2016

CHEMISTRY

Paper: 203

INORGANIC CHEMISTRY

(Old Course)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer any five of the following questions: 2X5=10
- (a) Why high coordination numbers are common for transition metals occurring on the left of the periodic table?
- (b) How many isomers do we expect for a square planer complex of formula MX₂L₂? Give symmetry point group (s) of the probable isomers (s).
- (c) Predict the coordination geometries of [NiBr₄]²⁻ and [AuCl₄]⁻. Justify your answer.
- (d) Write the IUPAC name of
 - (i) [Co(en)₂Cl₂]⁺
 - (ii) $K_2[OsCl_5(NH_3)]$
- (e) What are the two different structures possible for a metal complex with coordination number eight?

(f)	Describe	the	two	methods	to	identify	the	complex
	formation.							

2. Answer any four questions:

5X4=20

- (a) Define crystal field stabilization energy. Calculate its value for the following systems
 - (i) d⁵ low spin octahedral (iii) d⁵ high spin octahedral.
 - (ii) d⁴ tetrahedral
- (iv) d⁶ tetrahedral
- (b) Define diagram showing splitting in square planer complexes and tetrahedral complexes.
- (c) The magnetic moment of $[Fe(H_2O)_6]^{3+}$ is 5.92 B.M. and that of $[Fe(H_2O)_6]^{3-}$ is 1.73 B.M. Explain on the basis of CFT.
- (d) Why hexaaquairon (II) is nearly colourless, tris (bipyridyl) iron (II) is red in colour. Explain this difference in the observed colours of the two examples of iron (II)
- (e) Draw diagram showing splitting of terms p² configuration.
- 3. Answer any one question:

1X10

- (a) Discuss the structure and bonding of Re₂Cl₈²⁻..
- (b) What are the major structural types in compound with M-M multiple bonds? Explain the bonding in any one of them.

4. Answer any two questions:

2X5=10

(a) Explain the structure and bonding of metal-nitrosyl complexes.

(b) Find the structure and draw the structure of the following from the total electron counts-

(i) $[Os_8(CO)_{22}]^{2-}$, (ii) $H_2Os_6(CO)_{18}$,

(iii) $[Os_4Ni(CO)_{12}]^{\mathsf{T}}$

(c) How can you prepare ferrocene? The aromatic character of ferrocene is different from benzene. Explain.

5. Answer any four question:

4X5=20

- (a) Define *trans* effect. Illustrate trans effect using reaction $[PtCl_4]^{2-}$ and $[Pt(NH_3)_4]^{2+}$
- (b) How does the nature of central metal ion as well as light affect the stability of the complexes?
- (c) Find the relation between stepwise and overall stability constants.
- (d) Is the reaction $\left[\text{Co(NH}_3)_6\right]^{3+} + \left[\text{Cr(H}_2\text{O)}_6\right]^{2+}$ likely to proceed by an inner sphere or outer sphere mechanism? Explain your answer.
- (e) Explain what you mean by labile and inert complexes. Why the high spin d^4 complex ion $[Cr(H_2O)_6]^{2+}$ is labile but the low spin d4 complex ion $[Cr(NH_3)_6]^{4-}$ is inert?
- 6. Answer all questions:
- (a) Name the d-block element that occurs in lanthanoids bearing minerals.

- (b) What are the oxidation states in the earlier actinides Ac-Pu and later actinides Am-Lr?
- (c) Describe the basic character of hydroxides of lanthanides elements.
- (d) Describe the extraction of thorium from monazite sands.

5

Or

Give a brief description of separation of lanthanides by ion exchange method.

___ × ___