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8.1 Introduction

Topics on the accelerated expansion of the universe have attracted wide attention from

many theoretical physicists and cosmologists around the world energizing them for further

investigations and many clear and convincing evidence have been produced in support.

This accelerated expansion is explained by the so-called dark energy (DE) (Riess et al.

1998; Perlmutter et al. 1999), a completely mysterious form of energy with an exotic prop-

erty of negative pressure which generates a negative gravity that causes the acceleration

by emitting a strong repulsive force resulting in an anti-gravity effect. This uniformly dis-

tributed mystical component dominating the universe is slowly varying with time and space

(Carroll 2001a, 2001b; Peebles & Ratra 2003). Since its discovery, it has become one of

the most discussed topics among the cosmological society and great scientific efforts have

been invested in order to explore its bizarre nature, properties, future characteristics and

applications to modern cosmology. Frampton & Takahashi (2003) obtain that the universe

might be DE dominant or free from DE in future time. Steinhardt et al. (2003) studies

the quintessential introduction to DE. Sahoo & Mishra (2014b) investigate wet dark fluid,

a DE candidate. Sahoo & Mishra (2014a) further study an axially symmetric cosmological

model in the presence of anisotropic DE in which the solutions obtained could give us an

appropriate description of the evolution of the universe. DE Survey Collaboration (Col-

laboration et al. 2016) describes the future prospect and discovery potential of the Dark

Energy Survey (DES) beyond cosmological studies. Singh et al. (2017a) examine if DE

could neutralize the global warming. Singh et al. (2017b) put forward interesting expla-

nations to show that Lyra’s manifold could be the hidden source of DE. Nair & Jhingan
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(2013) examine whether DE is evolving or not. Abbott et al. (2018) provide us the first

public data release of the DES. Risaliti & Lusso (2018) observe that the DE density is

increasing with time. According to Cooper (2018), there are cosmologists who doubt if DE

is behind the increasing expansion of the universe and the author analysed the arguments.

Lastly, Calder & Lahav (2008) hunt down the origin of DE as far back as Newton and

Hooke and presented a comprehensive summary of 90 years old history of the cosmological

constant.

To understand this dark component as precisely as possible to obtain hints as to ex-

actly predict its nature and properties, cosmologists have opted for analysing the equation

of state (EoS) parameter ωwhich is the ratio of the pressure to the density of the DE. In

recent years, different authors have calculated different viable limits on the value of ω with

strong evidence in support. Knop et al. (2003) calculate two different ranges -1.61< ω <-

0.78 and -1.67 < ω < -0.62 on two different situations. Melchiorri (2003) measures a bound

of -1.38< <-0.82, whereas according to the most recent Planck 2018 results (Collaboration

et al. 2020), the value of ω is measured to be ω = -1.03±0.03.

We can describe the accelerated expansion of the universe by two approaches: (i) DE

approach in which different viable candidates of DE are developed (ii) Modified theories of

gravitation approach in which ETG is modified to many optimized forms. Besides these

approaches, many authors have put forward other possible ways to explain the late time

acceleration of the universe. It is shown that the acceleration of the universe is the result of

the back reaction of cosmological perturbations, rather than the effect of a negative pressure

DE fluid or a modification of general relativity (Kolb et al. 2006). Gorji (2016) addresses

the late-time cosmic acceleration the infrared corrections. An interesting explanation of

cosmic acceleration using only dark matter (DM) and ordinary matter can be seen in the

study of Berezhiani et al. (2017). An approach is also suggested by Narain & Li (2018)

where the late time cosmic acceleration is obtained from an Ultraviolet Complete Theory.

