fatty acids in Rasbora daniconius

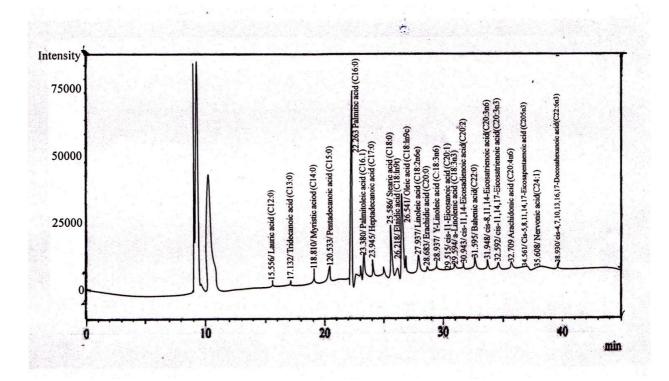


Fig.: 2.4.6 GC-MS Chromatogram of Fatty acids in Channa punctatus

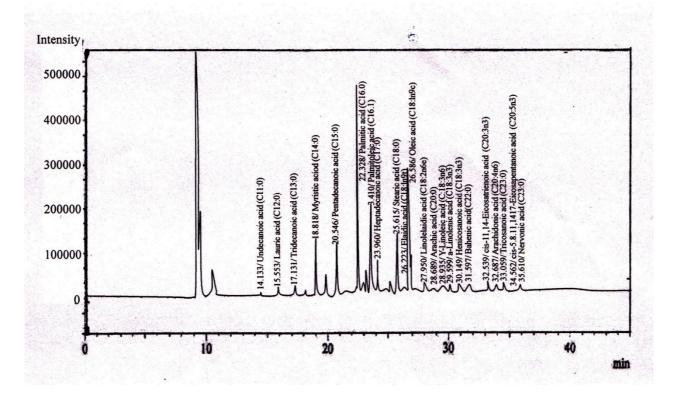


Fig.: 2.4.7 GC-MS Chromatogram of Fatty acids in Trichogaster fasciata

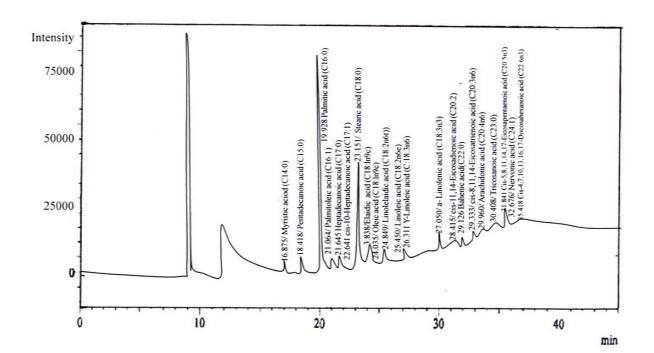


Fig.: 2.4.8 GC-MS Chromatogram of Fatty acids in Xenentodon cancila

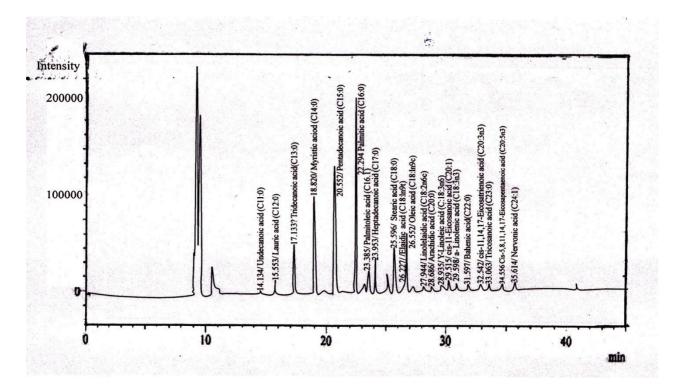


Fig.: 2.4.9 GC-MS Chromatogram of Fatty acids in Amblypharyngodon mola

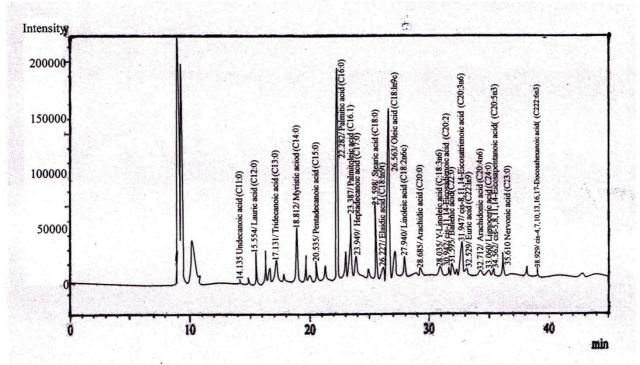


Fig.: 2.4.10 GC-MS Chromatogram of Fatty acids in Macrognathus pancalus

The data obtained from the GC-MS chromatogram of fatty acid profile of the different fish samples are shown in the following tables.

Peak#	Name	Ret.Time	Area	Height	Area%
1	Myristic Acid(C14:0)	16.732	499216	69300	5.9788
2	Pentadecanoic acid(C15:0)	18.632	101566	10872	1.2522
3	Palmitic acid(C16:0)	19.918	2888329	480160	31.5915
4	Palmitoleic acid(C16:1)	20.925	1525163	275485	18.2658
5	Heptadecanoic acid(C17:0)	21.641	82088	7040	0.9831
6	Cis-10-Heptadecanoic acid(C17:1)	22.576	178438	23546	2.1370
7	Stearic acid (C18:0)	23.102	503541	92319	6.0306
8	Elaidic acid(C18:1n9t)	23.762	43953	8685	0.5264
9	Oleic acid(C18:1n96)	23.972	713903	95060	8.5499
10	Linoleic acid(C18:2n6c)	25.331	217218	29027	2.6015
11	Arachidic acid(C20:0)	26.213	17648	3237	0.2114
12	Y-Linolenic acid(C18:3n6)	26.377	58973	6319	0.7063
13	Cis-11-Eicosenoic acid(C20:1)	26.750	28418	7377	0.3403
14	a-Linoleic acid(C18:3n3)	26.867	357499	18417	4.2815
15	Behenic acid(C22:0)	29.052	14799	2853	0.1772
16	Cis-8,11,14-Eicosatrienoic acid(C20:3n6)	29.224	9.224 59707 5878	5878	0.7151
17	Cis-11,14,17-Eicosatrienoic acid(C20:3n3)	29.849	246559	43537	2.9529
18	Cis-5,8,11,14,17-Eicosapentaenoic acid(C20:5n3)	31.396	575218	98695	6.8890
19	Cis-4,7,10,13,16,17-Docosahexanoica acid(C22:6n3)	35.305	234600	37837	2.8096
Total			8349833	1345614	100.0000

Table:2.1.1 Peak Table for Fatty acids in Barilius vagra

Table: 2.2.2 .Peak Table Fatty acids of Neoeucirrhichthys maydelli

Peak#	Name	Ret.Time	Area	Height	Area%
1	Undecanoic acid(C11:0)	12.953	18833	2687	0.9604
2	Lauric acid(C12:0)	14.013	90372	12434	4.6086
3	Myristic acid(C14:0)	16.816	97433	30890	4.9687
4	Myristoleic acid(C14:1)	18.035	14470	1157	0.2379
5	Pentadecanoic acid(C15:0)	18.117	19192	1802	2.5239
6	Palmitic acid(C16:0)	19.908	617612	99752	31.4957
7	Palmitoleic acid(C16:1)	21.006	50963	7348	2.5989
8	Heptadecanoic acid(C17:0)	21.590	99340	10716	5.0660
9	Cis-10-Heptadecanoic acid(C17:1)	22.613	24089	2312	1.2285
10	Stearic acid(C18:0)	23.131	277120	41882	14.1320
11	Elaidic acid(C18:9nt)	23.800	24131	4826	1.2306
12	Oleic acid(C18:1n9c)	24.008	379892	40517	19.3720
13	Linolelaidic acid(C18:2n6t)	24.828	11427	1760	0.5827
14	Linoleic acid(C18:2n6c)	25.422	50091	5966	2.5544
15	Arachidic acid(C20:0)	26.292	9158	1276	0.4676
16	Cis-11,14-Eicosadienoic acid(C20:1)	26.912	37539	6963	1.9143
17	a-Linolenic acid(C18:3n3)	27.023	33815	4036	1.7244
18	Cis-11,14-Eicosadienoic acid(C20:2)	28.368	8515	1252	0.4343
19	Behenic acid(C22:0)	29.099	13268	2041	0.6766
20	Cis-8,11,14-Eicosatrienoic acid(C20:3n6)	29.320	7793	978	0.3974

21	Erucic acid(C22:1n9)	29.792	3801	652	0.1938
22	Arachidonic acid(C20:4n6)	29.959	25259	3458	1.2881
23	Tricosanoic acid(C23:0)	30.468	4139	772	0.2111
24	Cis-5,8,13,16,17-Eicosapentaenoic acid(C20:5n3)	31.832	9485	1493	0.4837
25	Cis-4,7,10,13,16,17-Docosahexanoica acid(C22:6n3)	35.447	2921	431	0.1490
Total			1960938	270401	100.0000

Table: 2.2.3.Peak Table of Fatty acids of Chanda nama

Peak#	Name	Ret.Time	Area	Height	Area%
1	Undecanoic acid(C11:0)	14.141	7633	2281	0.3794
2	Lauric acid(C12:0)	15.560	16225	4666	0.8064
3	Tridecanoic acid(C13:0)	17.136	22471	6521	1.1168
4	Myristic acid(C14:0)	18.815	142297	41400	7.0722
5	Pentadecanoic acid(C15:0)	20.537	94133	27371	4.6785
6	Palmitic acid(C16:0)	22.290	813944	218854	40.4534
7	Palmitoleic acid(C16:1)	23.387	121281	35525	6.0277
8	Heptadecanoic acid(C17:0)	23.950	78950	23362	3.9239
9	Stearic acid(C18:0)	25.601	259948	76815	12.9195
10	Elaidic acid(C18:9nt)	26.224	23917	4223	1.1887
11	Oleic acid(C18:1n9c)	26.554	351279	82297	17.4588
12	Linoleic acid(C18:2n6c)	27.940	17138	4816	0.8518
13	Arachidic acid(C20:0)	28.685	14408	4264	0.7161
14	Y-Linolenic acid(C18:3n3)	28.934	4292	1167	0.2133
15	Cis-11-Eicosenoic acid(C20:1)	29.465	5922	1284	0.2943
16	a-Linolenic acid(C18:3n3)	29.598	5558	1655	0.2762
17	Henicosanoic acid(C21:0)	30.145	1841	612	0.0915
18	Behenic acid(C22:0)	31.596	9648	2776	0.4795
19	Cis-11,14,17-Eicosatrienoic acid(C20:3n3)	32.536	2523	664	0.1254
20	Arachidonic acid(C20:4n6)	32.702	1548	395	0.0770
21	Tricosanoic acid(C23:0)	33.061	2614	773	0.1299
22	Cis-5,8,11,14,17-Eicosapentaenoic acid(C20:5n3)	34.562	9010	2062	0.4478
23	Nervonic acid(C24:1)	35.592	5472	1611	0.2719
Total			2012052	545394	100.0000

