2018 CHEMISTRY CHM 104 SPECTROSCOPY-I

Full Marks: 80

Time: 3 Hours

The figures in the margin indicates full marks for the questions

1. Answer the following questions

 $2 \times 10 = 20$

- a) Why Raman spectroscopy is preferred over XRD?
- b) Explain how Heisenberg's uncertainty principle influences the width of spectral line.
- c) The microwave spectrum of a molecule gives two rotational constant.

 Which type of molecule is it? Explain
- d) The carbonyl group stretching vibration gives rise to a strong absorption in the IR region but the absorption due to C=C group in an alkene is normally weak. Why?
- e) What is the ground state term symbol of O_2 and H_2 ?
- f) Explain redox spectrum.
- g) Why the spectra due to d-d transitions are more intense in case of tetrahedral complexes than octahedral complexes?
- h) What are shielding and deshielding in NMR spectroscopy? Discuss with examples.

- At what range (δ value) the benzene protons can be expected to appear in ¹H NMR spectrum and the C=C carbons are expected to appear in ¹³C NMR spectrum?
- j) How many ¹H and ¹³C NMR signals will be observed from CH₂CH₂CH₂COCH₂CICH₂?

2. Answer the following questions

 $3 \times 8 = 24$

- a) Find the bond length and energy of rotational spectra in 5th excited state of HI, where the lines are equally spaced and separated by 20.8 cm⁻¹.
- b) Calculate the relative population of the 3rd and 4th state of HCl molecules at 298K. [B=2.14 x 10⁻²² J].
- c) Explain why heavier species show a smaller separation than a lighter species.
- d) What is the effect of solvent on the electronic spectra?
- e) Differentiate fluorescence from phosphorescence.
- f) An aqueous solution of $[Cr(H_2O)_6]^{3+}$ is pale violet but an aqueous solution of CrO_4^{-2} is bright yellow. Explain this difference.
- g) Complexes containing metal-metal bonds are intensely coloured.
 Rationalize this fact.

3. Answer the following questions

 $4 \times 9 = 36$

a) Consider the molecule PCl₅, H₂O, NH₃, CHCl₃, CH₂Cl₂, H₂, CO, HF and BF₃.

- i. What kind of rotor are they?
- ii. Will they show pure rotational spectra?
- b) Calculate the force constant for the HCl bond from the fact that the fundamental vibrational frequency is 8.667 X 10¹³ s⁻¹ and compare with DCl.
- c) State the limitations of Classical Raman spectroscopy.
- d) How many vibrational modes are IR active and Raman active for the following molecules?
 - i. Acetylene
 - ii. Water
 - iii. Carbon dioxide
 - iv. Carbon tetrachloride
- e) Molecular shape changes upon electronic excitation. Give evidence.
- f) What is Zero field splitting? Write the consequences of it.
- g) Explain why benzene protons appear at a downfield compared to those of alkene and acetylene.
- h) Draw the hyperfine structure of
 - ii. Methyl radical.
 - iii. VO(acac),
- i) Draw the electronic spectrum for
 - i. [Ti(H₂O)₆]³⁺
 - ii. [V(H₂O)₆]³⁺

2 P.T.O.