The natural candidate for DE is the cosmological constant or the vacuum energy (VE)

with ω = −1. But, VE fails to illustrate many riddles of physics, one of which worth men-

tioning is the coincidence problem (Zlatev et al. 1999) in which the similar densities, at the

present epoch, of the differently evolved DE and DM remains a mystery. Therefore, many

other viable candidates of DE have been introduced (Copeland et al. 2006). Cosmologist

started to construct models which involve the interaction of these two dark components

to explain the small value of Λ (Wetterich 1995, 1988). Afterwards, these constructed

models were found applicable to mollify the coincidence problem (Amendola & Valentini
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2001; Zimdahl et al. 2001; Zimdahl & Pavon 2004; Cai & Wang 2005). During the last

decade, evidence have been put forward which confirm that modified gravity can be pre-

sented in terms of interaction of these two dark components in the Einstein frame (Felice

& Tsujikawa 2010; He et al. 2011; Zumalacarregui et al. 2013; Kofinas et al. 2016; Cai et

al. 2016). This can enable us to broaden the gravitational theory beyond the breadth of

general relativity if we can figure out the specific interaction term. Recently, great scientific

efforts have been utilized to study the DE-DM interaction, for both theoretical and obser-

vational point of view, in the holographic dark energy (HDE) setting (Sadjadi 2007; Sadjadi

& Vadood 2008; Setare & Vagenas 2009; Chimento et al. 2013; Kiran et al. 2014; Adhav et

al. 2014a, 2014b; Umadevi & Ramesh 2015; Reddy et al. 2016a; Raju et al. 2016). HDE,

a consequence of the application of the holographic principle (Wang et al. 2017) to the

repulsive dark entity, was introduced by Gerard ’t Hooft (Hooft 2009). Interacting models

involving this dark holographic entity and matter in spherically symmetric (SS) space-time

were studied in (Raju et al. 2016; Reddy et al. 2016). The mysterious nature of these two

dark components have arisen many fundamental questions indicating that there are many

new physics yet to be uncovered.

In the past few decades, many modified theories of gravitation challenging Einstein’s

theory have been put forward and these theories succeeded to fit the present cosmological

trends in a quite satisfactory way, a handful of which that have not escaped our notice are

Weyl’s theory (Weyl 1918), Lyra geometry (Scheibe 1952), Brans-Dicke theory (Brans &

Dicke 1961), f(R) gravity (Chiba al. 2007), f(R, T ) gravity (Harko et al. 2011), Mimetic

F (R) gravity (Nojiri & Odintsov 2014) etc. Brans-Dicke theory (BDT) of gravitation has

become one of the favourite choices among many cosmological audiences and enormous

efforts have been employed to study its modern cosmological aspects (Miyazaki 2000; Kim

2005; El-Nabulsi 2007, 2010; Hrycyna & Szydlowski 2013b; Rani et al. 2018; Cruz & Pera-

caula 2018; Sadri & Vakili 2018; Brando et al. 2018). In this theory, a metric tensor gij is

introduced along with a scalar filed φ which represents the space-time varying gravitational

constant. In Einstein theory, gravity is explained by the lone entity - the space-time metric

tensor or, in simple word, geometry. Whereas, in this modified theory, all matters are the

reason for the gravitational behaviour of φ, so that, in this logic, it can be treated as a

modification from purely geometric to geometric-scalar nature and thus, becoming a part

of the family of scalar-tensor theory.

BDT can be of good choice to study DE and the expansion of the universe. It can be

considered as the most natural choice of the scalar-tensor generalization of general relativ-

ity due to its easiness and is less stringent than general relativity. Above all, the scalar
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field and the theory itself are of classical origin and can be considered as viable candidates

to contribute in the late time evolution of the universe (Kim 2005). BDT or its modified

versions are also the possible agents generating the present cosmic acceleration (Banerjee &

Pavon 2001a; Brunier et al. 2004). It has also been shown that the theory can potentially

generate sufficient acceleration in the matter dominated era (Banerjee & Pavon 2001b). In

most of the studies in the BDT setting, it can be seen that the accelerated expansion of

the universe needs a very small value of ω, in the order of unity (Das & Mamon 2014) and

to be negative. It is shown that if the Brans-Dicke scalar field interacts with the DM, a

generalized BDT may cause the acceleration of the universe even with a high value of ω

(Das & Banerjee 2006). Interestingly, Joyce et al. (2016) show that the theory is essentially

equivalent to a DE model. At present, both BDT and general relativity are generally held

to be in agreement with observation.

