
Chapter 5

Higher Dimensional Cosmological Model

Universe with Special Law of Hubble’s

Parameter in Lyra Geometry

5.1 Introduction:

In spite of the various efforts made by the cosmological and astrophysical scientists about the

future evolution of the universe together with the comprehension of the present and past state

of the universe, we are not able to ascertain a final statement about the origin and evolution

of the universe. But from the various results of the observational experiments from different

sources like high red-shift supernovae Type Ia [Riess et al. (1988, 2004); Perlmutter et al.

(1999); Astier et al. (2006); Amanullah et al. (2010); Suzuki et al. (2012)], CMB (Cosmic

Microwave Background) anisotropies [Bennett et al. (2003); Spergel et al. (2007)], the

large-scale galaxies structures of universe [Daniel et al. (2008); Allen et al. (2004)], WMAP

(Wilkinson Microwave Anisotropy Probe) [Hinshaw et al. (2013)], Atacama Cosmology

Telescope (ACT) [Sievers et al. (2013)], Sachs-Wolfe effects [Nishizawa (2014)] and SDSS

[McCarthy et al. (2008)], Planck [Ade et al. (2014, 2016)], it can be said with direct and

indirect evidence about the cosmic acceleration.

The unidentified component of energy usually known as dark energy with positive energy

density and negative pressure is regarded as the prime cause of outstanding transformation of

accelerating the expansion of the universe in the cosmic history. Several approaches have

been made to understand the dark energy. In present days, the investigation for the source

of negative pressure or the best fitted dark energy candidate has become one of the centers
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of research in cosmology. Though cosmological constant is supposed to be the simplest

candidate of dark energy, in recent years many cosmologists suggested many alternative

models in different directions like inclusion of cosmological constant (Peebles and Ratra

2003; Sahni and Starobinsky 2000), modified theories of gravity (Bamba et al. 2012), Lyra

Geometry (Scheibe 1952; Sen 1957), models with different equations of state (Rao et al.

2015; Reddy et al. 2015), scalar fields (Nordvedt 1970; Barker 1978), higher dimensional

theories (Kaluza, 1921; Witten, 1995), dynamical models (Copeland et al., 2006) to unfold

this mystery.

Some of the frequently discussed important modified theories of gravitation are Kaluza-Klein

theory of higher dimensions (Kaluza, 1921; Klein, 1926; Witten, 1984), Brans-Dicke theory

(Brans and Dicke, 1961), Bimetric theory (Rosen, 1973), Scalar-tensor theory (Barker, B. M.

1978), F(R) Gravity (Buchdahl, 1970; Nojiri et al., 2003; Singh, Bishi and Sahoo, 2016a,b),

Mimetic Gravity (Chamseddine et al., 2013), Mimetic F(R) gravity (Nojiri et al., 2014b), Lyra

geometry (Scheibe 1952) and many more. Among all these modified theories of gravitation,

here we will consider about the Lyra geometry, which is nothing but a modification of Rie-

mannian geometry. Introducing a gauge function into the structure-less manifold, Lyra (1951)

modified the Riemannian geometry, which removes the non-integrability condition of the

length of a vector under parallel transport. Lyra geometry together with constant gauge vector

φk will either play the role of the cosmological constant or creation field (equal to Hoyle’s

creation field [Hoyle (1948); Hoyle and Narlikar (1963); Hoyle and Narlikar (1964)]) which

is discussed by Soleng (1987). Halford (1970, 1972) suggested that the constant displacement

vector field φk in Lyra’s geometry plays the role of cosmological constant in the normal

general relativistic treatment and the scalar-tensor treatment in the framework of Lyra’s geom-

etry predict the same effect, within observational limits as in the Einstein’s theory of relativity.

Different works of literature reveal (it has been observed) that the anisotropic Bianchi

type model universes do not isotropize adequately as they evolve into future. But, it has been

established from the latest observations like cosmic microwave background radiation (Ben-

nett et al. 2003) and large-scale structure (Tegmak et al. 2004) that our universe is isotropic

and highly homogeneous on large scale. The anisotropy problem of Bianchi type model

can be solved by inflation. Wald (1983) showed that, like de Sitter model, the Bianchi type

models in presence of a positive cosmological constant approach to isotropic and spatially

homogeneous model universes.

Quadratic equation of state plays a crucial role, in order to study the dark energy and
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general relativistic dynamics for various cosmological models. Considering different equa-

tions of state, authors like, Capozziello et al. (2006a), Nojiri and Odintsov (2004, 2005a),

Nojiri et al. (2005b) and Bamba et al. (2012) studied the dark energy universe and showed

that the Quadratic equation of state may possibly describe dark energy or unified dark matter.