Table: 2.2.4 Peak Table of Fatty acids of Channa gachua

Peak#	Name	Ret.time	Area	Height	Area%
1	Lauric acid(C12:0)	14.094	27351	3383	0.5718
2	Tridecanoic acid(C13:0)	15.482	1253	611	0.0889
3	Myristic acid(C14:0)	16.882	79115	8984	1.6541
4	Pentadecanoic acid(C15:0)	18.182	45883	1816	0.9593
5	Palmitic acid(C16:0)	19.939	1660477	306317	34.7171
6	Palmitoleic acid(C16:1)	20.989	165480	24574	3.4598
7	Heptadecanoic acid(C17:0)	21.620	97360	9589	2.0356
8	Cis-10-Heptadecanoic acid(C17:1)	22.615	31102	3272	0.7130
9	Stearic acid(C18:0)	23.153	508383	87111	10.6292
10	Elaidic acid(C18:9nt)	23.816	23983	4936	0.5011

11	Oleic acid(C18:1n9c)	24.022	1110275	188316	23.8107
12	Linolelaidic acid(C18:2n6t)	24.812	33186	58960	0.6938
13	Linoleic acid(C18:2n6e)	25.306	115371	61775	8.6843
14	Arachidic acid(C20:0)	26.260	26318	4844	0.5509
15	Cis-11-Eicosenoic acid(C20:1)	26.938	201737	37302	4.2179
16	a-Linolenic acid(C18:3n3)	27.017	78036	16351	1.6316
17	Cis-11,14-Eicosadienoic acid(C20:2)	28.365	37101	4052	0.7757
18	Behenic acid(C22:0)	29.101	23536	4173	0.4921
19	Cis-8,11,14-Eicosatrienoic acid(C20:3n6)	29.298	26336	3422	0.5506
20	Erneic acid(C22:1n9)	29.790	21030	3988	0.4397
21	Arachidonic acid(C20:4n6)	29.940	91050	14177	1.9037
22	Tricosanoic acid(C23:0)	30.482	5287	1116	0.1105
23	Cis-5,8,11,14,17-Eicosapentaenoic acid(C20:5n3)	31.840	19857	3399	0.4152
24	Nervonic acid(C24:1)	32.685	4207	831	0.0880
25	Cis-4,7,10,13,16,17-Docosahexanoica acid(C22:6n3)	35.437	13141	1997	0.2748
Total			4782885	805502	100.0000

Table: 2.2.5 .Peak Table of Fatty acids of Rasbora daniconius

Peak #	Name	Ret.time	Area	Height	Area%
1	Lauric acid(C12:0)	14.145	7166	820	0.3946
2	Tridecanoic acid(C13:0)	15.463	16821	1409	0.9262
3	Myristic acid(C14:0)	16.833	76951	8490	4.2371
4	Pentadecanoic acid(C15:0)	18.399	71080	7718	3.9138
5	Palmitic acid(C16:0)	19.924	79289 6	13680 9	43.6589
6	Palmitoleic acid(C16:1)	21.022	10586 0	10671	5.8289
7	Heptadecanoic acid(C17:0)	21.640	54401	5054	2.9955
8	Cis-10-Heptadecanoic acid(C17:1)	22.633	15485	1587	0.8527
9	Stearic acid(C18:0)	23.146	26610 9	40385	14.6526
10	Oleic acid(C18:1n9e)	24.022	30163 1	38062	16.6086
11	Linolelaidic acid(C18:2n6t)	24.851	7858	927	0.4327
12	Linoleic acid(C18:2n6e)	25.452	35562	3874	1.9581
13	Y-Linolenic acid(C18:3n6)	26.310	7961	1139	0.4383
14	a-Linolenic acid(C18:3n3)	27.057	20555	1375	1.1318
15	Behenic acid(C22:0)	29.117	12720	1720	0.7001
16	Arachidonic acid(C20:4n6)	30.012	4094	582	0.2251
17	Tricosanoic acid(C23:0)	30.486	4139	784	0.2279
18	Cis-5,8,11,14,17-Eicosapentaenoic acid(C20:5n3)	31.840	14827	2627	0.8161
Total			18161 16	26403 3	100.000 0

Table: 2.2.6 Peak Table of Fatty acids of Channa punctatus

Peak#	Name	Ret.Time	Area	Height	Area%
1	Lauric acid(C12:0)	15.556	4108	1236	0.6273
2	Tridecanoic acid(C13:0)	17.132	6059	1739	0.9253

3	Myristic acid(C14:0)	18.810	24051	6771	3.6730
4	Pentadecanoic acid(C15:0)	20.533	28166	8231	4.3013
5	Palmitic acid(C16:0)	22.263	235553	68936	35.9723
6	Palmitoleic acid(C16:1)	23.380	38317	9591	5.8515
7	Heptadecanoic acid(C17:0)	23.945	21435	6296	3.2734
8	Stearic acid(C18:0)	25.586	76169	22614	11.6321
9	Elaidic acid(C18:1n9t)	26.218	11773	1949	1.7979
10	Oleic acid(C18:1n9e)	26.541	126297	29779	19.2873
11	Linoleic acid(C18:2n6e)	27.937	24285	6639	3.7087
12	Arachidic acid(C20:0)	28.683	6228	1699	0.9511
13	Y-Linolenic acid(C18:3n6)	28.936	1627	453	0.2484
14	Cis-11-Eicosenoic acid(C20:0)	29.515	17029	3502	2.605
15	a-Linolenic acid(C18:3n3)	29.594	30082	974	0.4706
16	Cis-11,14-Eicosadienoic acid(C20:2)	30.943	4943	933	0.7549
17	Behenic acid(C22:0)	31.595	3894	1169	0.5947
18	Cis-8,11,14-Eicosatrienoic acid(C20:3n6)	31.948	1000	298	0.1527
19	Cis-11,14,17-Eicosatrienoic acid(C20:3n3)	32.532	3355	842	0.5123
20	Arachidonic acid(C20:4n6)	32.709	7484	1941	1.1429
21	Tricosanoic acid(C23:0)	33.058	1499	410	0.2290
22	Cis-5,8,11,14,17-Eicosapentaenoic acid(C20:5n3)	34.561	4103	1060	0.6266
23	Nervonic acid(C24:1)	35.608	1590	397	0.2428
24	Cis-4,7,10,13,16,17-Docosahexanoica acid(C22:6n3)	38.930	2771	608	0.4232
Total			654818	178067	100.0000

Table: 2.2.7 Peak Table of Fatty acids of Trichogaster fasciata

Peak#	Name	Ret.Time	Area	Height	Area%
1	Undecanoic acid(C11:0)	14.133	17070	5120	0.2973
2	Lauric acid(C12:0)	15.553	35604	10424	0.6200
3	Tridecanoic acid(C13:0)	17.131	33378	22357	1.3475
4	Myristic acid(C14:0)	18.818	36951 0	10509 3	6.4350
5	Pentadecanoic acid(C15:0)	20.546	37527 8	10720 6	6.5355
6	Palmitic acid(C16:0)	22.328	20798 91	44663 8	36.2214
7	Palmitoleic acid(C16:1)	23.410	67527 5	17207 8	11.7596
8	Heptadecanoic acid(C17:0)	23.960	21156 8	63088	3.6845
9	Stearic acid(C18:0)	25.615	43637 5	12250 6	7.5995
10	Elaidic acid(C18:1n9t)	26.233	21929	5287	0.3819
11	Oleic acid(C18:1n9c)	26.586	12676 58	25486 6	22.0763
12	Linoleic acid(C18:2n6c)	27.950	32460	7667	0.5653
13	Arachidic acid(C20:0)	28.689	35532	10561	0.6188
14	Y-Linolenic acid(C18:3n6)	28.935	9024	2574	0.1572
15	a-Linolenic acid(C18:3n3)	29.599	27726	8111	0.4828
16	Henicosanoic acid(C21:0)	30.149	11518	3560	0.206

17	Behenic acid(C22:0)	31.597	20810	6094	0.3624
18	Cis-11,14,17-Eicosatrienoic acid(C20:3n3)	32.539	3085	931	0.0537
19	Arachidonic acid(C20:4n6)	32.687	4562	1099	0.0795
20	Tricosanoic acid(C23:0)	33.059	10913	3129	0.1900
21	Cis-5,8,11,14,17-Eicosapentaenoic acid(C20:5n3)	34.562	15005	4081	0.2613
22	Nervonic acid(C24:1)	33.610	409	1034	0.0698
Total			57421	13635	100.000
Total			62	04	0

Table: 2.2.8 Peak Table of Fatty acids of Xenentodon cancila

Peak#	Name	Ret.Time	Area	Height	Area%
1	Myristic acid(C14:0)	16.875	35628	3509	2.9034
2	Pentadecanoic acid(C15:0)	18.418	48700	4913	3.9686
3	Palmitic acid(C16:0)	19.928	440958	69626	35.9341
4	Palmitoleic acid(C16:1)	21.064	21476	2993	1.7501
5	Heptadecanoic acid(C17:0)	21.645	42314	4316	3.4482
6	Cis-10-Heptadecanoic acid(C17:1)	22.641	14158	1215	1.1537
7	Stearic acid(C18:0)	23.151	213511	31696	17.3992
8	Elaidic acid(C18:1n9t)	23.838	5222	1178	0.4255
9	Oleic acid(C18:1n9c)	24.035	228338	24628	18.6075
10	Linolelaidic acid(C18:2n6t)	24.849	6298	961	0.5132
11	Linoleic acid(C18:2n6c)	25.450	34329	4210	2.7975
12	Y-Linolenic acid(C18:3n6)	26.331	3556	580	0.2898
13	a-Linolenic acid(C18:3n3)	27.050	22254	1736	1.8135
14	Cis-11,14-Eicosadienoic acid(C20:2)	28.415	4320	639	0.3521
15	Behenic acid(C22:0)	29.126	5889	1147	0.4799
16	Cis-8,11,14-Eicosatrienoic acid(C20:3n6)	29.333	6478	833	0.5279
17	Arachidonic acid(C20:4n6)	29.960	38892	5982	3.1694
18	Tricosanoic acid(C23:0)	30.498	2674	547	0.2179
19	Cis-5,8,11,14,17-Eicosapentaenoic acid(C20:5n3)	31.841	13648	2485	1.1122
20	Nervonic acid(C24:1)	32.676	5256	1099	0.4283
21	Cis-4,7,10,13,16,17-Docosahexanoica acid(C22:6n3)	35.418	33232	4691	2.7081
Total			1227131	168984	100.0000

Table: 2.2.9 Peak Table of Fatty acids of Amblypharyngodon mola

Peak#	Name	Ret.Time	Area	Height	Area%
1	Undecanoic acid(C11:0)	14.134	7912	2383	0.2719
2	Lauric acid(C12:0)	15.553	55249	16271	1.8991
3	Tridecanoic acid(C13:0)	17.133	192716	56572	6.6243
4	Myristic acid(C14:0)	18.820	415162	120181	14.2705
5	Pentadecanoic acid(C15:0)	20.552	556562	157224	19.1309
6	Palmitic acid(C16:0)	22.294	929120	241700	31.9370
7	Palmitoleic acid(C16:1)	23.385	72276	21629	2.4844
8	Heptadecanoic acid(C17:0)	23.953	144043	42808	4.9512

r			r	1	
9	Stearic acid(C18:0)	25.596	179489	52770	6.1696
10	Elaidic acid(C18:1n9t)	26.227	4294	1154	0.1476
11	Oleic acid(C18:1n9c)	26.552	280295	71739	9.6347
12	Linoleic acid(C18:2n6c)	27.944	12538	3262	0.4310
13	Arachidic acid(C20:0)	28.686	11168	3173	0.3839
14	Y-Linolenic acid(C18:3n6)	28.935	4091	1137	0.1406
15	Cis-11-Eicosenoic acid(C20:1)	29.515	14285	3229	0.4910
16	a-Linolenic acid(C18:3n3)	29.598	10173	2886	0.3497
17	Behenic acid(C22:0)	31.597	6304	1680	0.2167
18	Cis-11,14,17-Eicosatrienoic acid(C20:3n3)	32.542	2669	712	0.0918
19	Tricosanoic acid(C23:0)	33.063	3031	720	0.1042
20	Cis-5,8,11,14,17-Eicosapentaenoic acid(C20:5n3)	34.566	6078	1502	0.2089
21	Nervonic acid(C24:1)	35.614	1773	467	0.0609
Total			2909228	100.0000	100.0000