Sadjadi (2007) studies a spatially homogeneous and anisotropic Bianchi type-V uni-

verse filled with minimally interacting fields of HDE and matter obtaining a universe which

decelerate initially and accelerate in infinite time. Sadjadi & Vadood (2008) and Setare &

Vagenas (2009) examine interacting models in Bianchi type-I and Bianchi type-V universe

respectively showing that for suitable choice of interaction between matter and DE, there

is no coincidence problem. Chimento et al. (2013) find an interacting models between

the two dark components in BDT setting and the authors obtained a model that exhibits

early inflation and late time acceleration. Kiran et al. (2014) present an five dimensional

interaction model in BDT obtaining an anisotropic universe. In the paper, the authors

further mentioned that their universe will become isotropic in finite time due to cosmic

re-collapse. Adhav et al. (2014) obtain an interacting model in a 5D spherically universe

where the model experiences a transition from decelerated to accelerated phase due to cos-

mic re-collapse. Reddy et al. (2016a) study DE and matter using a relation between metric

potentials and an equation of state representing disordered orientation obtaining the flat

ΛCDM model as a particular case.

Inspired by the above studies, in this chapter, the minimal interaction model of the

two dark entities has been presented with a 5D SS space-time in BDT of gravitation.

Here, we consider some reasonable assumptions in agreement with the present cosmological

observations. With particular choices of the constants involved, the values of the overall

density parameter and the Hubble’s parameter are obtained to be very close to the latest

observational values. We obtain a model universe which will be increasing DE dominated.

We also obtain that the model universe will face the big crunch singularity in the far

future. The chapter has been structured into sections. In Sect. 8.2, the formulation of the
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problem is presented along with the solutions of the field equations. Related cosmological

parameters are also solved in this section. In Sect. 8.3, the graphs of the parameters are

plotted and the physical and kinematical aspects of our model in comparison with the

present observational findings are discussed. Considering everything, a concluding note is

provided in Sect. 8.4.

8.2 Formulation of problem with solutions

For our universe, we consider the 5D spherically symmetric metric (Samanta & Dhal 2013))

ds2 = dt2 − eα
(
dr2 + r2dΘ2 + r2 sin2 Θdϕ2

)
− eβdy2 (8.2.1)

where µ and δ are cosmic scale factor which are functions of time only.

Here, BD field equations take the form

Ri j−
1

2
gi jR+ωBDφ

−2

(
φ, iφ, j −

1

2
gi jφ, kφ

, k

)
+φ−1

(
φi ;j − gi jφ

k
; k

)
= −8πφ−1 (Ti j + Si j)

(8.2.2)

where φ is the BD scalar field and Ti j and Si j are respectively the energy momentum

tensors for matter and HDE, whereas R is the Ricci scalar and Ri j is the Ricci tensor.

In our study we define Ti j and Si j as follows

Ti j = ρmuiuj (8.2.3)

Si j = (ρd + pd)uiuj − gi jpd (8.2.4)

where ρm is the energy density of matter whereas ρd and pd are respectively the energy

density and the pressure of the HDE.

The wave equation satisfied by the scalar field is written as

φk
; k = 8π (3 + 2ωBD)−1 (T + S) (8.2.5)

The energy conservation equation in its obvious form is given by

T i j
; j + Si j

; j = 0 (8.2.6)
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We consider the co-moving co-ordinate system so that the flow vector satisfies the relation

gµυu
µuυ = 1 (8.2.7)

We obtain the field equations as follows

3

4

(
µ̇2 + µ̇δ̇

)
− ωBD

2

φ̇2

φ2
+

φ̇

φ

(
3µ̇ + δ̇

2

)
= 8πφ−1 (ρm + ρd) (8.2.8)