The general form of the quadratic equation of state is given by

p = p0 +αρ +βρ2 ,

where p0,α,β are the parameters, which is nothing but the first term of the Taylor’s expan-

sion of any equation of state of the form p = p(ρ) about ρ = 0.

Ananda and Bruni (2006) studied the general relativistic dynamics of Robertson-Walker

models with a non-linear equation of state (EoS), focusing on the quadratic equation of state

p = p0 +αρ +βρ2. They have shown that the behavior of the anisotropy at the singularity

found in the brane scenario can be recreated in the general relativistic context. Also by

considering quadratic equation of state of the form

p = αρ +
ρ2

ρc
,

they have discussed the anisotropic homogeneous and inhomogeneous cosmological models

in general relativity and tried to isotropize the universe at early times when the initial

singularity is approached. In our present study, we have considered the quadratic equation of

state of the form

p = αρ2 −ρ ,

where α ̸= 0 is a constant quantity but we can take p0 = 0 to avoid complexities in our

calculations. This will not affect the quadratic nature of the equation of state.

Again Chavanis (2013) studied a four dimensional Friedmann-Lemaitre-Roberston-Walker

(FLRW) cosmological model based on a quadratic equation of state in the form
p

c2 =

−4ρ2

3ρp
+ ρ

3
− 4ρΛ

3
unifying vacuum energy, radiation and dark energy. Also considering

a quadratic equation of state, Chavanis (2015) formulated a cosmological model that describe

the early inflation, the intermediate decelerating expansion, and the late-time accelerating

expansion of the universe.

Sharma and Ratanpal (2013) suggested a class of solution that describes the interior of
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a static spherically symmetric compact anisotropic star and proved that the model admits a

quadratic equation of state. Considering quadratic equation of state and anisotropic matter

distribution, Malaver (2014) investigated the behavior of the compact relativistic objects and

obtained new solutions to the system of Einstein-Maxwell equations in terms of elementary

functions. Many authors like Rahaman et al. (2009a); Feroze and Siddiqui (2011), Maharaj

et al. (2012) studied cosmological models with a quadratic equation of state under different

circumstances. Recently Reddy et al. (2015), Adhav et al. (2015), Rao et al. (2015) studied

Kaluza-Klein Space-time cosmological models with a quadratic equation of state in general

and modified theories of relativity.

Motivated from the above mentioned research, here we have investigated a higher dimen-

sional cosmological model universe in the framework of Lyra geometry with special law

of Hubble’s parameter producing constant value of deceleration parameter. Physical and

geometrical properties of the model are also discussed.

5.2 Field Equations and Their Solutions:

Let us consider a five dimensional Locally Rotationally Symmetric (LRS) Bianchi type-I

axially symmetric metric in the form

ds2 = A2dx2 +B2(dy2 +dz2)+C2dψ2 −dt2 (5.1)

where the scale factors A, B and C are functions of cosmic time t only in which the extra

coordinate is taken to be space like.

The Einstein’s field equations in normal gauge for Lyra’s Geometry as obtained by Sen

(1957) and Sen and Dunn (1971) are given by -

Ri j −
1

2
gi jR+

3

2
φiφ j −

3

4
gi jφ

kφk =−8πTi j (5.2)

where we use the units in which 8πG
c4 = 1 [Wesson 1992; Baysal et al. 2001; Bali and Dev

2002], Ri j is the Ricci tensor, R is the Ricci scalar, gi j is the metric tensor and φi is the

displacement vector given by-

φi = (0,0,0,0,β (t)) (5.3)
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The energy momentum tensor Ti j for the perfect fluid is given by

Ti j = (ρ + p)uiu j + pgi j (5.4)

where, ρ is the energy density, p is the pressure and ui is the five velocity vector given by

ui = (0,0,0,0,1) (5.5)

which satisfies

gi ju
iu j = uiui =−1 (5.6)

In comoving coordinate system, we have from (5.4)

T 1
1 = T 2

2 = T 3
3 = T 4

4 =−p ; T 5
5 = ρ and T i

j = 0 f or all i ̸= j (5.7)

The conservation of R.H.S of (5.2) leads to

(
Ri

j −
1

2
gi

jR

)

;i

+
3

2

(
φ iφ j

)
;i
− 3

4

(
gi

jφ
kφk

)
;i
= 0 (5.8)

After simplification, the equation (5.8) can be written as

3

2
φ j

[
∂φ i

∂xi
+φ lΓi

li

]
+

3

2
φ i

[
∂φ j

∂xi
−φlΓ

l
i j

]
− 3

4
gi

jφk

[
∂φ k

∂xi
+φ lΓk

l j

]
− 3

4
gi

jφ
k

[
∂φk

∂xi
−φlΓ

l
k j

]
= 0

(5.9)

This equation (5.9) identically satisfied for j = 1,2,3,4.