Table: 2.2.10 Peak Table of Fatty acids of Macrognathus pancalus

Peak#	Name	Ret.Time	Area	Height	Area%	
1	Undecanoic acid(C11:0)	14.141	7633	2281	0.3794	
2	Lauric acid(C12:0)	15.560	16225	4666	0.8064	
3	Tridecanoic acid(C13:0)	17.136	22471	6521	1.1168	
4	Myristic acid(C14:0)	18.815	142297	41400	7.0722	
5	Pentadecanoic acid(C15:0)	20.537	94133	27371	4.6785	
6	Palmitic acid(C16:0)	22.290	813944	218854	40.4534	
7	Palmitoleic acid(C16:1)	23.387	121281	35525	6.0277	
8	Heptadecanoic acid(C17:0)	23.950	78950	23362	3.9239	
9	Stearic acid(C18:0)	25.601	259948	76815	12.9195	
10	Elaidic acid(C18:1n9t)	26.224	23917	4223	1.1887	
11	Oleic acid(C18:1n9c)	26.554	351279	82297	17.4588	
12	Linoleic acid(C18:2n6c)	27.940	17138	4816	0.8518	
13	Arachidic acid(C20:0)	28.685	14408	4264	0.7161	
14	Y-Linolenic acid(C18:3n6)	28.934	4292	1167	0.2133	
15	Cis-11-Eicosenoic acid(C20:1)	29.465	5922	1284	0.2943	
16	a-Linolenic acid(C18:3n3)	29.598	5558	1655	0.2762	
17	Henicosanoic acid(C21:0)	30.145	1841	612	0.0915	
18	Behenic acid(C22:0)	31.596	9648	2776	0.4795	
19	Cis-11,14,17-Eicosatrienoic	32.536	2523	664	0.1254	
	acid(C20:3n3)		2323		0.1254	
20	Arachidonic acid(C20:4n6)	32.702	1548	395	0.0770	
21	Tricosanoic acid(C23:0)	33.061	2614	773	0.1299	
22	Cis-5,8,11,14,17-Eicosapentaenoic	34.562	9010	2062	0.4478	
	acid(C20:5n3)	54.502		2002		
23	Nervonic acid(C24:1)	35.592	5472	1611	0.2719	
Total			2012052	545394	100.0000	

 Table:
 2.3a Fatty acid profile of the selected fish species.

(UOM=g/100g)

Sl. No.	Fish species	Undeca n-oic acid	Lauri c acid	Tridecan -oic acid	Myristi c acid	Myristolei c acid	Pentadecanoi c acid	Palmiti c acid	Palmitolei c acid	Heptadeca n-oic acid	Heptadec en-oic acid
1	Barilius vagra	BDL	BDL	BDL	0.31	BDL	0.06	1.80	0.95	0.05	0.11
2	N. maydelli	0.03	0.16	BDL	0.17	0.03	0.09	1.08	0.09	0.17	0.04
3	Chanda nama	BDL	BDL	0.12	0.78	BDL	0.52	4.49	0.69	0.44	BDL
4	Channa gachua	BDL	0.02	0.003	0.06	BDL	0.03	1.23	0.12	0.17	0.03
5	Rasbora daniconius	BDL	0.01	0.03	0.12	BDL	0.11	1.23	0.16	0.08	0.02
6	Channa punctatus	BDL	BDL	BDL	0.18	BDL	BDL	BDL	0.29	BDL	BDL
7	Trichogatser fasciata	BDL	BDL	0.12	0.38	BDL	0.38	4.49	0.69	0.22	BDL
8	Xenentodon cancila	BDL	BDL	BDL	0.05	BDL	0.06	0.57	0.03	0.05	0.02
9	Amblypharyngodon mola	BDL	BDL	0.19	0.42	BDL	0.56	0.94	BDL	0.15	BDL
10	Macrognathus pancalus	BDL	0.18	0.13	0.13	0.31	0.12	1.35	0.44	0.14	BDL

Table: 2.3b Fatty acid profile of the selected fish species

Sl. No	Fish species	Steari c acid	Oleic acid	Elaidic acid	Linoleic acid	Linolelaidic acid	۲- linolenic acid	α-linolenic acid	Arachidi c acid	Cis -11- eicosenoic acid	Cis-11,14- eicosadienoi c acid
1	Barilius vagra	0.31	0.44	0.03	0.14	BDL	0.04	0.22	0.11	0.02	BDL
2	N. maydelli	0.48	0.66	0.04	0.09	0.02	BDL	0.06	0.02	0.07	0.01
3	Chanda nama	1.43	1.94	0.13	BDL	BDL	BDL	BDL	BDL	BDL	BDL
4	Channa gachua	0.38	0.84	0.02	0.31	0.02	BDL	0.06	0.02	0.15	0.03
5	Rasbora daniconius	0.41	0.47	BDL	0.06	0.01	0.01	0.03	BDL	BDL	BDL
6	Channa punctatus	0.57	0.95	BDL	0.18	BDL	BDL	BDL	BDL	0.13	BDL
7	Trichogatser fasciata	0.44	1.29	0.13	BDL	BDL	BDL	BDL	BDL	BDL	BDL
8	Xenentodon cancila	0.27	0.29	0.007	0.04	0.008	0.005	0.03	BDL	BDL	0.006
9	Amblypharyngodon mola	0.18	0.28	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
10	Macrognathus pancalus	0.44	1.26	BDL	0.13	BDL	BDL	BDL	BDL	BDL	BDL

BDL=Below Detectable Limit

Table: 2.3c Fatty acid profile of the selected fish species.

(UOM=g/100g)

Sl. No	Fish species	Cis- 8,11,14- eicosatri enoic acid	Cis- 11,14,17- eicosatrie noic acid	Arachi d-onic acid	Cis- 5,8,11,14,1 7- eicosapenta enoic acid	Beheni c acid	Eruci c acid	Cis-13,16- docosahex aenoic acid	Cis- 4,7,10,13,16,19- docosahexaenoi c acid	Tricos an-oic acid	Nervoni c acid
1	Barilius vagra	0.04	0.03	BDL	0.36	0.009	BDL	BDL	0.15	BDL	BDL
2	N. maydelli	0.01	BDL	0.04	0.02	0.02	0.00 7	BDL	0.005	0.007	BDL
3	Chanda nama	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
4	Channa gachua	0.02	BDL	0.07	0.01	BDL	0.02	BDL	0.01	0.004	0.003
5	Rasbora daniconius	BDL	BDL	0.006	BDL	BDL	BDL	BDL	BDL	BDL	BDL
6	Channa punctatus	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
7	Trichogatser fasciata	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
8	Xenentodon cancila	0.008	BDL	0.05	0.02	0.008	BDL	BDL	0.04	0.003	0.007
9	Amblypharyngodon mola	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
10	Macrognathus pancalus	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

BDL=Below Detectable Limit

The fatty acid contents of the selected fish species are shown in table 1.6 (a), .6(b) and 1.6(c) The present investigation recorded the fatty acid compositions of all the fish species. The fatty acids were not present in higher contents in the studied fishes. Although in lower amounts palmitic acid was detected in fair values and present in all the fish species oleic acid & stearic acid, were present in all of the studied fishes but in lower contents. A total numbers of 39 individual fatty acids had been analysed for the selected small fish species. Amongest them palmitic acid was predominantly detected in all the fish species. It was followed by oleic acid, stearic acid and palmitoleic acid. The present study indicated that the small fish species cannot be regarded as highly fatty fishes.

Palmitic acid was recorded as the significant saturated fatty acid in all the studied species. Ackman, 1980 investigated that palmitic acid was a vital substance in fish and its level was not affected by diet. The present work confirms that the selected fish species contained lower amount of Omega-6 & Omega-3 fatty acids. Harper et al., 2001 studied that a lower proportion of Omega-6 to Omega-3 fatty acids is appreciated in reducing the risk of Chronic disease in the developing countries. In this context, it is attributed that all the small fish species could be recommended safely for human consumption. Simopoulos, 2008 further studied that a balanced n-6:n-3 PUFA ratio is widely accepted in the prevention of cardiovascular disease. This fact agreed to higher risk of life alarming problems with low intake of n-3, rather that high n-6 intake (FAO, 2010). The presence of free fatty acids above 1.5% throws an indication of unsuitability of the lipid for the sake of edible purpose (Molla et al., 2007). The record of lower percentage of free fatty acids in the lipids of studied species might be a conclusion that the fishes are suitable for edible purpose.

The experimental data of the fatty acid profile of the fish species Clarias batrachus by Rafikul Islam et al., 2013, studied that the species contained palmitic acid (37.41%) lauric acid (2.60%), Arachielic acid (3.04%), Behenic acid (4.21%). In the present report also, palmilic acid was in higher content than the other in all the studied species. Amongest them species *Chanda nama* and *Xenentodon cancila* was found to contain same amount (4.49%) of palmitic acid which was followed by oleic acid (1.94%), stearic acid (1.43%). Fishes are not able to synthesize any fatty acids of the Omega-6 and Omega-3 series without the presence of a precursor with this structure in their diet. All the fish species are not having the same abilty to elongate and desaturate fatty acids (Stancheva et al., 2010). The ratio of Omega-3:Omega-6 fatty acids between (0.2-1.6gm) would make a nutritionous human diet. (Stanchava et al., 2010). The present research work found a lower range of the fatty acids. The feeding habits of the fish

species may determine the significance of the lower contents of fatty acids among the fish species.

4.7 Mineral profile

Solution	Cal Zero	Std 1	Std 2	Std 3	Std 4	Std 5					
SET-I											
Concentration (mg/L)	0.000	0.200	0.500	1.000	2.000	3.000					
Mean Absorbance	0.0009	0.0212	0.0407	0.0763	0.1410	0.2025					
	SET-II										
Concentration (mg/L)	0.000	0.200	0.500	1.000	2.000	3.000					
Mean Absorbance	0.0022	0.016	0.0344	0.0625	0.122	0.1791					

Table 2.4: Measurement of absorbance of standard Iron (Fe) solutions:

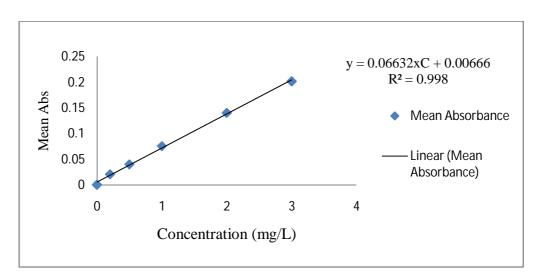
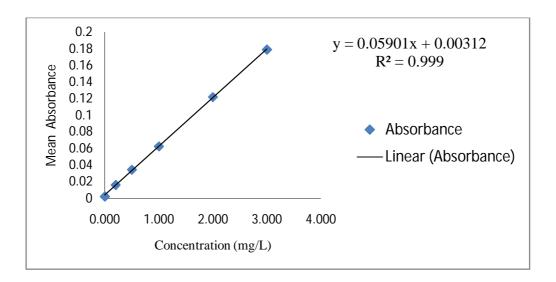
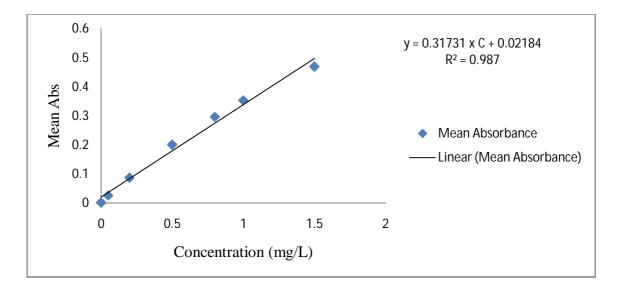


