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OBJECTIVE OF THE CHAPTER 
 

The objective of this chapter is to evaluate the proposed system performance in 

terms of accuracy and proposed some mechanism to increase the performance of 

the base line system. The confidence building measure is done by applying multiple 

decoders and voice activity detection. Further, the issues in adapting the ASR 

system with small and unseen speaker data are highlighted. A simple grid search 

based cluster model interpolation for model mean and/or mixture-weight adaptation 

is explored which provides about 11% relative improvement in baseline 

performance. 

6.1 CONFIDENCE BUILDING MEASURES 

Confidence measures [69] are mainly used to detect incorrect words, 

ambiguity of words to provide an estimation of the probability of correctness. It helps 

to go with a proper flow in the dialogue manager reduce to probability errors that may 

happen during information retrieval process. There are three different levels of 

confidence measure in spoken dialogue system [70]: 

a. Word Level gives the idea about the accuracy of each recognized word by 

using Language Model (LM) features. 

b. Utterance Level targets the detection of out of domain utterances by using 

acoustic, LM and parsing features. 

c. Concept Level focuses on parts of phrases which is meaningful to the task. 

Decoder, LM and parsing features are used to tag the concepts with the 

confidence measures. 

 We consider decoder and LM features for word level confidence measures. 

Decoder features has the following parameters [70-71]: 

a. Normalized Score: It is defined as the total acoustic score of the word divided 

by the number of frames that it spans. 

b. Count in the Nbest: It is the percentage of times that the word appears in the 

100-best hypotheses in similar position. 
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c. Lattice Density: It is the number of alternative paths to the word considered in 

the word-graph generated in the second pass of the recognizer. 

d. Phone Perplexity: It is the average number of phones searched along the 

frames where the recognized word has been active in the decoding process. 

Language Model features has the following parameters: 

a. Language Model Back-Off Behavior: back-off behavior of an N-gram 

language model along a 5 word context. 

b. Language Model Score; the log-probability for each word in a sequence as 

computed from a back-off language model along a 5 word context.  

 

Following mechanisms are adopted to avoid a wrong path in the call-flow of IVR 

module: 

a. The feeble and no-responses are detected using a VAD and the system then 

prompts to repeat the query. 

b. The final hypothesis is generated by polling the output of acoustic models 

c. At each stage of the call-flow, the user is asked for confirmation by uttering 

Nongwo / Nonga(yes/no). 

 

6.2 PROPOSED VAD ALGORITHM 

A simple voice activity detector which works on short term energy is used to 

detect whether the user has uttered a word or not. The average energy is computed for 

three different regions in the speech file. Where, three different regions being 

classified as initial silence, middle speech and the final silence regions. Since, the 

application works on isolated word recognizer the initial and final 0.9 seconds of 

speech data is being considered as silence regions. The silence energy is considered to 

be from either the initial or end regions of the speech based on lesser average energy 

criteria. Once the average energy of the silence (Silence Energy) is computed, this is 

used to find whether there is reliable speech activity in the speech based on the 

following relationship 

 

 

 

 

If (Average Energy < (4 * Silence Energy)) 

Voice Activity = yes 

else 

Voice Activity = no 
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i.e., if the average energy of the speech region is at least 4 times greater than 

the average energy of the silence region then it is assumed that there is voice activity 

in the speech file else it is assumed there is no voice activity in the speech file. The 

speech region is detected by using the endpoint detection algorithm. The endpoint 

detection algorithm works on the basis of lower (Tl) and upper threshold (Tu) values 

of the evidence. The Tland Tuare computed using the maximum value of the average 

energy (Emax) and the minimum value of the average energy (Emin) of the speech 

signal. The following relations are used to obtain Tl and Tu: 

I1 = 0.03 * (Emax - Emin) + Emin 

I2 = 4 * Emin 

Tl  = min(I1, I2) 

 Tu = 2 * Tl 

The starting points for searching the speech regions start from the extreme 

endpoints on either side. These points are labeled as the beginning and end points of 

the speech region. The end points are moved towards the center from either side 

towards the center unless the energy falls below Tl before it rises above Tu. These 

points obtained finally are determined as the endpoints of the speech region. If there is 

a voice activity detected then the speech file is further subjected to the speech decoder 

for recognition of word.   

6.3 PROPOSED HYPOTHESIS FOR MULTIPLE DECODERS 

We propose a confidence scoring technique based on multiple ASR decoders. 