µ̈ +
3

4
µ̇2 +

δ̈

2
+

δ̇2

4
+

µ̇δ̇

2
+

ωBD

2

φ̇2

φ2
+

φ̈

φ
+

φ̇

φ

(
µ̇ +

δ̇

2

)
= −8πφ−1pd (8.2.9)

3

2

(
µ̈ + µ̇2

)
+

ωBD

2

φ̇2

φ2
+

φ̈

φ
+

3

2

φ̇

φ
µ̇ = −8πφ−1pd (8.2.10)

And Eq. (8.2.6) gives

φ̈ + φ̇

(
3µ̇ + δ̇

2

)
= 8π (3 + 2ωBD)−1 (ρm + ρd − 4pd) (8.2.11)

where an overhead dot represents differentiation with respect to time t.

Taking ω as the equation of state (EoS) parameter of HDE, we have

pd = ωρd (8.2.12)

Then, the conservation equation takes the form

ρ̇d + (1 + ω)

(
3µ̇ + δ̇

2

)
ρd + ρ̇m + ρm

(
3µ̇ + δ̇

2

)
= 0 (8.2.13)

Since the HDE and matter are interacting minimally, both the components will conserve

separately. Thus, we can write (Sarkar 2014a, 2014b)

ρ̇m + ρm

(
3µ̇ + δ̇

2

)
= 0 (8.2.14)

ρ̇d + (1 + ω) ρd

(
3µ̇ + δ̇

2

)
= 0 (8.2.15)

Also, we have

ρ̇ + (ρ + p)

(
3µ̇ + δ̇

2

)
= 0 (8.2.16)
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Now, from Eqs. (8.2.9) and (8.2.10), we have

1

2
µ̈ +

3

4
µ̇2 − δ̈

2
− δ̇2

4
− µ̇δ̇

2
+

1

2

φ̇

φ

(
µ̇− δ̇

)
= 0 (8.2.17)

From Eq. (8.2.14), we have

ρm = a0e
− ( 3µ+δ

2 ) (8.2.18)

Similarly,

ρd = b0e
− (1+ω)( 3µ+δ

2 ) (8.2.19)

where a0 and b0 are arbitrary constants.

From Eqs. (8.2.9) and (8.2.10), we get

µ = a1 − log (c1 − t)
2
3 (8.2.20)

δ = b1 − log (c1 − t)
2
3 (8.2.21)

where a1 and b1 are arbitrary constants.

Thus, from Eqs. (8.2.18)-(8.2.21), we obtain

ρm = a0e
− 1

2
(3a1+b1) (c1 − t)

4
3 (8.2.22)

ρd = b0e
− 1

2
(3a1+b1)(1+ω) (c1 − t)

4
3
(1+ω) (8.2.23)

Now, using Eqs. (8.2.12), (8.2.20)-(8.2.23) in Eq. (8.2.11), we obtain the expression of the

scalar field φ as

φ = M0 (c1 − t)
10
3 + N0 (c1 − t)

10
3
+ 4

3
ω (8.2.24)

where

M0 =
36

65
π (3 + 2ω)−1 a0e

− 1
2
(3a1+b1) (8.2.25)
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N0 = 8πb0 (1 − 4ω) (3 + 2ω)−1

(
10

3
+

4

3
ω

)−1(11

3
+

4

3
ω

)−1

e−
1
2
(1+ω)(3a1+b1) (8.2.26)

From Eqs. (8.2.22) and (8.2.23), we obtain the expression for the energy density ρ as

ρ = ρm + ρd = a0e
− 1

2
(3a1+b1) (c1 − t)

4
3 + b0e

− 1
2
(1+ω)(3a1+b1) (c1 − t)

4
3
(1+ω) (8.2.27)

Using Eqs. (8.2.20), (8.2.21) and (8.2.27) in Eq. (8.2.16), we obtain the expression for the

pressure as

p =
1

3
a0e

− 1
2
(3a1+b1) (c1 − t)