Fig.: 2.5.1a Calibration curve-I for standard Iron Solutions




Fig.: 2.5.1b Calibration curve-II for standard Iron Solutions

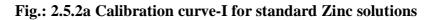

Calculate	ed from calibration curve-I			
Sample.	Species	Absorbance	Concentration	Iron Content
No.	Species	110501041100	(mg/L)	(mg/100g)
1	Barili vagra	0.1312	1.883	9.15
2	Neoeucirrhichthys maydelli	0.0854	1.192	5.95
4	Channa gachua	0.0713	0.979	4.84
5	Rasbora daniconius	0.0240	0.266	12.84
8	Xenentodon cancila	0.0578	0.775	3.83
Calculate	ed from calibration curve-II	•		
3	Chanda nama	0.525	0.0341	3.9
6	Channa punctatus	0.501	0.0327	3.67
7	Trichogatser fasciata	1.975	0.1197	18.23
9	Amblypharyngodon mola	0.565	0.0365	4.31
10	Macrognathus pancalus	0.510	0.0332	3.75

Table: 2.5 Iron content in different fish species

Table 2.6: Measurement of absorbance of standard Zinc (Zn) solutions:

Standard solutions	Cal Zero	Std 1	Std 2	Std 3	Std 4	Std 5	Std 6
	•	S	ET-I				
Concentration	0.0000	0.050	0.200	0.500	0.800	1.000	1.500
Concentration	0.0000	0	0	0	0	0	0
Mean Absorbance	0.0019	0.026	0.087	0.201	0.296	0.353	0.470
Mean Absorbance	0.0019	5	9	2	8	6	1
	•	SE	ET-II				
Concentration		0.050	0.200	0.500	0.800	1.000	1.500
(mg/L)	0.0000	0	0	0	0	0	0
		0.019	0.078		0.260	0.315	0.420
Mean Absorbance	0.0006	8	6	0.162	8	8	7

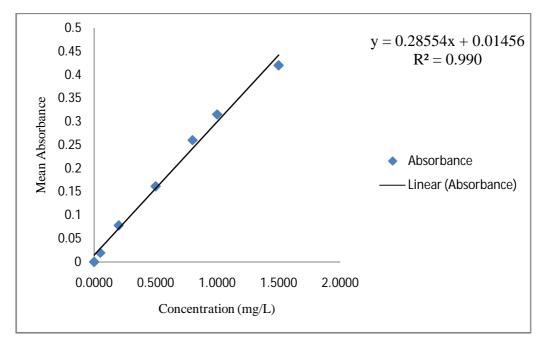


Fig.: 2.5.2bCalibration curve-II for standard Zinc Solutions

Calculated	from calibration curve-I			
Sample.	Species	Absorbance	Concentration	Zinc Content
No.	Species	Absorbance	(mg/L)	(mg/100g)
1	Barili vagra	0.1760	0.4858	2.36
2	Neoeucirrhichthys maydelli	0.2025	0.5695	2.84
4	Channa gachua	0.5374	0.1924	2.66
5	Rasbora daniconius	0.3272	0.9623	4.64
8	Xenentodon cancila	0.2051	0.5774	2.86
Calculated	from calibration curve-II			
3	Chanda nama	0.3193	0.1057	3.18
6	Channa punctatus	0.1580	0.0597	1.57
7	Trichogatser fasciata	0.3010	0.1005	2.98
9	Amblypharyngodon mola	0.4738	0.1498	4.73
10	Macrognathus pancalus	0.1444	0.0558	1.44

Table: 2.6 Zind	c content in	different	species
-----------------	--------------	-----------	---------

Standard solutions	Blank	Std 1	Std 2	Std 3	Std 4	Std 5
Concentration (mg/L)	0.0	5.0	10.0	20.0	40.0	50.0
Absorbance	0.00	0.0549	0.1242	0.2216	0.4412	0.5572

Table 2.7: Measurement of absorbance of phosphorous (P) solutions:



Fig.: 2.5.3 Calibration curve for standard Phosphorous solutions

Sample No.	Species	Absorbance	Concentration (mg/L)	Phosphorous Content (mg/100g)
1	Barili vagra	0.0685	5.8	891.81
2	Neoeucirrhichthys maydelli	0.0620	5.2	825.64
3	Chanda nama	0.1745	15.4	2470.00
4	Channa gachua	0.0476	3.9	616.79
5	Rasbora daniconius	0.0957	8.2	1246.55
6	Channa punctatus	0.2228	19.8	3170.00
7	Trichogaster fasciata	0.2469	22	3520.00
8	Xenentodon cancila	0.0638	5.3	858.78
9	Amblypharyngodon mola	0.1414	12.4	1990.00
10	Macrognathus pancalus	0.1161	10.1	1620.00

Standard solutions	Cal Zero	Std 1	Std 2	Std 3	Std 4	Std 5
		SET-I				
Concentration	0.000	0.050	0.200	0.500	0.800	1.000
Mean Absorbance	0.0018	0.0117	0.0332	0.0733	0.1238	0.159
SET-II						
Concentration (mg/L)	0.000	0.500	1.000	1.500	2.000	-
Absorbance	0.0011	0.0653	0.1169	0.1823	0.2459	-

Table 2.9 Measurement of absorbance of Calcium (Ca) solutions

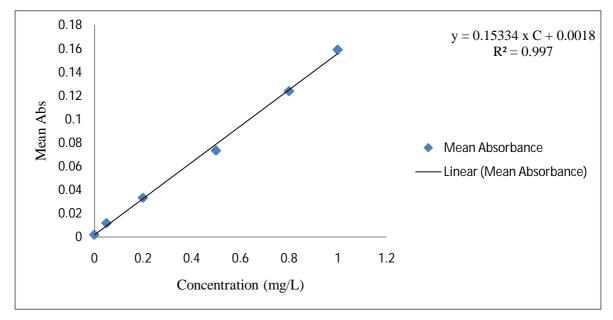


Table: 2.5.4a Calibration curve-I for standard Calcium solutions

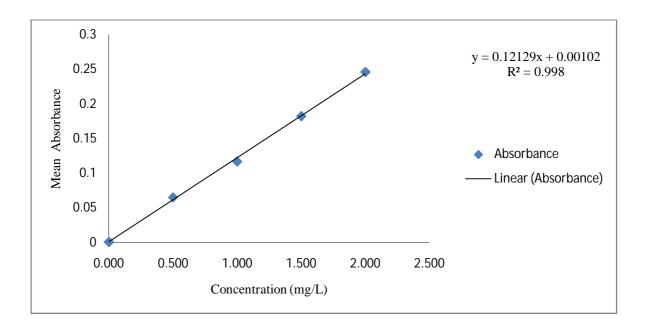


Fig.: 2.5.4b Calibration curve-II for standard Calcium Solutions

Calculated from calibration curve-I					
Sample No.	Species	Absorbance	Concentration (mg/L)	Calcium Content (mg/100g)	
1	Barili vagra	0.0446	0.279	636.91	
2	Neoeucirrhichthys maydelli	0.0408	0.254	591.20	
4	Channa gachua	0.378	0.235	539.39	
5	Rasbora daniconius	0.0487	0.306	697.39	
8	Xenentodon cancila	0.0447	0.279	647.75	
Calculate	ed from calibration curve-II	·	·		
3	Chanda nama	0.811	0.0994	807.93	
6	Channa punctatus	0.675	0.0829	672.98	
7	Trichogaster fasciata	1.661	0.2025	1640.00	
9	Amblypharyngodon mola	1.466	0.1788	731.10	
10	Macrognathus pancalus	0.783	0.0960	389.32	

Table 2.10: Calcium content in different fish species

Table 2.11 Mineral (Fe, Zn, P & Ca) contents in different fish species

SI No	Scientific name of species	Iron (mg/100 g)	Zinc (mg/100 g)	Phosphorous (mg/100g)	Calcium (mg/100g)
1	Barilius vagra	9.15	2.36	891.81	636.91
2	N. maydelli	5.95	2.84	825.64	591.20
3	Chanda nama	3.90	3.18	2470.00	807.93
4	Channa gachua	4.84	2.66	616.79	539.39
5	Rasbora daniconius	12.84	4.64	1246.55	697.39
6	Channa punctatus	3.67	1.57	3170.00	672.98
7	Trichogaster fasciata	18.23	2.98	3520.00	1640.00
8	Xenentodon cancila	3.83	2.86	858.78	647.75
9	Amblypharyngodon mola	4.31	4.73	1990.00	731.10
10	Macrognathus pancalus	3.75	1.44	1620.00	389.32

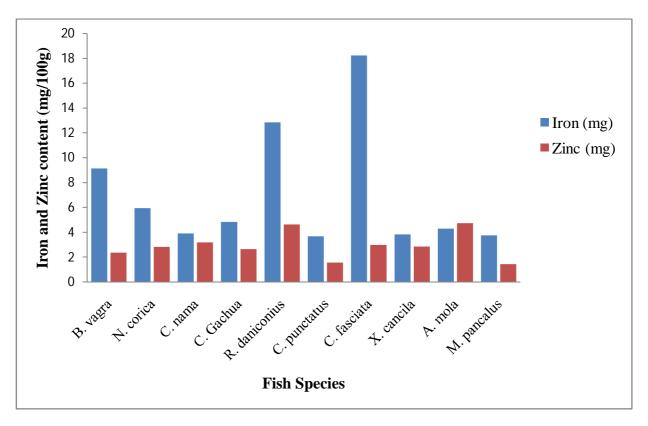


Fig.: 2.5.5a Comparision of Iron (Fe) and Zinc (Zn) content in different fish specie

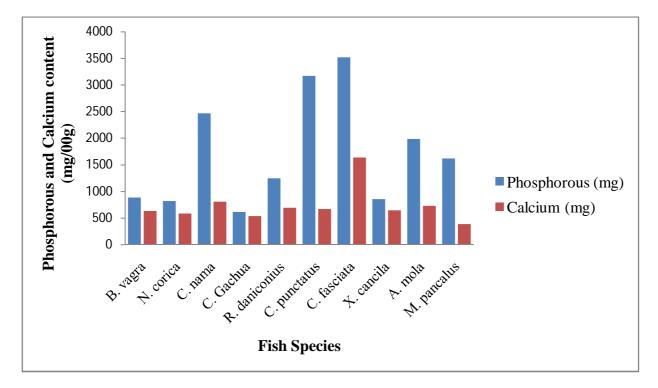


Fig.: 2.5.5b Comparision of Phosphorous (P) and Calcium (Ca) content in different fish species

Fish is an important source of mineral like Potassium, phosphorous, iron, sodium, magnesium, iodine, zinc, calcium etc. Mineral components find their vital importance for

human nutrition (Love, 1957). Some of the trace elements such as iron, manganese and iodine are adequately present in fish species (Borgstrom, 1962). The present study had been done on quantification of some selected minerals like iron, zinc, phosphorus and calcium which are very essential minerals for human (Burch, R.E. et al., 1975). Many keys functions in human body are performed by Iron. It is highly demanded in several stages of human being such as growing period, menstrual loss and pregnancy. Iron deficiency may cause major problem when the intake is insufficient (Belitz, et al., 2001).

