2018

CHEMISTRY

CHM-201

PHYSICAL CHEMISTRY-II

Full Marks: 80

Time: 3 Hours

The figures in the margin indicate full marks for the question:

ALL QUESTIONS ARE COMPULSORY:

- Write down the Hamiltonian operator for atomic hydrogen
 What is compatible observable?
 Write down the full Schrodinger equation (for three dimensions)
- 4. Prove that the operator $i \frac{d}{dx}$ and $\frac{d^2}{dx^2}$ are Hermitian 2+2
- 5. If $\hat{A} \& \hat{B}$ are Hermitian, show that $\hat{A}\hat{B}$ is also Hermitian if & commute 2
- 6. Write all the possible terms for configuration. Find out the ground state term.
- 7. Write down the energy expression for a linear harmonic oscillator. Draw the first five wave functions of the harmonic oscillator plotting their corresponding energies in Y-axis.
- 8. Write down the conditions to say ψ a well-behaved wave function. 3
- 9. Match the columns 2

A	В	C
1. RhCl(PPh ₃) ₃	a. Aldehyde	i. Carboxylation
2. Metal Hydride	b. Monsantro Process	ii. Hydroformylation
3. [Rh(CO) ₂ I ₂] ⁻	c. Unsymmetrical Alkene	iii.Hydrogenation
4. HCo(CO) ₄	d. Wilkinson Catalyst	iv. Isomerization

P.T.O.

10.	Why selectivity is very much essential for a catalyst?
	Derive the rate expression for a catalytic hydrogenation if the hydrogen
	pressure is kept constant. How the Lineweaver-Burk expression help
	us to calculate different kinetic data? 5+
12.	"One metal can give verities of products from a single substance simply
	by changing the ligands around the metal centre" Explain with
	examples.
13.	"A catalyst lowers the barrier of activation of reaction". Explain with
	an example.
14.	How the enzyme-catalysed reactions are different from the metal
	catalysed reactions?
15.	What are the basic assumptions, based on which the rate of a reaction
	is explained by CST? Discuss briefly.
16.	Show the shift of the fraction of sufficiently energetic collisions with
	the increase in temperature for a particular reaction (w.r.t. activatio
	energy).
	Show that the probability factor in CST depends on entropy, S.
18.	What caused to propose different models/mechanisms to explain th
	rate of a unimolecular reaction with the help of CST?
19.	For unimolecular reaction, establish the following relation
	$k = e^{\frac{k_b T}{h}} \exp\left(\frac{\Delta S^{\#}}{R}\right) \exp\left(\frac{-E_{Act}}{RT}\right)$
	(Where terms have their usual significance)
20.	Show the explosion limits and explain the causes of chain explosio
	with kinetics 2+
21.	Derive an expression of chain length for the following reaction
	$A \stackrel{\kappa_i}{\rightarrow} n\dot{F}$ (initiation)
	$\dot{F} + B \stackrel{k_p}{\rightarrow} \dot{F} + P \ (propagation)$
	$\dot{F} + \dot{F} \xrightarrow{k_t} F_2$ (termination)
	2

22.	What are the essential conditions to generate oscillations in a chemical	
	reaction?	3
23.	How does pH influence an enzyme-catalyzed reaction?	3
24.	Write a short note on enzyme inhibition	5