4
3 +

(
1

3
+

4

3
ω

)
b0e

− 1
2
(1+ω)(3a1+b1) (c1 − t)

4
3
ω+ 4

3 (8.2.28)

From Eqs. (8.2.12) and (8.2.23), we the pressure of the DE is given by

pd = ωb0e
− 1

2
(3a1+b1)(1+ω) (c1 − t)

4
3
(1+ω) (8.2.29)

Now, at any time t = t0, we can take

p = pd (8.2.30)

Therefore, from Eqs. (8.2.28), (8.2.29) and (8.2.30), we get

(
a0e

k + b0 (1 + ω) ek(1+ω) (c1 − t0)
4ω
3

)
(c1 − t0)

1
3 = 0 (8.2.31)

where k = −1
2 (3a1 + b1)

Eq. (8.2.31) will give us the expression for the EoS parameter ω.

Now, we obtain the values of the different cosmological parameters as follows.

Spatial volume:

V = e
3a1+b1

2 (c1 − t)−
4
3 (8.2.32)

Scalar expansion:

θ =
4

3
(c1 − t)−1 (8.2.33)
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Hubble parameter:

H =
1

3
(c1 − t)−1 (8.2.34)

Shear scalar:

σ2 =
2

9

(
1 − 1

c1 − t

)2

(8.2.35)

Anisotropic parameter:

Ah = 0 (8.2.36)

DE density parameter:

Ωd =
ρd

3H2
= 3b0e

− 1
2
(3a1+b1)(1+ω) (c1 − t)

2
3
(5+2ω) (8.2.37)

Matter density parameter:

Ωm =
ρm

3H2
= 3a0e

− 1
2
(3a1+b1) (c1 − t)

10
3 (8.2.38)

Overall density parameter:

Ω = Ωd + Ωm = 3
(
a0e

− 1
2
(3a1+b1) + b0 (c1 − t)

4ω
3 e−

1
2
(3a1+b1)(1+ω)

)
(c1 − t)

10
3 (8.2.39)

8.3 Discussion

For different values of the constants involved, we will obtain different graphs. So, we opt

to take particular values of the constants i.e., a0=b0=a1=b1=1, c1=14.301443981790266

and plot the graphs of some of the parameters showing their variations with time as shown

in the figures of this section.
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Figure 8.1: Variation of energy density of DE ρd and matter ρm with time t when
a0=b0=a1=b1=1, c1=14.301443981790266 showing that ρm decreases throughout evolution
whereas ρd tends to increase very slowly or is nearly unchanged.

From Eqs. (8.2.22) and (8.2.23), it is obvious that energy densities of matter ρm and

DE ρd are functions of cosmic time. To examine their nature, we plot their graphs showing

their variations with cosmic time t as shown in Fig. 8.1. Here, it can be seen that ρm

decreases throughout the evolution, as with the expansion of the universe, the galaxies get

farther away from each other so that the matter density continues to diminish (Carroll

2001b). But, ρd tends to increase very slowly or is nearly unchanged. This may be a result

of this anti-gravity dark component varying slowly with time and space (Carroll 2001a,

2001b; Peebles & Ratra 2003). So, our model universe will be increasingly dominated by

dark energy in the far future.

Figure 8.2: Variation of pressure of DE pd with time t when b0=a1=b1=1, c1=14.301443981790266
showing it varies in the negative plane throughout evolution.
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From Fig. 8.2, it can be clearly seen that the pressure of DE varies in the negative

region throughout the evolution which is in agreement with the exotic property of dark

energy that causes the universe to expand.

Figs. 8.3 and 8.4 respectively show that spatial volume V and the scalar expansion

θ increases with t showing the accelerating spatial expansion of the universe. From Eq.