In the present investigation the iron contents were sufficiently higher in all the fish species. Highest content of iron (18.23 mg) was recorded in *Trichogatser fasciata*. It was followed by *Rasbora daniconius* (12.84 mg), *Barilius vagra* (9.15 mg), *N. maydelli* (5.95 mg), *Channa gachua* (4.84 mg). The content of zinc were also in a good amount in all the studied small fishes. The highest content of zinc was found in *Amblypharyngodon mola* (4.73mg) which was followed by *Rasbora daniconius* (4.64mg), *Xenentodon cancila* (2.86mg), *Noemacheilus corica* (2.84mg), *Channa gachua* (2.66mg), *Barilius vagra* (2.36mg).

The contents of phosphorus was highest in *Trichogatser fasciata* (3520 mg/100g) which was followed by *Channa punctatus* (3170 mg/100g) and *Chanda nama* (2470 mg/100g). Further more, the calcium contents was highest in *Trichogatser fasciata* (1640 mg/100g) followed by *Chanda nama* (807.93mg/100g) and *Amblypharyngdon mola* (731.10 mg/100g)

The amount of mineral as well as metal contained in a fish species are changed with the change of environmental condition (Ambedkar et al., 2011). The minerals paly vital role in skelatal formarion, maintenance of colloidal systems, regulation of acid – base equilibrium. Major components of some biologically important compounds like as hormones and enzymes etc. are made of the minerals (Lal, 1995, Netal, 2007). Different types of biochemical structural and functional pathologies are caused by mineral deficiencies (Sankar et al., 2013). As per the project report of (Tasbozan et al., 2013), the calcium contents of spiny eel was found to be 254 mg Kg⁻¹. According to Martinez-Valverde et al., blue whitling was found to contain 5.3 mg Kg⁻¹ of Zn and 4 mg Kg⁻¹ of Fe. Celik M. et al., reported that rainbow trout contained 5.45 mg Kg⁻¹ of Zn and 4.15 mg Kg⁻¹ of Fe.

Being a trace element Fe is to be present in lower quantities in fish flesh. The daily intake of Fe for the human body is 8-15 mg Kg⁻¹ 0f body weight (Oksuz et al., 2009). Iron is having tremendous importance in the formation of hemoglobin which is essential for the formation of red blood cells (Mller et al., 2013 & Oksuz et al., 2009). Hossain et al., 2015

documented that *Batasio tengana* (Tengra) possessed 2.02 mg Kg⁻¹ of Fe and marked as a good supplemental source of Fe. In the present investigation the macro elements P & Ca of the studied fishes were in higher quantities. But the micro elements viz., Iron & zinc were of minimum contents. The abundance in the values of macro elements than the micro elements might be attributed to the fact that the body needs more amounts of marco elements for the sake of structure and function. Phosphorus is not only the main constituent of the fish skeleton. It is included in adenosine polyphosphates which is the vital component for the release of energy and also in phospholipids (Nair et a., 2001).

The mineral contents of individual species are dependent on the abundance of the elements in their local enviorment, capacity of diet absorption and their accumulation as preferred (Hei et al., 2012).

The micro elements like Fe and Zn are vitally important for the formation of skeleton structure, transfer of electrons, regulation of acid-base equilibrium as well as osmoregulation. Minerals are also important components of harmones, enzymes and vitamins. Many a biochemical mechanisms are activated by the minerals. By the presence of different minerals in the fish body help in excretion of several inorganic elements allowing the fish to live in a dynamic equilibrium with the aquatic medium (Committee on animal nutrition, 1993). Lacking in the contents of these elements lead to different diseases in the body. Fe is the vital element for the metabolism of almost entire living organisms. A lot of procedures of cellular metabolism are dependent on zinc (Hei et al., 2012).

In human body calcium is the most abundant mineral as at least 20% of the weight of the body. It plays the versatile role in human body as like as for the growth, bone formation, coagulation of blood, formation of milk, absorption of vitamin D etc. It is mainly associated with bones and formation of tooth.

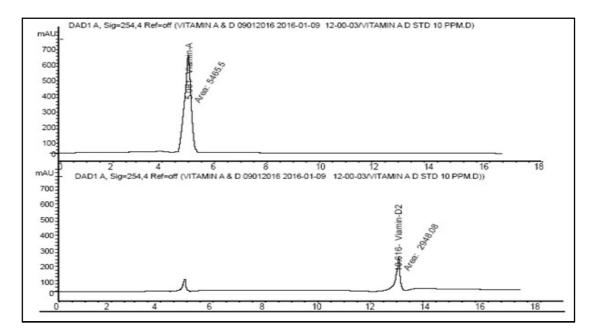
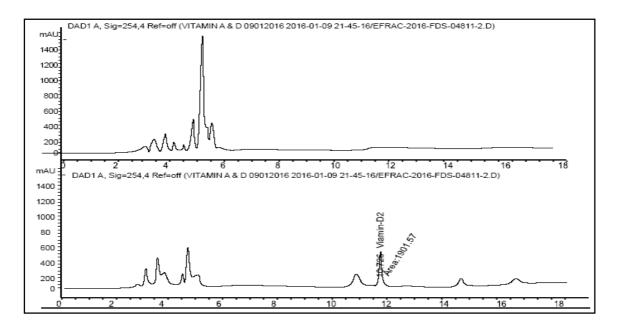
Calcium deficiency lead to rickets, osteomalacia and osteoporosis (Anderson, 1982). As per the research report of Islam et al., 2013, the calcium contents of *C. batrachus* was 210.10 mg/Kg. The present work documented the highest calcium contents were recorded in kholisa (1640 mg). Phosphorous is one of the major constituents of all the animal cells. All the natural foods contain phosphorus. People consuming large quantities of aluminum hydroxide antacids suffer from secondary phosphate depletion. This can lead to weakening of muscles and body pain. The diseases which affect kidneys and bones may disturb phosphate metabolism in the body (Rosenquist et al., 1996). In the present work, highest contents of phosphorous was found in kholisa fish (3520 mg), Iron is an essential life supporting elements for one and the all living

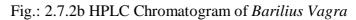
beings. Iron plays the vital role in cellular metabolism. The primary function of iron includes the transportation of oxygen to the tissues (heamoglobin). One of the life threatening problem, anemia is caused by the deficiency of iron. Mostly nursing mothers, children, adolescent girls are attacked by anemia. In the present study all the selected fish species are rich in iron contents. The highest iron contents were found in kholisa fish (18.23 gm). Another micronutrient zinc was also highly contained by all the selected ten fishes, The small fish *Amblypharyngodon mola* contained the highest amount of zinc (4.73 mg) amongst all other fishes. It is the vital part of 110 metalloenzymes as well as other cellular components. It has its enormous importance for the synthesis of protein, RNA, DNA and also for the transportation of vitamin A. Zn has its vital role in the protection of heart damage after a heart attack (Islam et al 2013). The most alarming symptoms of zinc deficiency include growth retardation, anaemia and impaired sexual development, skin changes, loss of appetite, white opaque spots on finger nails (A.H. Molla, Biochemical and nutritional studies of the Bangladeshi fishes).

4.8 Vitamin Profie

Several literatures justified that fish is a good source of vitamins like A, D, E and K. The contents of Vitamin A originated from fish food is easily demonstrated to the human body than the same from plant source (Liu, 2003). As far as the human health is concened, Vitamin A is mainly required for normal vision and growth of the bones.

The HPLC Chromatogram analysis of the fish samples selected were shown in next set of figures


Fig.: 2.7.1 HPLC Chromatogram of Standard Vitamin Aand Vitamin D solutions

Peak 1 2	RetTime Type (Min) 5.081 MM 10.616 MM	Width (Min) 0.1627 0.2648	Area (mAU*S) 5465.49854 29848.07886	Area 100.0000 100.0000	Name Vitamin-A Vitamin-D2
mAU 1400 1200 800 600 400 200 0 MAU 1400 1200 1000 80 600 400 200 0 0	 AD1 A, Sig=254,4 Ref=off (VI	6 TAMIN A & D 0901	8 10 12016 2016-01-09 21-45-1	12 14 B/EFRAC-2016-FDS-0	 16 18 04811-2.D)
0	2 4	6	8 10	12 14	16 18

Fig.: 2.7.2a HPLC Chromatogram of Barilius Vagra

Peak	RetTime Type (Min)	Width (Min)	Area (mAU*S)	Area	Name
1	(WIII) 4.918 MM	0.2022	7473.26563	100.0000	Vitamin-A
Totals	:		7473.26563		

Peak	RetTime Type	Width	Area	Area	Name
	(Min)	(Min)	(mAU*S)		
	1 10.726 MM	0.2022	1901.15740	100.0000	Vitamin-D2
Totals	:		1901.15740		

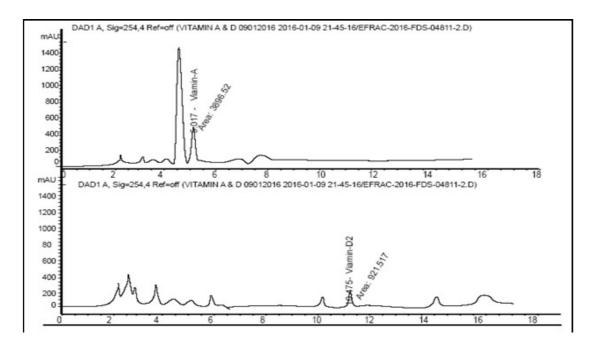


Fig.: 2.7.3 HPLC Chromatogram of Neoeucirrhichthys maydelli

Peak	RetTime Type (Min)	Width (Min)	Area (mAU*S)	Area	Name
1	5.017 MM	0.2233	3896.52173	100.0000	Vitamin-A
2	10.475 MM	0.3239	921.51709	100.0000	Vitamin D

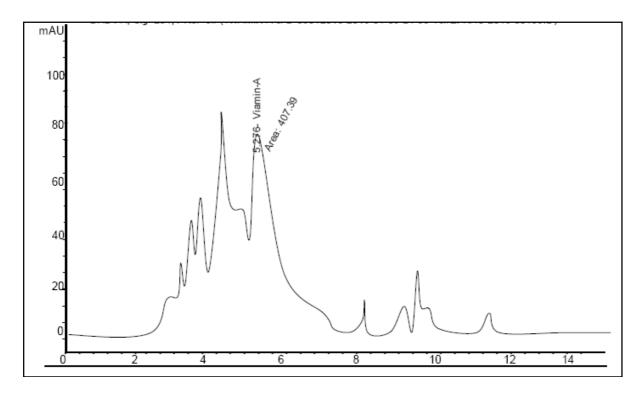


Figure 2.7.4 HPLC Chromatogram of Chanda nama

Peak	RetTime Type	Width	Area	Area	Name
	(Min)	(Min)	(mAU*S)		
1	5.276 MM	0.1875	407.39180	100.0000	Vitamin-A
2	2.332 MM	0.0000	0.0000	0.0000	Vitamin-D
Totals	:		407.39180		

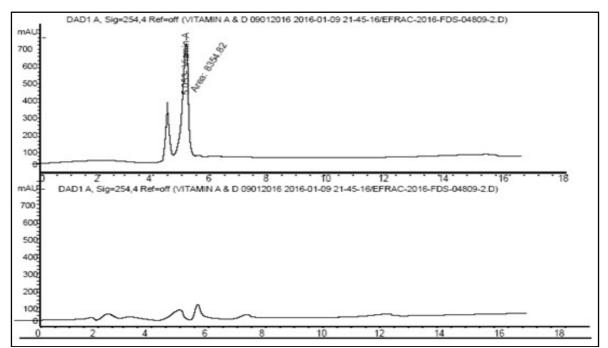


Fig.: 2.7.5a HPLC Chromatogram of Channa gachua

Peak	RetTime Type (Min)	Width (Min)	Area (mAU*S)	Area	Name
1.	5.053 MM	0.1850	8354.81836	100.0000	Vitamin-A
Totals	:		8354.81836		

