2018

CHEMISTRY

CHM 302

ANALYTICAL TECHNIQUES

Full Marks: 80

Time: 3 hours.

The figures in the margin indicate full marks for the questions

1. Answer the following questions (any four):

5X4=20

- (a) What is reverse phase HPLC? What is 'Gradient' condition HPLC analysis? State its advantages over 'Isocratic' condition? What is preparative HPLC?
- (b) What are ion-exchange resins? Discuss briefly the principle of ion-exchange chromatography.
- (c) Discuss the principle of HPTLC and its advantages over TLC.
- (d) Discuss the principle of GC-MS. What are the advantages of Flash chromatography on TLC?
- (e) What are the theoretical plates? Discuss any one theory of chromatography.
- (f) Explain the mechanism of a continuous eluent suppression system used in ion chromatography, with a suitable diagram. How is pH useful in solvent extraction method?

2. Answer the following questions (any two):

5X2=10

(a) Explain with reasons the various precautions that should be taken before and during a cyclic voltammetry experiment. 5

- (b) What do you mean by EC and ECE mechanisms of electrochemical reactions? How can these two mechanisms be distinguished by cyclic voltammetry? 2+3=5
- (c) Taking ferrocene as an example state how cathodic and anodic peaks are obtained in CV experiment. 5

3. Answer the following questions (any four):

5X4=20

- (a) How can DSC be helpful in the construction of a phase diagram for a binary eutectic system?
- (b) The following table summarizes some data about three Fe(III) chlorides. Sketch the TG curve anticipated if 25.0 mg sample of FeCl₃.6H₂O is heated from 0°-400°C. 5

Compound	Molecular weight	Melting point (0°C)
FeCl ₃ .6H ₂ O	270	37
FeCl ₃ .5/2H ₂ O	207	56
FeCl,	165	306

- (c) In the TGA of 0.250g of Ca(OH)₂, the loss in weight at different temperatures was:
 - (i) 0.018g at 100-150°C (loss of hydroscopic water)
 - (ii) 0.038g at 500-560°C (dehydration)
 - (iii) 0.0229 at 900-950°C (dissociation)

 Determine the composition of calcium hydroxide.
- (d) What do you mean by structure factor? How is it related to intensity and atom form factor? 2+3=5
- (e) Derive the condition of systematic absence for FCC crystal lattice. 5

4. Answer the following questions (any two):

2X5=10

5X4=20

- (a) What kind of information can be extracted from SEM and TEM?

 Write the working principle of TEM.

 3+2=5
- (b) How many ways a AFM can be operated? Discuss about the advantages and disadvantages of AFM. 1+2+2=5
- (c) To record surface morphology of a rubber, which techniques will you prefer from the three techniques AFM, SEM and TEM and why?
 1+4=5

5. Answer the following questions (any four):

- (a) Give at least one method of sample preparation for determining trace elements in the leaves of a plant. What precautions are necessary?
 3+2 =5
- (b) How does inductively coupled plasma mass emission spectroscopy work? Is it possible to determine all the elements with it? 5
- (c) How can you determine trace amount of phenol in water? Give the complete method.5
- (d) You have to sample air for determining the presence of Pb and PAH in it. Describe how you will proceed.5
- (e) Anodic stripping voltammetry can accurately determine many trace
 elements in water. Explain the working principle of inductively
 coupled plasma torch with a suitable diagram.