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Five Dimensional String Universes In

Lyra Manifold
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3.1 Introduction

Many remarkable knowledge of cosmology are made by various experimental and theoretical

results have made still today. But still now it is difficult to explain exactly the physical

situation of the formation of our universe at the very early stage. To describe the events at the

early stages of the universe we required to developed and study the concept of string theory.

It is believed that universe might many phase transitions after big-bang.

Einstein formulation of General Relativity is the foundation of other geometric theories

in order to explain the actual gravitational phenomena. A more general theory in which

both gravitation and electromagnetism are described geometrically was proposed by Weyl

(1918). Later Lyra (1951) suggested a modification of Riemannian geometry by introducing a

Gauge function which removes the non-integrability condition of the length of a vector under

parallel transport, which is known as Lyra’s Geometry. In Lyra’s geometry the connection is

metric preserving as Riemannian geometry, and length transfers as integrable in contrast to

Weyl’s geometry. He also introduced a gauge function into the structure-less manifold, as

a result of which a displacement field arises naturally. This alternating theory is of interest

since it produces effects similar to Einstein’s theory.

2The work presented in this chapter has been published in “International Journal of Astronomy and

Astrophysics” (IJAA), 2015, 5, 90-94; doi: 10.4236/ijaa.2015.52012
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Many authors have investigated cosmology in Lyra’s geometry with both a constant displace-

ment field and time dependent one. Also cosmological models in the frame work of Lyra’s

geometry in different context are investigated by Pradhan and Kumar (2009a); Pradhan

and Mathur (2009b); Pradhan and Yadav (2009c); Pradhan (2009); Pradhan et al. (2011c);

Pradhan and Singh (2011b); Yadav (2012); Agarwal et al. (2011); Singh and Singh (2012).

Cosmological models based on Lyra’s manifold with constant displacement field vector was

also studied by Bhamra (1974); Kalyanshetti and Waghmode (1982); Soleng (1987); Sen

and Vanstone (1972); Karade and Borikar (1978); Reddy and Innaiah (1986); Reddy and

Venkateswarlu (1987). But with this condition it is found as one of convenience and there

is no priori reason for it. Recently, several authors like Asgar and Ansary (2014a); Kumari

et al (2013); Asgar and Ansary (2014b); Zia and Singh (2012); Asgar and Ansary (2014c);

Panigrahi and Nayak (2014) have studied cosmological models in the frame work of Lyra’s

geometry in various context.

Since we know that the constant vector displacement field in Lyra’s geometry plays the

role of cosmological constant in the normal general relativistic study as suggested by Halford

(1970). Also, Halford (1972) shown that the scalar-tensor treatment based on Lyra’s geometry

predicts the same effects, within observational limits, as the Einstein theory.

As the necessity of study of higher-dimensional space-time in this field aiming to unify

gravity with other interactions, the concept of extra dimension is relevant in cosmology,

particularly for the early stage of universe and theoretically the present four dimensional

stage of the universe might have been preceded by a multi-dimensional stage. So in this

chapter we discussed about the five dimensional cosmological models in Lyra geometry by

considering plane symmetric metric with some conditions to find out some solutions which

are realistic with the observational facts.

3.2 Field Equations and their Solutions:

Here we consider the five dimensional plane symmetric metric in the form

ds2 = A2(dx2 −dt2)+B2(dy2 +dz2)+C2dm2 (3.1)

where A, B and C are functions of time t only.

Einstein’s field equations based on Lyra’s geometry is-
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where we use the units in which 8πG
c4 = 1 (Wesson 1992 ; Baysal et. al. 2001 ; Bali and Dave

2002) , and φi is the displacement vector defined by-

φi = (β (t),0,0,0,0) (3.3)

The energy momentum tensor of cosmic strings is

Ti j = ρuiu j −λxix j (3.4)

where, ρ = ρp +λ , is the energy density of the cloud of string, ρp being the rest energy den-

sity of particles attached to the strings and λ is the string tension density. ui = (0,0,0,0,A−1)

is the five velocity vector for the cloud of particles and xi = (A−1,0,0,0,0) is the direction

of strings. moreover the direction of strings satisfies

uiui =−xixi =−1 , and uixi = 0 (3.5)

Using the comoving coordinate system and equations (3.3), (3.4) and (3.5) , the field equations

(3.2) for the metric (3.1) yield-
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Ä

A
+2

B̈

B
− Ȧ2
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Now (3.7) and (3.8) gives
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A solution of (3.10) is

B = eb0t+b1 (3.11)

C = eb0t−c1 (3.12)

Thus (3.11) and (3.12) together with (3.7) and (3.8) gives

A = (a0t +a1)
1
2 (3.13)

and
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4
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2
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Now from (3.9) we have
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and from (3.6) we have
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Therefore from the relation ρp = ρ −λ we have

ρp = a2
0(a0t +a1)

−3 +3a0b0(a0t +a1)
−2 −9b2

0(a0t +a1)
−1 (3.17)

For the metric (3.1), the expansion factor θ and shear scalar σ are obtained as

θ = a0(a0t +a1)
−1 +3b0 (3.18)

and

σ =
1√
6
[2b0 −a0(a0t +a1)

−1] (3.19)

Therefore from equations (3.18) and (3.19) we have
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Here the deceleration parameter q is given by
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3.3 Physical Interpretations of the Solutions:

In the universe we obtain here it is seen that the energy density has a finite value at the

beginning and then it gradually decreases until it shrinks almost to zero at infinite time. The

string tension density is also found to be a decreasing function of time until it almost tends to

zero as time tends to infinity. Here, with the advent of time, the density of the string decreases

more rapidly than density of the particles attached to them. Thus our universe ultimately

becomes a universe dominated by particles, where strings are becoming invisible in course of

time. Here, for our universe, we see that the special dimensions expand isotropically implying

the expansion of our universe which bears testimony to our universe being a realistic one.

Moreover, from the expressions of the expansion factor and deceleration parameter ob-

tained here it can be inferred that our universe is expanding, but the rate of expansion is

decreasing slowly and slowly until at infinite time it is expanding at a constant rate. Here the

gauge function β 2 is found to be constant at the initial epoch of time and gradually increases

with time until it becomes a finite constant 4b2
0 at infinite time.

Interacting with the pressure-less matter here the displacement vector can play the same

role as a cosmological constant (term). Thus it will be nice to study more to be whether the

displacement vector plays a role in disturbing the rate of expansion of the universe.

Here also, σ
θ ̸= 0, first our universe seems to be anisotropic one, but it will become gradually

an isotropic one until it becomes perfectly isotropic at time given by t =−a1
1
a0

(
a0

b0

)
. It can

be seen that even though an anisotropic parameter is produced in this universe, its anisotropy

does not promote anisotropy in the expansion, thus in course of time our universe becomes

an isotropic one.
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