The key idea is that one may want to build more than one ASR decoders, where each 

decoder tries to capture complementary facts approximately the speech data. This 

could be attempted through training multiple decoders using different training 

datasets, or different features such as Mel-frequency cepstral coefficients and linear 

prediction cepstral coefficients [72][73]. Given these multiple decoders, if a majority 

of these decoders agree on a hypothesis, i.e., their recognized output is same, and then 

dialogue manager could choose to avoid an explicit confirmation from the user. 

Consider a set of decoders {d1, d2} ε D. For a given acoustic signal, let the 

corresponding hypothesis of D be {h1, h2} ε H. Let Ci is the contextual information 

for the dialogue state i. The following are possible cases and the corresponding 
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actions incorporated into proposed system using multiple decoders and contextual 

information: 

Case 1: The hypotheses h1 and h2 are same and are present in the contextual 

information:  

h1 = h2 and h1 ε Ci 

Action: The recognition output is most likely to be correct and the system 

would jump to subsequent dialogue states. 

Case 2: h1 = h2 and h1, h2 ε Ci 

Action: The recognition output is most likely to be correct, but input is of no 

help as it is not present in the contextual information. The system would 

prompt the user, saying that no such information is available pertaining to that 

given input and would ask the user to provide some other query. 

Case 3: h1! = h2 and h1/h2 ε Ci 

Action: In such cases, system would try to consider the hypothesis that is 

present in the contextual information and discard the other. To make sure that 

the recognition is correct, the system would ask for an explicit confirmation 

from the user. 

Case 4: h1! = h2 and h1, h2 ε Ci 

Action: Proposed system-recognition might have occurred and the system 

would prompt the user to provide the information again. The above hypothesis 

can be easily extended for (n> 2) decoders. 

 

6.4 ROLE OF CONTEXTUAL INFORMATION 

In the current version of proposed system, the scheme of multiple decoders is 

implemented using two decoders. Each decoder differs from the other in its acoustic 

models[73]. The first decoder uses the acoustic models AM-1 which is built on Bodo 

data.  The second decoder uses the acoustic models referred to as AM-2. These 

acoustic models are built on a speech corpus consisting of isolated Bodo words. On a 

test data set of 5718 utterances from 20 speakers, the word level accuracy of AM-1 

and AM-2 is shown in Table 6.1.  
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Table 6.1: Recognition score using the built acoustic models 

Acoustic Models Speech Data Accuracy 

AM-1 Bodo  81.24 

AM-2 Bodo+ Continuous Speech 76.86 

 

The proposed system could choose a specific affirmation simplest when more 

than one decoder is not in contract. Table 6.2 shows the number of times AM-1 and 

AM-2 agree/disagree on their hypotheses. This evaluation was done on test data set. 

When the decoders are not in agreement, then the contextual information (expected 

set of concepts for the given state of a dialogue) plays a role in accepting/ rejecting 

the hypothesis. For the cases of (~A, B) and (A,~B) in Table 6.2, if one of the 

hypothesis is present in the contextual information, then it could be asserted through 

an explicit confirmation from the user. Table 6.2 shows an example dialogue for Case 

3 in the proposed system. 

 

Table 6.2:  Comparing AM-1 and AM-2 on the test data set 

  B ~B 

A 4092 (71.56%) 541 (9.46%) 

~A 303 (5.29%) 782 (13.67%) 

 

Here A indicates AM-1 being correct in its hypothesis, while B indicates AM2 being 

correct. ~A indicates AM-1 being incorrect. ~B indicates AM-2 being incorrect in its 

hypothesis 

6.5 GRID SEARCH BASED CONSTRAINED CLUSTER MODEL 

INTERPOLATION 

Adaptation techniques intend to reduce the acoustic mismatch between the 

speaker-independent (SI) acoustic models and the test data. These methods have 

become an integral part of the state-of-the-art automatic speech recognition (ASR) 

systems. Maximum a-posteriori (MAP) [75] and maximum likelihood linear 

regression (MLLR) [76] criteria form the basis for most of the conventional 
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adaptation techniques. These techniques require a considerably large amount of 

adaptation data and hence become largely ineffective when available adaptation data 

is small (≤10 s). A number of fast/rapid adaptations approaches have been proposed 

over the past decade to address this problem. These techniques generally use bases 

model parameter interpolation to derive the model parameters for the test 

speaker/utterance [77-79]. The interpolation weights are either estimated as a global 

parameter or a number of Gaussians are tied depending on some criterion (like 

regression classes) and one set of weights is estimated for each class. Since, only the 

interpolation weights are estimated in bases interpolation based approaches, even a 

small amount of adaptation data is sufficient for the estimation of these interpolation 

weights. As reported in [80-81], further improvements in system performance can be 

achieved by a dynamic selection of bases for each test speaker/utterance instead of 

keeping them fixed[74].  

