2015

CHEMISTRY

Paper: 104

SPECTROSCOPY-1

Full Marks: 80

Time: 3 hours

The figures in the margin indicates full marks for the questions

1. Answer the following: $1 \times 10 = 10$

- a. Which of the following molecules do not have IR active vibrations?
 - a. H,
 - b. NO
 - c. N₂O
 - d. CH,
- b. The ESR spectrum observed in the region
 - a. microware
 - b. radiofrequency
 - c. X-ray
 - d. UV/VIS
- c. The Raman scattering is
 - a. Elastic scattering of light

b.	Inelastic scattering of light		ii. The frequency of O		
c.	Emission of light			a.	Infrared Radia
d.	Absorption of light			b.	Microwaves
The	photons of wavelength 400 nm corresponds to			c.	Radio frequer
a.	20000 cm ⁻¹			d.	All the three
b.	25000 cm ⁻¹		i. The ESR spectrum of		
c.	40000 cm ⁻¹			a.	25 lines
d.	50000 cm ⁻¹			b.	50 lines
ESI	R spectrum of p-benzoquinone radical anion consi	sts of a		c.	75 lines
a.	1:2:3:2:1 quintet			d.	100 lines
b.	1:3:3:1 quartet	93.50	j.	Vib	rational transiti
c.	1:4:6:4:1 quintet			tran	sitions
d.	Equally intense quintet			a.	Vibrational
Th	e rotational spectrum of a rigid diatomic rotor con	sists of		b.	Rotational
equ	ually spaced lines with spacing equal to			c.	Electronic
a.	В			d.	None of these
b.	B/2		2.	Ans	wer the following
c.	3B/2			a.	Describe the v
d.	2B				light.
In	Raman spectrum, transitions are only observed b	etween		b.	Discuss effec
rot	ational levels of $\Delta J=$				frequencies.
a.	$0, \pm 1$			c.	Explain mutual
b.	±2			d.	Define hyperfin
c.	±1/2			e.	Discuss with ex
d.	$0, \pm 2$				deshielding in l
	(2)	D.T.O.			4
	(2)	P.T.O.			

d.

e.

- iation
- ncy

of anthracene radical anion consists of

ions are always accompanied by ——

2×10=20

- wave and corpuscular theory of visible
- ct of H-bonding on IR stretching
- exclusion principle with examples.
- ne lines with example?
- cample what you mean by shielding and NMR spectroscopy?

- f Which of the following nuclei will show nuclear magnetic resonance and why?

 2H, ¹³C, ¹⁴N, ³²S
- g. How Frank Condon Principle is useful for diatomic molecules.
- h. What is chemical shift? Explain briefly.
- i. What are group frequencies? Explain.
- j. What is meant by the term polarizability? Explain with a suitable example.
- 3. Answer the following (any five)

 $3 \times 5 = 15$

- a. Write briefly about Magnetic resonance imaging (MRI) and its application.
- b. Classify the molecules on the basis of their three principle moment of inertia.
- c. How the following pairs can be distinguished by IR spectroscopy?
 - i.

іі. Сно

iii.

- d. Explain the terms Kramers degeneracy, Zero field splitting and hyperfine coupling constant in ESR studies.
- e. Deduce expressions for fundamental frequency, first

- overtone and second overtone. How they differ from each other?
- f. How many signals would you expect to see in the 1H NMR spectrum of each of the following compounds?

(ii) CH₃CH₂OCH₃

CH₃ HO OH (vi)
$$\downarrow$$
 CH₃ (iii) $H_3C - \stackrel{?}{C} - OCH_3$ (v) $\stackrel{?}{C} H_3$

- 4. Answer the following questions (any seven) $5 \times 7 = 35$
 - a. What is the fundamental difference between NMR and ESR? How many ESR peaks are expected for 14 N. Calculate the ESR frequency in MHz in a magnetic field of 25000 Gauss of g = 2 and β = 9.273 x 10^{-24} JT⁻¹ (1T = 10000G, h = 6.626 x 10^{-34} Js).
 - b. Define Fermi resonance? Discuss different vibrational bands observed for CO₂ molecule.
 - c. The fundamental and first overtone transitions of \$\$^{14}N^{16}O\$ are centred at 1896.06 cm⁻¹ and 3924.2 cm⁻¹, respectively. Evaluate the equilibrium vibration frequency, the anharmonicity, the exact zero-point energy, and the force constant of the molecule.
 - d. Find the internuclear distance of CO, if the atomic masses are given as C=19.92\Bar{B}10^{-25}kg and O=26.56\Bar{B}10^{-27}kg and the lines are equally spaced and

spacing between the lines is 20.8 cm⁻¹. Express the value in pm.

- e. Write a short note on Stark effect.
- f Discuss about the vibration-rotation spectra of HCl.
- g. State and explain the principle of Laser action.
- h. What are fluorescences and phosphorescences? Explain the Jablonski diagram.