2018

CHEMISTRY

CHM 301

QUANTUM CHEMISTRY

Full Marks: 80

Time: 3 hours.

The figures in the margin indicate full marks for the questions

1	Write down the molecular wave function for H_2 in the LCA	О-МО		
	framework. How Heitler & London modify it?	1+1		
2	Write down the steps to construct MOs of H_2O molecule.	3		
3	Find the energy gape expression for the highest wavelength π	· → π*		
	transition for a linear conjugate system of $n + 1$ carbon atoms.	7		
4	Discuss the LCAO-Mo treatment of H_2^+ .	9		
5	Write down the Hamiltonian for Helium atom& identify the per	turbed		
	term present in it.	2		
6	Show that the first order correction to the wave function & ener	gy can		
	be determined from the Eigen function and Eigen value of the unper	rturbed		
	system.	4+4		
7	Using variation method, construct the Secular determinant for a system			
	of function	5		
$w = a_1 a_2 + a_2 a_2$				

8	What are linear and non-linear variation functions? Find an exp \vec{E} for harmonic oscillator.	ression for		
	[Given $\psi = e^{-\beta x^2}$; $\int_{-\infty}^{+\infty} x^2 e^{-ax^2} dx = \frac{1}{2} \sqrt{\frac{\pi}{a^3}}$; $\int_{-\infty}^{+\infty} e^{-ax^2} dx$ $\beta \to \text{variable parameter}$]	$=\sqrt{\frac{\pi}{a}} ;$		
9	From the variation treatment, find out the ground state ene	rgy of <i>He</i>		
	atom.	7		
10	State and explain Born-Oppenheimer Approximation.	3		
11	Derive Hellmann-Feynmann theorem.	5		
12	Explain Density functional theory based on Hohenberg-Kohn 7	in Density functional theory based on Hohenberg-Kohn Theorems.		
	Write the drawbacks of DFT.	·6+2		
13	Derive the wave function for n-electron system using SCF appro	ximation.		
	Discuss its application to He-atom. Also obtain the orbital e			
	total energy term.	5+2+3		

Write a short on

14

Pariser-Parr-Pople Approximation

Roothaan's equation

3+3