The reported fast adaptation techniques are generally evaluated in batch mode 

of operation where the transform parameters (interpolation weights) are estimated 

under the supervision of true transcription. These transform parameters are then used 

during the testing with speaker specific information assumed to be known to the 

system. There are some applications where such knowledge cannot be presumed and 

the adaptation data available is that test utterance only, i.e., online mode of adaptation 

as in case of spoken dialogue systems [82-85]. In our proposed work, we intend to 

target the issues of adaptation for an on-line recognition task where not only the 

available adaptation data is very small (≤ 2 s) but also no prior knowledge about the 

test speaker is presumed by the system. Consequently, an accurate representation of 

the test speaker in terms of an adapted model is difficult to achieve. At the same time, 

adaptation is required to be performed efficiently so that it does not add much latency 

to the overall system. The proposed adaptation approaches, though not explicitly 

optimal are yet found to be effective for the aforementioned unseen speaker and small 

data adaptation task in the context of SQ systems.  

The speaker independent (SI) ASR systems have to deal with both the intra- 

and inter-speaker variability in contrast to the speaker dependent (SD) systems which 

have to deal only with the former. The intra-speaker variability refers to the inherent 

variations in a speaker and is also aided by the variations due to the changes in the 

health conditions and emotional state of the speaker. The inter-speaker variability is 

mainly caused due the gender differences (male and female speakers have different 
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fundamental frequencies due to differences in their vocal tract lengths), the speaking 

styles and accent differences among native and non-native speakers and the speaking 

rates differences among speakers. Consequently, the performance of the SI system is 

reported to be 2 to 3 times inferior compared to a speaker dependent system [86]. In 

addition to these, both the speaker independent and SD systems have to deal with the 

channel variability (speech collected over telephone channel and over microphones 

have different properties). There are techniques which address the channel distortions 

[87-88] beyond applying CMN. But those are still too complex to be applicable in 

real-time systems [74, 88].  

The SD systems, though quite effective, are infeasible to be built for each 

speaker as it requires a large amount of data per speaker. Hence, speaker adaptation 

techniques have been developed which intend to modify the parameters of the SI 

system to better suit a particular speaker with as low data as possible from that 

speaker. Generally, a certain amount of speaker-specific developmental (adaptation) 

data, for which the true transcription is available, is used for transform parameter 

estimation. Once the transform parameters are generated for a speaker, the same is 

used to decode the test data belonging to that speaker. Unfortunately, this requires a 

significant amount of data as well as the a-priori knowledge about the test speaker. In 

context of the SQ system discussed in this work, both the conventional and the rapid 

adaptation approaches are found to be ineffective. This is so because neither a 

sufficient amount of adaptation data is available nor the test speaker is one among the 

training set speakers. In these cases we can hope to adapt the ASR system to the test 

data based on broad acoustic similarity only and not to any speaker specific space. In 

this regard, we explored rapid adaptation approaches that assume that the adapted 

model parameters lie in a low dimensional space defined by the linear interpolation of 

a set of acoustic models. These acoustic models can be defined either by creating a 

speaker adapted (SA) model for each of the speakers in the training set [77, 80, 81] or 

by clustering the speakers using some similarity criteria [79]. Employing SA models 

is reported to be very effective as it provides a greater acoustic/linguistic diversity by 

capturing the intra-speaker variability. Such an approach, at the same time, results in 

an increased complexity due to the interpolation of a large number of bases (SA 

models). In case of SQ systems, this can be reduced by clustering the speakers in the 

training set into a small number of clusters. This leads to a loss in the finer acoustic 

details (the intra-speaker variability) due to the pooling of data from a large number of 
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speakers. Deriving such averaged models is the price paid to avoid the increased 

latency incurred in case of the former approaches. In this work, for acoustic 

clustering, each speaker in the training set is first represented as a super vector 

derived by concatenating the Gaussian mean parameters of its respective SA model 

[88]. In this work, MAP adaptation of the SI monophone models is performed to 

create the speaker specific supervectors. This ensures that almost all the Gaussians get 

adapted using the available speaker specific data and hence the derived super vector 

uniquely represents a speaker [87]. 

