2015

CHEMISTRY

Paper: 101 (Old Course)

PHYSICAL CHEMISTRY

Full Marks: 80
Time: 3 hours

The figures in the margin indicate full marks for the questions

1.

Partition function can be used to calculate all the

	(electrical/physical/thermal/		
	thermodynamic) properties.	1	
2.	How internal energy is related to the canonical partition		
	function?	. 1	
3.	Write down the rotational partition function for a nor	te down the rotational partition function for a nonlinear	
	polyatomic molecule.	1	
4.	For a diatomic molecule, if temperature is increased	by two	
	fold, how its rotational partition function value will cha	ange?1	
5.	Show that the mean vibrational energy is $\langle \in_{v} \rangle = KT$	2	
6.	Deduce an expression for translational partition function in		
	terms of thermal wave length (Λ) and show that the t	ransla-	
	tional partition function is an extensive variable.	4+1=5	
7.	Calculate the rotational contribution for water mole	cules at	
	(1)	<i>P.T.O.</i>	

	3000 K, if $I_a I_b I_c$ for water is 5.76 x 10^{-141} Kg ³ m ⁶ .	
8.	Prove that 3+3=6	
	a) $P = NKT \left(\frac{dlnq}{dv}\right)_T$	
	b) $\mu = -KT \ln \left(\frac{q}{n}\right)$	
9.	What is mean activity coefficient? Why it is important for elec-	
	trolytic solution? Deduce an expression for mean activity co-	
	efficient (χ) for the electrolyte $A_x B_y$. 1+1+2=4	
10.	Write down the thermodynamic criteria for a three phase-	
	three component system 2	
11.	How a three component phase is presented on paper?	
	Explain with an example. 4	
12.	Prove that proper phenomenological coefficients are	
	positive. 2	
13.	Discuss about the thermoelectric effects; Peltier, Seebeck and	
	Thomson. 9	
14.	Show that the Gibbs energy of mixing of perfect gases is	
	always spontaneous. 4	
15.	How Clapeyron equation helps to describe precise locations	
	of phase boundaries? 5	
16.	Calculate γ - and $\gamma \pm$ for 0.002 molal sodium chloride in	
	water at 25° C. [Given A = 0.509 $\sqrt{\left(\frac{\text{kg}}{\text{mol}}\right)}$].	
17.	Deduce an expression for change in Born's free energy when	

(2)

P.T.O.

	an ion is introduced from vacuum into a medium of diele		
	constant, ∈ (say). How determines the spontaneity of		
	process?	4+1=5	
18.	What is Debye length (L _D)? How does it vary v	with ioni	
	strength (I)?	2	
19.	Derive the Einstein-Smoluchowski equation.	5	
20.	What is Born-Oppenheimer approximation?	2	
21.	What is radial distribution function? Draw radial di	stribution	
	functions for 1s and 2s orbitals.	1+2 = 3	
22.	22. Write down the wave function for a particle		
	dimensional box and evaluate the expectation value	of kinetic	
	energy for that particle.	1+3 = 4	
23.	Derive the expression for wave function for a pa	rticle in a	
	ring.	6	
•			