But for j = 5, this equation reduces to

3

2
ββ̇ +

3

2
β 2

(
Ȧ

A
+2

Ḃ

B
+

Ċ

C

)
= 0 (5.10)

In commoving coordinate system, the Einstein’s field equations (5.2) for the metric (5.1)

with the help of equation (5.3)-(5.7) reduces to
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2
B̈

B
+

C̈

C
+2

ḂĊ

BC
+

Ḃ2

B2
+

3

4
β 2 =−p (5.11)

Ä

A
+

B̈

B
+

C̈

C
+

ȦḂ

AB
+

ḂĊ

BC
+

ȦĊ

AC
+

3

4
β 2 =−p (5.12)

Ä

A
+2

B̈

B
+2

ȦḂ

AB
+

Ḃ2

B2
+

3

4
β 2 =−p (5.13)

2
ȦḂ

AB
+2

ḂĊ

BC
+

ȦĊ

AC
+

Ḃ2

B2
− 3

4
β 2 =−ρ (5.14)

where, the overhead dot (.) denote the derivative with respect to time t.

The physical quantities like Volume V , average Scale factor R , Expansion Scalar θ , Hubble’s

parameter H , Shear Scalar σ , Anisotropy Parameter ∆ and Deceleration parameter q have

observational interest in cosmology are defined for the metric (5.1) as

V = R4(t) = AB2C (5.15)

θ =
Ȧ

A
+2

Ḃ

B
+

Ċ

C
(5.16)

H =
Ṙ

R
=

1

4

(
Ȧ

A
+2

Ḃ

B
+

Ċ

C

)
(5.17)

σ2 =
1

2

(
Ȧ2

A2
+2

Ḃ2

B2
+

Ċ2

C2
− θ 2

4

)
(5.18)

∆ =
1

4

[
4

∑
i=1

(
Hi −H

H

)2
]

(5.19)

and

q =
d

dt

(
1

H

)
−1 (5.20)

where Hi ; i = 1,2,3,4 represents the directional Hubble’s parameter in the directions of x, y,

z and ψ respectively, which are given by

Hx =
Ȧ

A
, Hy = Hz =

Ḃ

B
, Hψ =

Ċ

C
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Since the equations (5.11)-(5.14) together with equation (5.10) represents a set of five

independent equations involving six unknown parameters viz. A, B, C, p, ρ and β , so in order

to obtain deterministic solutions of the above system of equations, it is required one more

physical relations involving them. Therefore, it is assumed like Berman (1983); Berman

and Gomide (1988) and Ram et al. (2010) [By using this type of relation, Berman (1983);

Berman and Gomide (1988) solved FRW models whereas Ram et al. (2010) solved Bianchi

Type V cosmological models in Lyra’s Geometry] that the Hubble parameter H is related to

the average scale factor R by the relation

H = aR−m (5.21)

where a > 0 and m ≥ 0 are constants.

From equations (5.15) and (5.17) we have

H =
1

4

V̇

V
=

Ṙ

R
=

1

4

(
Ȧ

A
+2

Ḃ

B
+

Ċ

C

)
(5.22)

Using equation (5.21) in equation (5.22), it may be obtained

Ṙ = aR1−m (5.23)

From equations (5.11)-(5.15) we have

A

B
= D4eD1

∫
1
V dt (5.24)

A

C
= D5eD2

∫
1
V dt (5.25)

B

C
= D6eD3

∫
1
V dt (5.26)

where, D1, D2, D3, D4, D5 and D6 are constants satisfying

D2 = D1 +D3 and D5 = D4D6 (5.27)

Again from equation (5.20), the deceleration parameter (q) is obtained as
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q = m−1 (5.28)

From equation (5.28) it is seen that the deceleration parameter (q) obtained under the law of

variation of Hubble’s parameter (H) given by equation (5.21) is a constant. Again from the

study of various literatures it is found that the sign of deceleration parameter (q) determines

whether a model is inflationary or not inflationary. The negative sign of q corresponds an

inflationary model universe whereas the positive sign of it indicates a standard decelerating

model. From equation (5.28) it is observed that whenever 0 ≤ m < 1 then −1 ≤ q < 0 but if

m > 1 then q > 0. Therefore, m ≤ 1 will describe an accelerating/inflationary model universe

and m > 1 will give us a decelerating model. [Or, From equation (5.28) it is found that the

whenever m > 1 then q > 0 , therefore the model represent a decelerating model whereas for

m ≤ 1 we get −1 ≤ q < 0 which describes an accelerating model of universe.]