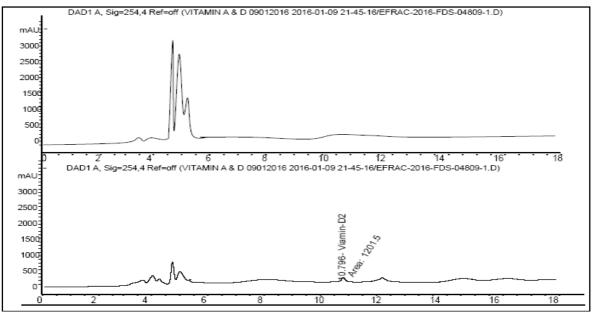


Fig.: 2.7.5b HPLC Chromatogram of Channa gachua

Peak	RetTime Type (Min)	Width (Min)	Area (mAU*S)	Area	Name
1 Totals	10.796 MM :	0.3671	1201.49902 1201.49902	100.0000	Vitamin-D2

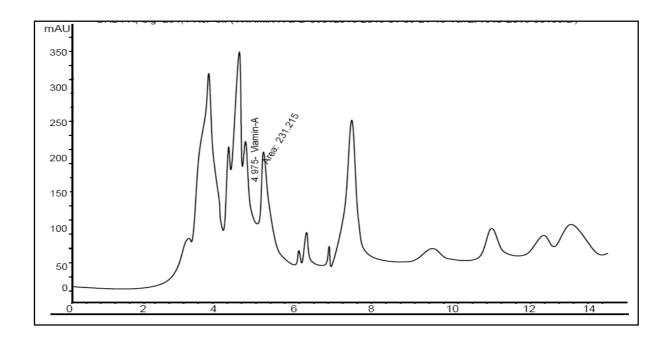


Fig.: 2.7.6 HPLC Chromatogram of Channa punctatus

Peak	RetTime Type	Width	Area	Area	Name
	(Min)	(Min)	(mAU*S)		
1	4.975 MM	0.1335	231.21461	100.0000	Vitamin-A
2	9.542 MM	0.0000	0.0000	0.0000	Vitamin-D
Totals	:		231.21461		

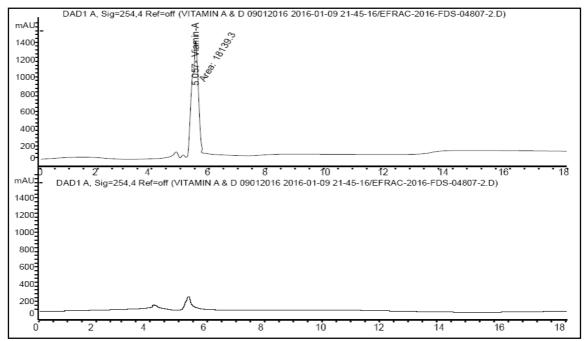


Fig.: 2.7.7a HPLC Chromatogram of Rasbora daniconius

Peak	RetTime Type (Min)	Width (Min)	Area (mAU*S)	Area	Name	
1	5.057 MM	0.1825	1.81393e4	100.0000	Vitamin-A	
Totals	:		1.81393e4			

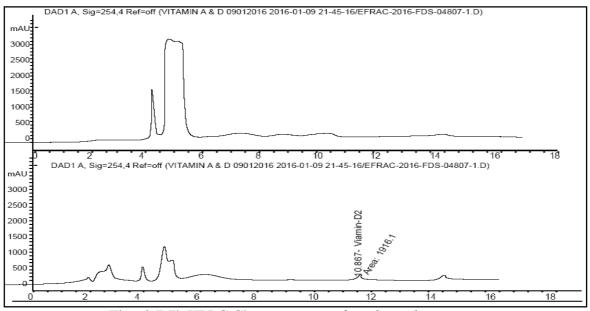


Fig.: 2.7.7b HPLC Chromatogram of Rasbora daniconius

Peak	RetTime Type	Width	Area	Area	Name
(Min)		(Min)	(mAU*S)		
1	10.867 MM	0.3014	1916.09998	100.0000	Vitamin-D2
Totals	:		1916.09998		

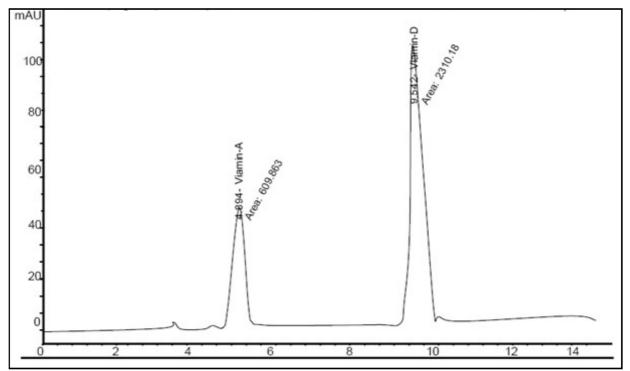


Fig.: 2.7.8 HPLC Chromatogram of Trichogaster fasciata

Peak	RetTime Type	Width	Area	Area	Name
	(Min)	(Min)	(mAU*S)		
1	4.894 MM	0.2161	609.86255	20.8854	Vitamin-A
2	9.542 MM	0.3526	2310.17896	79.1146	Vitamin-D
Totals	:		2920.04150		

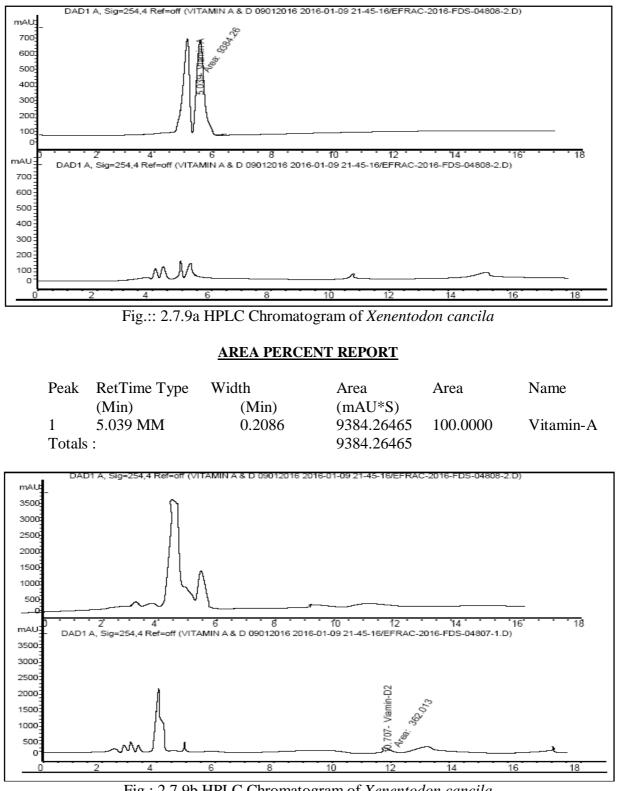


Fig.: 2.7.9b HPLC Chromatogram of Xenentodon cancila

Peak	RetTime Type (Min)	Width (Min)	Area (mAU*S)	Area	Name
1 Totals	10.707 MM :	0.4039	362.01273 362.01273	100.0000	Vitamin-D2

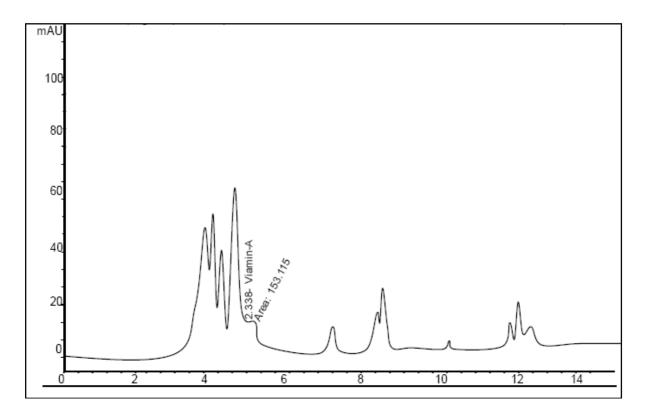


Fig.: 2.7.10 HPLC Chromatogram of Amblypharyngodon mola

Peak	RetTime Type	Width	Area	Area	Name
	(Min)	(Min)	(mAU*S)		
1	2.338 MM	0.1894	0.0000	0.0000	Vitamin-A
2	1.232 MM 0.124	43	0.0000	0.0000	Vitamin-D
Totals	:		0.0000		

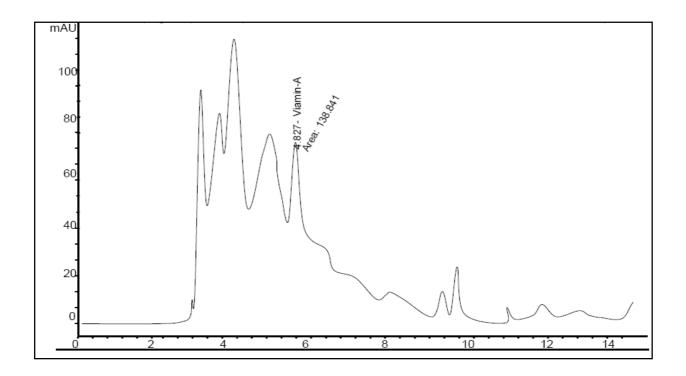


Fig.: 2.7.11 HPLC Chromatogram of Macrognathus pancalus

Peak	RetTime Type	Width	Area	Area	Name
	(Min)	(Min)	(mAU*S)		
1	4.827 MM	0.2114	138.84105	100.0000	Vitamin-A
2	9.542 MM 0.000	00	0.0000	0.0000	Vitamin-D
Totals	:		138.84105		

Vitamin A and Vitamin D content in the selected fish species in this study is shown in table: 1.9

Sl No	Scientific name of species	Vitamin A (µg/100g)	Vitamin D (µg/100g)
1	Barilius vagra	672.57	31.73
2	Neoeucirrhichthys maydelli	34.97	15.33
3	Chanda nama	378.96	BDL
4	Channa gachua	756.04	20.16
5	Rasbora daniconius	1644.38	32.20
6	Channa punctatus	248.76	BDL
7	T. Colisa fasciata	18.88	BDL
8	Xenentodon cancila	849.51	6.08
9	Amblypharyngodon mola	BDL	BDL
10	Macrognathus pancalus	111.85	BDL

Table: 3.1 Vitamin A and Vitamin D content in different fish species

BDL= Below Detectable Limit

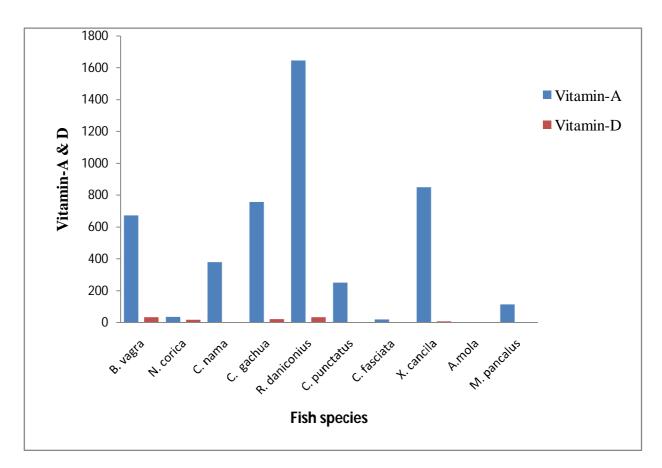
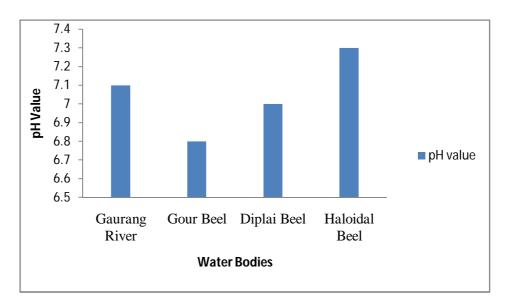


Fig.: 2.7 Comparision of Vitamin-A & D content in different fish species

Vitamin A derivative Retinolic acid is the regulator of gene expression which is needed in the development of epithelial tissue (Roos et al., 2003). The present study revealed that all the ten studied small fishes were rich source of vitamin A. The highest contents of Vitamin A (1644.38 μ g/100g) was found in the small fish *Rasbora daniconius* and the lowest of the same value (111.85 μ g/100g) was shown by *Trichogatser fasciata*.