These super vectors are then grouped into a desired number of clusters using 

vector-quantization (VQ). Pooling the speech data corresponding to all the speakers 

assigned to a particular cluster, a cluster model is then created using MAP adaptation 

of the SI model (triphone HMM). An added advantage of acoustic clustering is that it 

reduces the memory requirements for storing the candidate models. Using SA models 

corresponding to each of the speakers also hampers the system portability due to large 

memory requirements [84]. Once the set of acoustic cluster models are created, on-

line adaptation can be performed in the following two ways: 

a. For each test utterance, the most appropriate acoustic (cluster) model is chosen 

using Viterbi-alignment based maximum likelihood (ML) search. The test 

utterance is then re-decoded using the cluster model that has the highest 

likelihood with respect to that utterance. 

b. Like [57], instead of re-decoding using the highest likelihood cluster model, 

the adapted model parameters can be obtained by the linear interpolation of 

the model parameters of the top K most likely acoustic models.   

  The fast adaptation techniques discussed in [76,77] attempt to find an acoustic 

space which is more closer to the test utterance through a dynamic selection of vectors 

from a set of bases rather than using fixed basis vectors. Once the preferred basis 

vectors are found, these are linearly interpolated in chosen parameter space to 

estimate the adapted HMM model. A set of optimal weights for interpolation are 

estimated by maximum likelihood estimation iteratively. These interpolation weights 

may be initialized either equilikely or randomly. These interpolation weights are 

usually applied to all Gaussians in the model. Among the different parameters of the 

model which could be interpolated for adaptation, the mean and/or the mixture-weight 
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vector are most successful ones [76, 77]. Unlike the mean vector interpolation, the 

mixture-weight vector interpolation requires that weights should be non-negative as 

well as sum to one. It is well known that the estimated weights should turn out to be 

such that more emphasis is given to those basis models which have a higher 

likelihood for the adaptation data. This motivated us to explore the derivation of 

interpolation weights in proportion to the likelihoods of the adaptation data with 

respect to a set of basis models. The test data is force-aligned with a set of basis 

models and K-top likelihood basis models are selected. The likelihood scores of these 

selected models are then normalized to form a set of interpolation weights for mean 

and/or mixture-weight vectors of the basis models. The detailed procedure is outlined 

in the following proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For deriving the basis models, we have first created training data speaker 

mean super vector by men-only MAP adaptation on 8 mixtures monophone-HMM 

models. This super vector is then clustered using LBG algorithm into desired number 

of clusters. Using the data belonging to the speakers in each of the clusters, the 

corresponding basis (cluster) models are then derived by MAP adapting the mean 

and/or mixture-weight parameters of the triphone level SI model. We have 

Algorithm: Estimation of interpolation weights wi and adapted model parameters 

Lemda. 

Assume: N basis models for adaptation 

Step1: Obtain hypothesis for test data using first-pass decoding with SI model 

Step2: Force-align test data under the constraint of first pass hypothesis against 

each of the bass model and obtain the likelihood score array {Li}, i=1,…….N 

Step3: Sort the array {Li} in descending order and select the top K acoustically 

close basis models (k<N) 

Step4: For K base models, estimate the interpolation weights Wi with 0< Wi <1 

and 

∑Wi = 1

𝐾

𝑖=1

 

Wi=
𝐿𝑖−min{𝐿𝑖

∑ [Li−min{Li}=1]
𝐾

𝑖=1

 

Step5: Derive adapted model as   =∑ Wi𝐾
𝑖=1  
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experimented with different number of cluster models and noted that best 

performance is obtained with 8 cluster models. The performance of the proposed 

algorithm when applied to mean vector, mixture-weight vector, and both mean and 

mixture-weight vectors interpolation is given in Table 6.3.It is to note that the 

proposed approach not only out performs the baseline ASR system (commodity name 

recognition) but also the simple maximum-likelihood cluster decoding in all.  

 

Table 6.3: Performances of the proposed adaptation approach with 4 top 

likelihood clusters derived out of 8 acoustic clusters employed for interpolating 

different model parameters. 

Type of Adaptation WER (in %) 

Max likelihood cluster search 15.00 

Cluster mean interpolation 14.80 

Cluster mix-with interpolation 14.8 

Cluster mean and mix with interpolation 14.30 

Baseline ASR System 16.00 

 

SUMMARY 

The work presented in this chapter made an attempt to make a hypothesis 

along with VAD module for increasing the recognition accuracy. Proposed hypothesis 

helps the user to proper understating of the call flow and finding there result in 

efficient manner. Apart from this, the issues in adapting an entity recognition system 

with small adaptation data and that too in unseen speaker case are discussed. A simple 

cluster model interpolation technique for model mean and/or mixture-weight 

adaptation is proposed. The proposed approach results in a performance improvement 

by 11% relative over the baseline ASR system. In future, we would like to explore the 

use of the interpolation weights obtained using the proposed approach as the prior in 

existing ML weight estimation approaches. 


