2018 CHEMISTRY CHM-204 SPECTROSCOPY-II

Full Marks: 80 Time: 3 Hours

The figures in the margin indicate full marks for the questions:

Answer the following questions:
(a) How will you distinguish between 3-methyl and 4-methyl cyclohexenes
on the basis of mass spectrometry?
(b) Explain CI technique in mass spectrometry. 3
Or
Explain the even- and odd- electron rules in mass spectrometry with
suitable examples.
(c) Write the possible fragmentation patterns of the following compounds
mentioning their base peaks in mass spectrum. (Any two) 2+2
(i) Ethyl cyclopentane (ii) Cyclohexanone (iii) n-Butyl benzene
Answer the following questions:
(a) Explain the significance of Hooke's law in IR spectroscopy with
examples.
(b) Show the different modes of vibrations present in carbon dioxide
molecule and identify the IR active and inactive modes.
(c) Write the conjugation and H-bonding effects on carbonyl stretching
frequency with different examples.
(d) Arrange the following structures in order of their increasing C=C
stretching frequency and explain why.

P.T.O.

3. Answer the following questions (Any four):

5x4 = 20

(a) Explain the importance of DEPT 13C NMR technique.

5

3

- (b) What do you mean by 2-D NMR spectrum? Explain COSY spectrum of ethyl vinyl ether.
- (c) How coupling constant is different from the chemical shift? In the light of Karplus relationship, explain how the orientation of H-atoms affects the magnitude of coupling constant.

 1+4
- (d) What is shift reagent? Name at least two of it and write their structures. Discuss the use of shift reagents in simplification of 1H NMR spectra.

 1+2+2
- (e) What do you mean by spin-spin splitting? Indicate the number of signals and the multiplicity of each signal in the NMR spectrum of each of the following compounds.

 1+2+2

(i)
$$CH_2$$
- CH_3 (ii) H
 $C=C$
 $CCOCH_2$

4. Answer the following questions:

- (a) Find all the vibrational modes of square planar complex PtCl₄². Identify the Pt-Cl stretching mode of vibrations. 3+1=4
- (b) Photoelectrons ejected from N_2 with He (I) radiation (21.22 eV) had kinetic energy of 5.36 eV. What is the energy needed to remove an electron from the HOMO of the N_2 molecule (i.e., the $3\sigma_g$ orbital)? 5
- (c) Define circular dichroism and magnetic circular dichroism. Write their differences and explain how their measurements provide a useful physical method to determine molecular properties of inorganic compounds.

 2+2+2

Or

Discuss the principle and application of CD and ORD techniques to transition metal complexes.

5. Answer the following questions (Any five):

5x5 = 25

- (a) Explain with a suitable example how orientation of nuclear spins with respect to applied magnetic field leads to hyperfine splitting of EPR signals. Why EPR spectra are plotted in derivative mode? 3+2
- (b) What are the various ways in which NMR spectroscopy proves itself as a useful physical method in the field of inorganic chemistry? Write briefly why it is not a straightforward option to use NMR spectroscopy for obtaining structural information on paramagnetic compounds. 2+3
- (c) Explain how more than one unpaired electron results in more number of EPR lines than expected. The dinuclear Fe-Fe bonded species (η5-Cp)₂Fe₂(CO)₄, which contains both bridging as well as terminal CO ligands, shows two ¹H NMR signals at -70₀C but only one at 28°C. Use this spectral information to identify the species present at the above temperatures.
- (d) Explain how recoil of source and sample makes it impossible to record a MDssbauer spectrum in the gas phase. Mention the energy and lifetime ranges of the gamma-emitter for observing a good M össbauer resonance.
- (e) The centre of the ESR spectrum of methyl radical occurs at 329.4mT when the spectrometer is using $9.233 \times 10^9 \, \text{Hz}$ microwave. What is its g-value? [1 tesla= 10^4 gauss; β = $9.27 \times 10^{-2}1$ erg.gauss⁻¹]. Sketch the NH₂ radical (I_N =1, I_H =1/2). Give reasons to your answer. 2+3
- (f) What are the various factors that determine NMR signal strength in the context of multinuclear NMR spectroscopy? Explain how magnetic susceptibility of a paramagnetic complex can be measured by making use of NMR spectroscopy.
 2+3

2

34

P.T.O.