Vitamin D has its crucial role in regulating calcium phosphate balance in such way that stimulates calcium absorption by the small intestine and hence promoting bone metabolism The fat soluble vitamins are documented to be the vital nutrients which control many biologically important processes in human body. The vitamin D contents of the selected fishes ranged from $6.08 \mu g/100g$ to $32.20 \mu g/100g$. The maximum value of Vitamin D ($32.20 \mu g/100g$) was found in *Barilius vagra*.

In the present study the fat soluble vitamins A & D were studied in the selected small fishes. Deficiency of Vitamin A is a mojor health problem in most of the developing countries. The specific diseases caused by the deficiency of Vitamin A include Night blindness and keratomalacia significantly in children and reproducible women (West, 2002). Previous researches established that the life risks of children below five years are mostly reduced with a status of good vitamin A. Many commonly consumed freshwater fish species were found to contain an excellent amounts of Vitamin A in the form of retinal and 3, 4 dehydroretinal isomers with the relative amounts changing with the species (Roos et al., 2002). Vitamin A (Retinol) palys a key role as the visual pigment of the vertebrate eyes (Mahanty et al., 2013). The small indigenous fish *Amblypharyngodon mola* was found to contain very high contents of Vitamin A (Kongstak et al., 2008). A mole was investigated to conclude that the contents of Vitamin A were stored mainly in the eyes and viscera (Roos et al., 2002).


In the present study the small fish *Rasbora daniconius* contained the highest amount of Vitamin A (1644.38 μ g/100g) which was followed by (849.51 μ g/100g) in *Xenentodon cancila*. As per the present work, the small fish *Rasbora daniconius* contained the highest amount of Vitamin D (32.20 μ g/100g) also.

4.9 Physicochemical analysis of water bodies

The physicochemical analysis of some water bodies of the study area area shown in Table: 1.10

Sl No	Test Parameters	Gaurang River	Gour Beel	Diplai Beel	Haloidal Beel
1	pH value	7.1	6.8	7.0	7.3
2	Temperature (°C)	24	23	24	23
3	Total Dissolved Solid (TDS) (mg/L)	48	346	16.0	50.0
4	Dissolve Oxygen (DO) (mg/L)	7.65	6.21	7.46	7.65
5	Biochemical Oxygen Demand (BOD) (mg/L)	1.6	2.4	1.2	1.5
6	Chemical Oxygen Demand (COD) (mg/L)	5.76	9.60	4.80	5.76
7	Alkalinity (mg/L)	12	14.0	4.0	6.0
8	Turbidity (Nephelometric Turbiditu Unit, NTU)	7.7	130.0	5.0	24.0
9	Salinity (Practical Salinity Unit, PSU)	0.05	0.32	0.02	0.05
10	Viscosity (mm ² /S)	0.9118	0.9359	0.9125	0.9328

Table: 3.2 Physicochemical parameters of the water samples

(1NTU = 1/3 mg/L & 1 PSU = 1g/Kg)

Fig.: 2.8.1 Variations of pH in different water bodies

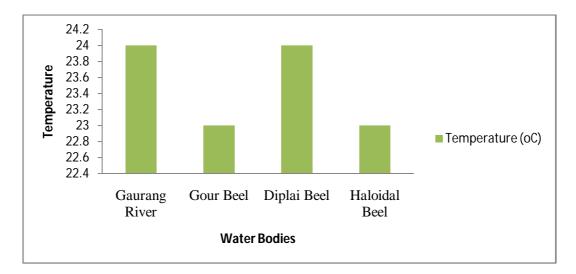


Fig.:2.8.2 Variations of temperature in different water bodies

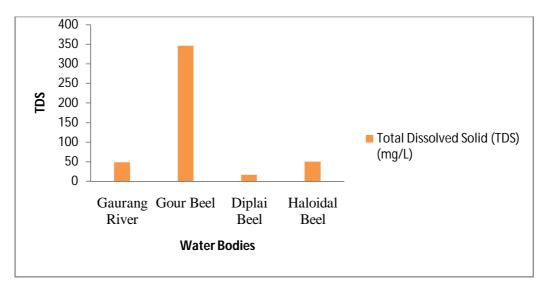


Fig.: 2.8.3 Variations of TDS in different water bodies

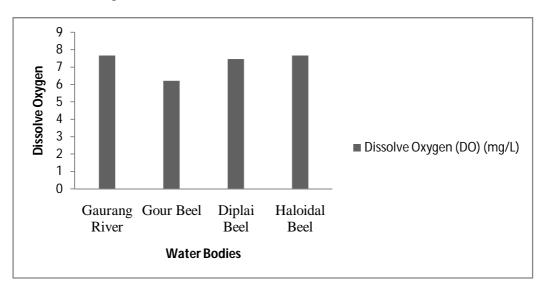


Fig.:2.8.4 Variations of dissolve oxygen in different water bodies

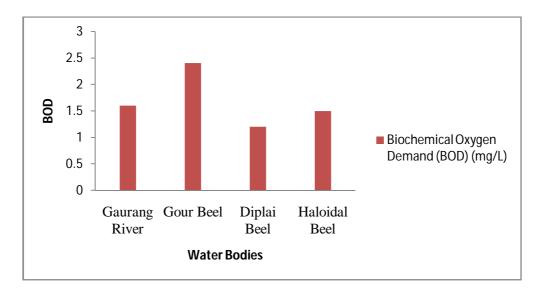


Fig.: 2.8.5 Variations of BOD in different water bodies

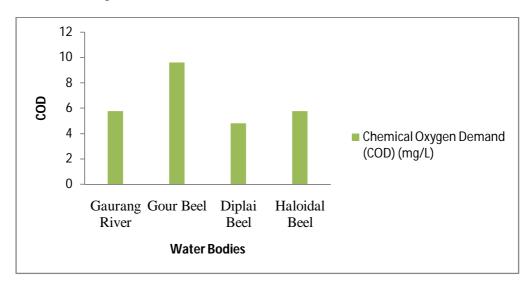


Fig.: 2.8.6 Variations of COD in different water bodies



Fig.: 2.8.7 Variations of alkalinity in different water bodies

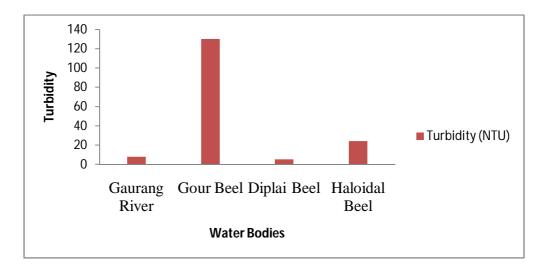


Fig.: 2.8.8 Variations of Turbidity in different water bodies

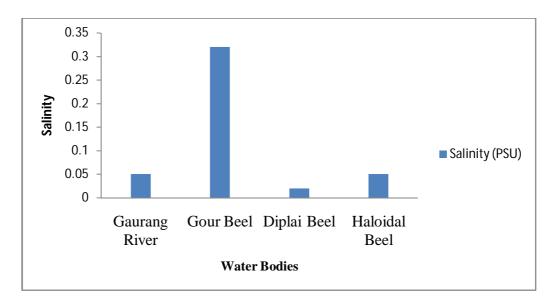


Fig.: 2.8.9 Variations of Salinity in different water bodies

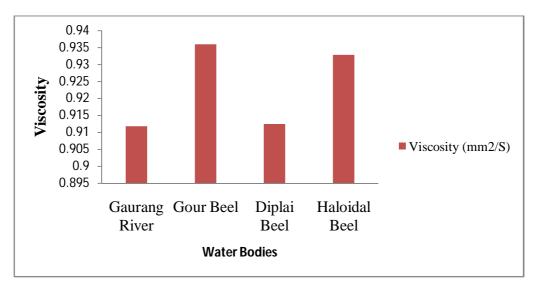


Fig.: 2.8.10 Variations of Viscosity in different water bodies

4.9.1 Measurement of pH

The pH value ranged from 6.8 to 7.3 as shown in Fig.:2.8.1. Maximum pH was recorded in Haloidol beel whereas the minimum was found in Gour Beel. The study of Choudhury *et al*, 2013 revealed a pH range of 7.0 - 8.3. Shrivastava *et al.*, 2013 also reported a similar range of pH of 6.93 - 7.55. They studied the physico-chemical status of different surface waters of pond water of Surguja District Chattisgarh, India. Sharma *et al.*, 2013 reported that in India, many small confined water pockets are particularly alkaline in nature. This type of alkaline nature was justified in this present study. The pH values of all the water samples were in the alkaline range. Islam *et al.*, 2014 reported that this pH has been noted to be productive and thus up to snuff for pisciculture.

4.9.2 Measurement of temperature

Temperature is the measure of hotness of any substance. It insigate the physical and chemical characteristics of water and also impinge the aquatic lives in it. Good knowledge about temperature prior to study an water habitat is very much important for fish culture. According to Hemlata *et al.*, 2014, the Guidelines for water Quality Management for fish culture in Tripura the optimum temperature is 24°C - 30°C. So far the current work is concerned the least variation of temperature from 23°C-24°C was recorded which is well within the guidelines limit (Fig.:2.8.2). Maximum temperature was recorded in Gaurang river and Diplai beel.

4.9.3 Measurement of total dissolved solid (TDS)

In the current study the TDS values were in the range from 16 mg/L to 346 mg/L (Fig.:2.8.3). Maximum value of TDS was found in Gour beel and the minimum was in Diplai beel. High value of TDS insinuate the increased nutriment status of water body which leads to eutrophication of aquatic bodies as repoted by Swarnalatha et *al.*, 1998 & Singh *et al.*,2015. Yadav *et al.*, 2012 reported that the water having more than 500mg/L of TDS values are not acclaimed for drinking purpose. The present work manifested that the selected water samples may be used for drinking by the local communities.

4.9.4 Determination of Dissolved Oxygen (DO)

Dissolved oxygen is an essential component to delineate man-made pollutants. According to Dixit et *al.*, 2005, the presence of DO is awfully necessitous to maintain the aquatic lives and balancing different pollutions which make the aquatic bodies healthy. Quantification of DO values stands for the key test for any kind of pollution in water. In the present study dissolved oxygen ranged from 6.21 to 7.65 mg/L (Fig.:2.8.4). Maximum DO was

traced in Gaurang river and Haloidal beel i.e. 7.65 mg/L. Similar observations were also made by Bhavimani and Puttaiah, 2014. According to Adakole, 2000, the concentration of DO not less than 5.0 mg/L is suitable for aquatic lives. Thus all the sites are good for aquatic life in general and fishes in particular.

4.9.5 Determination of Biological Oxygen Demand (BOD)

BOD is dissolved oxygen required by micro organism for aerobic decomposition of organic matter present in water. Jain et al.,2000, have considered BOD as an important parameter in aquatic system to analyze the level of water pollution. Fig.:2.8.5 shows the values of BOD were in the range from 1.2 to 2.4 mg/L. The maximum value of BOD was found in Gour beel. The least value was recorded in Diplai beel. If the BOD value of water is less than 1.0 mg/L then water is considered as pollution free, if it is between 2.0 to 9.0 mg/L then water is considered as polluted but in moderate level and if it is higher than 10.0 mg/L then water is considered as highly polluted (Adakole, 2000). The present study revealed the water samples being moderately polluted.