(8.2.32), the spatial volume V of the universe is constant (V ̸= 0) at time t=0. Also, other

related parameters are also constant at time t=0. These show that our universe is free

from initial singularity. But, when t → ∞, both V and θ → 0 which indicates that after

an infinite period of time, there will be a phase transition in which the expansion of the

universe will cease. This may be supported by the fact that dark energy which causes the

expansion of the universe varies slowly with time and space (Carroll 2001a, 2001b; Peebles

& Ratra 2003). Also, the energy density of dark energy may decreases faster than that

of matter leading to the disappearance of dark energy at t → ∞ (Peebles & Ratra 2003).

Then, our model universe will expand up to a finite degree; the expansion will tend to

decrease. So, in the far future, this would lead our universe to be dominated by gravity

causing it to shrink; finally collapsing resulting to the big crunch singularity.

Figure 8.3: Variation of spatial volume V with time t when a1=b1=1, c1=14.301443981790266
showing that it increases with time.
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Figure 8.4: Variation of scalar expansion θ with time t when c1=14.301443981790266 showing
that it increases with time.

Fig. 8.5 shows that shear scalar (σ2) tends to remain constant in the initial stage.

Then, it start to converge and finally, diverges with the increase of cosmic time. Shear

scalar provides us the rate of distortion of the matter flow of the large scale structure of

cosmology (Ellis & Elst 1999). Hence, the model universe expands with a slow and uniform

change of shape in the initial stage. Then, the change become more slower and finally, the

change becomes faster. From Eq. (8.2.36), it is clear that anisotropic parameter Ah=0 all

the time which indicates that our model universe is isotropic throughout the evolution.

Figure 8.5: Variation of shear scalar σ2 with time t when c1=14.301443981790266.
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Figure 8.6: Variation of overall density parameter Ω, DE density parameter Ωd and matter density
parameter Ωm with time t when a0=b0=a1=b1=1, c1=14.301443981790266 showing that Ω and Ωd

decrease and tend to become constant whereas Ωm decreases with a greater extent.

The variations of Ω, Ωd and Ωm with cosmic time t are shown in Fig. 8.6. Here, Ω and

Ωd are decreasing with the increase of cosmic time t and tend to become constant whereas

Ωm decreases but with a greater extent which might be supported by the fact that the

matter density is diminishing with the accelerated expansion of the universe (Carroll 2001b).

Here, it may be predicted that our model universe will become increasingly DE dominated

in the far future. Moreover, on assuming that a0=b0=a1=b1=1, c1=14.301443981790266

and taking EoS parameter ω=−1.047 which is in agreement with the latest observational

value of ω (Knop et al. 2003; Melchiorri 2003; Collaboration et al. 2020), we find that the

expression for EoS given by Eq. (8.2.31) is satisfied by time t0=13.8 which is age of the

universe at the present epoch. Also, under these assumptions, Eq. (8.2.39) gives us the

value of the overall density parameter Ω=0.905988(≈1) at t=13.8 which is consistent with

the present cosmological belief. Above all, at t=13.8, Eq. (8.2.34) gives us the value of

Hubble parameter H=68 which is very close to H0 = 67.36 ± 0.54kms−1Mpc−1, the value

of Hubble parameter by the most recent Planck 2018 results (Collaboration et al. 2020).

8.4 Conclusions

In this chapter, we have studied a 5D SS space-time accompanied by minimally interacting

fields - DM and DE components in BDT. It is predicted that our model universe will be

increasingly dominated by DE. It is observed that the model universe is isotropic throughout

the evolution. Our model universe is free from initial singularity but may face the big

crunch singularity in the far future. With reasonable assumptions of the values of the

constants and ω=−1.047 which is consistent with the value of ω of the most recent Planck
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2018 results (Collaboration et al. 2020), we obtain the value of overall density parameter

Ω=0.905988(≈1) which agrees with the present cosmological observation. Above all, at

t=13.8, we obtain the value of Hubble parameter H=68 which is very close to H0 = 67.36±
0.54kms−1Mpc−1, the value predicted by the most recent Planck 2018 results (Collaboration

et al. 2020).
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