4.9.6 Determination of Chemical Oxygen Demand (COD)

Fig.:2.8.6 shows the variation in COD of different water bodies. The value of COD were in the range from 4.8 to 9.6 mg/L. COD determines the oxygen required for chemical oxidation of all organic matters viz. biodegradable and non-biodegradable by a strong chemical oxidant as repoted by Mahananda et al., 2010. The maximum COD level for fish culture is below 50 mg/L as per the Guidelines for water Quality Management for fish culture in Tripura (Hemlata et al, 2014). In the present study the COD values of all the four aquatic system were well within the permissible range and was found to be suitable for pisciculture.

4.9.7 Determination of total alkalinity

Total alkalinity of the water samples ranged from 4-14 mg/L (Fig.:2.8.7). Highest alkalinity was recorded in Gour Beel and the lowest in Diplai beel. According to Yadav *et al.*, 2013, alkalinity in most natural water estimates the amount of carbonates and bicarbonates whose salts get hydrolysed in solution and produced hydroxyl ions. It is used as a measure of productivity (Hulayal *et al*, 2011).

4.9.8 Determination of turbidity

Turbidity values of the water samples in the present study ranged from 5 NTU -130 NTU (Fig.:2.8.8). Turbid water is generally unpalatable for aesthetic problem. Turbidity is generated flow of muddy water from neighbouring the water sampling habitat or water bottom

lodging fish and muskrats. In the current study all water samples have the turbidity level within the legitimate range of World Health Organization. As per Zweigh (Zweigh, 1989), turbidity of 20-30 NTU is pertinent for pisciculture. Thus the turbidity of Halwadol beel (24 NTU) was more suitable for fish culture compared to the other three.

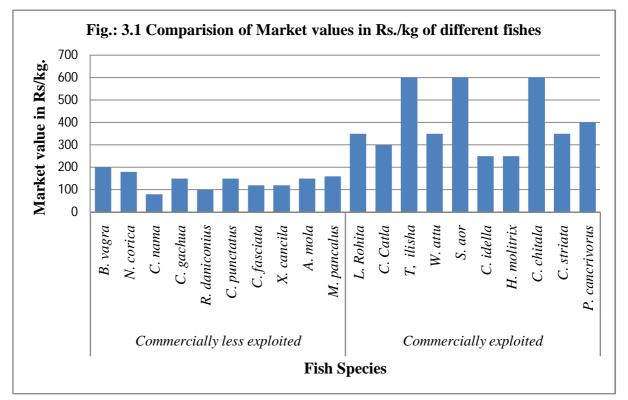
4.9.9 Determination of salinity

Salinity of the studied water samples ranged from 0.02-0.32 PSU (Fig.:2.8.9). Salinity implies the measure of saltiness of a water body. Low salinity implies the sites have more dissolved oxygen which is required for the aquatic life.

4.9.10 Determination of viscosity

Viscosity of the studied water bodies ranged from 0.9118-0.9359 mm²/S (Fig.:2.8.10). The highest value was recorded in Gour Beel and the lowest in Gaurang river.

The ideal values of various physico-chemical parameters (Boyd, 1998) for freshwater aquaculture are presented in Appendice-I.

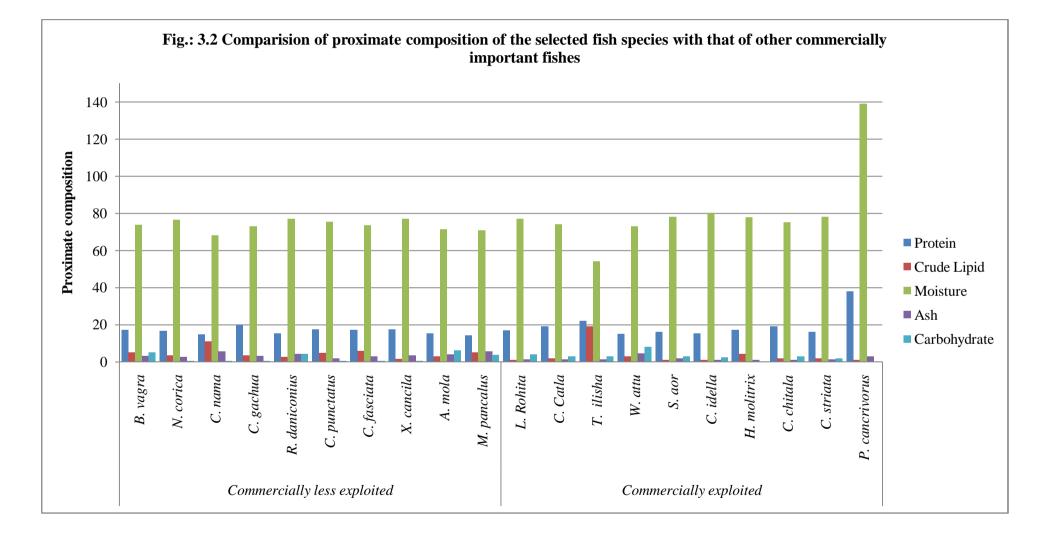

4.10 Comparision of small fish species with some popular large fish species

4.10.1 Comparision of market value

After thorough survey in some of the village areas of Kokrajhar district, it wasclearly highlighted that the available small fish species posses lower market value than some of the popular large fishes as shown in table below.

Fish Species	Local name	Market value (Rs./kg)	Fish Species	Local name	Market value (Rs./kg)
B. vagra	Boroli	200.00	L. Rohita	Rahu	350.00
N. maydelli	Bothia	180.00	C. Catla	Catla	300.00
C. nama	Chanda	80.00	T, ilisha	Hilsha	600.00
C. gachua	Cheng	150.00	W. attu	Boal	350.00
R. daniconius	Darikana	100.00	S. aor	Eir	600.00
C. punctatus	Goroi	150.00	C. idella	G. Carp	250.00
C. fasciata	Kholihona	120.00	H. molitrix	S. Carp	250.00
X. cancila	Kokila	120.00	C. chitala	Chital	600.00
A. mola	Mola	150.00	C. striata	Shol	350.00
M. pancalus	Turi	160.00	P. cancrivorus	Kuchia	400.00

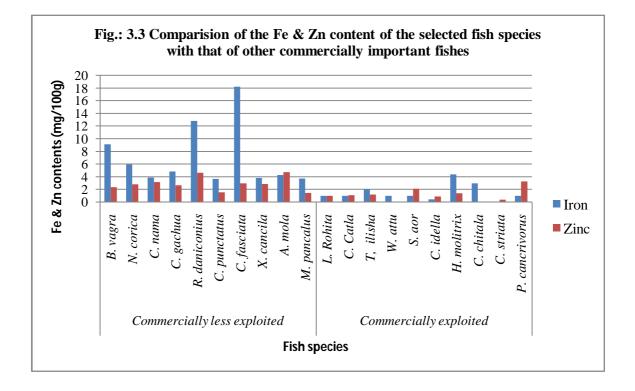
Table: 4.1Market values of different fish species

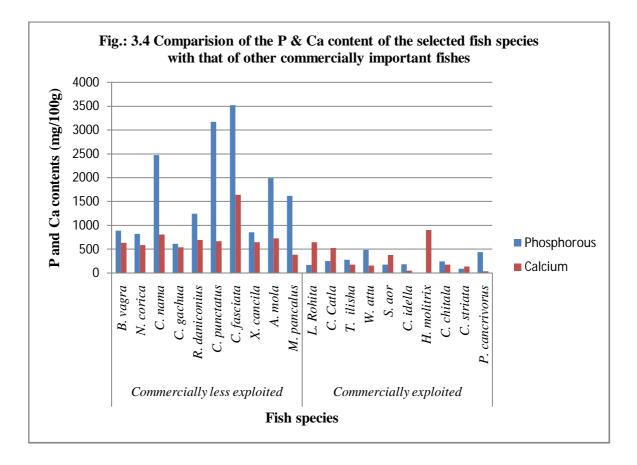

The poor villagers cannot afford readily to get the popular large fishes. Rather the small species were mostly admired by the below poverty groups. The small fishes had been less exploited commercially

4.10.2 Comparision of Proximate composition

 Table: 4.2 Proximate composition of small fish species compared with those of some popular large fish species

Sl no.	Scientific name of species	Protein (g/100g)	Crude Lipid (g/100g)	Moisture (g/100g)	Ash (g/100g)	Carbohydr ate (g/100g)
1	B. vagra	17.30	5.19	73.89	3.36	5.20
2	N. maydelli	16.72	3.42	76.71	2.85	0.40
3	C. nama	14.86	11.09	68.12	5.59	0.33
4	C. gachua	19.85	3.53	73.05	3.26	0.35
5	R. daniconius	15.35	2.82	77.21	4.22	4.31
6	C. punctatus	17.48	4.92	75.50	1.73	0.37
7	C. fasciata	17.22	5.84	73.51	2.95	0.48
8	X. cancila	17.41	1.58	77.07	3.55	0.30
9	A. mola	15.43	2.94	71.50	3.94	6.19
10	M. pancalus	14.26	5.08	70.96	5.79	3.91
11	L. Rohita	17	1	77	1.23	4
12	C. Catla	19	2	74	1.22	3
13	T. ilisha	22	19	54	1.4	3
14	W. attu	15	3	73	4.46	8
15	S. aor	16	1	78	2.0	3
16	C. idella	15.2	1.1	80.2	1.1	2.4
17	H. molitrix	17.2	4.1	77.8	1.0	0.1
18	C. chitala	19	2	75	1.0	3
19	C. striata	16	2	78	1.2	2
20	P. cancrivorus	38	1	139	2.9	


Going through the literature on the nutritional aspects of some commonly available popular large fishes, it was pointed out that the nutritional values of those popular large fishes do not vary remarkably with the nutritional contents of the small fishes which are easily available here, there and everywhere of the local areas.



4.10.3 Comparision of mineral content

Table: 4.3 Mineral content (Fe, Zn, P & Ca) of small fish species compared with those of
some popular large fish species

Sl	Scientific name of	Iron	Zinc	Phosphorous	Calcium
No	species	(mg/100g)	(mg/100g)	(mg/100g)	(mg/100g)
1	B. vagra	9.15	2.36	891.81	636.91
2	N. maydelli	5.95	2.84	825.64	591.20
3	C. nama	3.90	3.18	2470.00	807.93
4	C. gachua	4.84	2.66	616.79	539.39
5	R. daniconius	12.84	4.64	1246.55	697.39
6	C. punctatus	3.67	1.57	3170.00	672.98
7	C. fasciata	18.23	2.98	3520.00	1640.00
8	X. cancila	3.83	2.86	858.78	647.75
9	A. mola	4.31	4.73	1990.00	731.10
10	M. pancalus	3.75	1.44	1620.00	389.32
11	L. Rohita	1	1.0	175	650
12	C. Catla	1	1.1	255	530
13	T, ilisha	2	1.2	280	180
14	W. attu	1		490	160
15	S. aor	1	2.13	180	380
16	C. idella	0.46	0.91	190	54
17	H. molitrix	4.4	1.4	-	903
18	C. chitala	3		250	180
19	C. striata	0	0.41	95	140
20	P. cancrivorus	1	3.3	441	40.8

The comparision of some of the mineral contents also revealed that those small fishes which the poor villagers incude in their diet have a high mineral contents compared to those of some popular large fishes. The studied small fishes were thus found to be nutritionally competitive with the popular large fish species.