Integrating equation (5.23), the value of average scale factor (R) is obtained as

R = (amt +b)
1
m whenever m ̸= 0 (5.29)

R = ceat whenever m ̸= 0 (5.30)

where a, b and c are constants.

Case-I: Whenever m ̸= 0:

From equations (5.22) and (5.29), the volume V can be obtained as

V =V0(amt +b)
4
m (5.31)

where V0 is an integrating constant. Without loss of generality, if we choose V0 = 1 then the

equation (5.31) reduces to

V = (amt +b)
4
m (5.32)

Using this value of V in equations (5.24)-(5.26), the scale factors A, B and C are found as

A = a1X
1
m ea2X1− 4

m
(5.33)
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B = b1X
1
m eb2X1− 4

m
(5.34)

C = c1X
1
m ec2X1− 4

m
(5.35)

where

X = amt +b (5.36)

and

a1 =
(
D4

3D6

) 1
4 ; b1 =

(
D6

D4

) 1
4

; c1 = (D4D6)
− 1

4

a2 =
2D1 +D3

4am(1− 4
m
)

; b2 =
D3 −D1

4am(1− 4
m
)

; c2 =− D1 +3D3

4am(1− 4
m
)

(5.37)

are constants.

Therefore the metric (5.1) can be written as

ds2 = a2
1X

2
m e2a2X1− 4

m
dx2 +b2

1X
2
m e2b2X1− 4

m (dy2 +dz2)+ c2
1X

2
m e2c2X1− 4

m
dψ2 −dt2 (5.38)

The equation (5.38) represents Bianchi type I cosmological model universe with special law

of Hubble’s parameter of the form H = aR−m , where m > 0.

From equation (5.10) the displacement vector β is found as follows

β = β0X− 4
m (5.39)

where β0 > 0 is a constant and X is given by equation (5.36).

Again the energy density and pressure are obtained from equation (5.14) and any one

of (5.11)-(5.13) as

ρ =

[
6a2 − 1

8
(3D2

1 +2D1D3 +3D2
3)X

2(1− 4
m )

]
1

X2
− 3

4
β 2

0 X− 8
m (5.40)

and
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p =−
[

3(2−m)a2 +
1

8
(3D2

1 +2D1D3 +3D2
3)X

2(1− 4
m )

]
1

X2
− 3

4
β 2

0 X− 8
m (5.41)

The expressions for physical quantities such as Average Scale Factor R, expansion scalar θ ,

Hubble’s parameter H, Shear scalar σ , anisotropy parameter ∆ and Deceleration parameter

q having observational interest in cosmology may be obtained from equations (5.15)-(5.20) as

R = (amt +b)
1
m (5.42)

θ =
4a

amt +b
(5.43)

H =
a

amt +b
(5.44)

σ2 =
1

8
(3D2

1 +2D1D3 +3D2
3)(amt +b)−

8
m (5.45)

σ2

θ 2
=

1

128a2
(3D2

1 +2D1D3 +3D2
3)(amt +b)2(1− 4

m ) (5.46)

Therefore

lim
n→∞

σ2

θ 2
= 0 (5.47)

∆ =
1

16a2
(3D2

1 +2D1D3 +3D2
3)(amt +b)2(1− 4

m ) (5.48)

and

q = m−1 f or m ̸= 0 i.e. m > 0 (5.49)

The variations of some parameters with respect to time of the case-I are shown in Figs. 1-6.
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Figure-5.1 : Variation of volume V vs. time t , whenever a = b = 1;D1 = D4 = D6 =

1;D3 = 2;m = 0.5.

Figure-5.2 : Variation of Expansion scalar θ vs. Time t , whenever a = b = 1;D1 = D4 =

D6 = 1;D3 = 2;m = 0.5.
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Figure-5.3 : Variation of energy density ρ vs. Time t , whenever a = b = 1;m = 0.5.

Figure-5.4 : Variation of pressure p vs. Time t , a = b = 1;D1 = D4 = D6 = 1;D3 = 2;m =

0.5.
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Figure-5.5 : Variation of displacement vector β vs. Time t , a = b = 1;m = 0.5;β0 = 1.

Figure-5.6 : Variation of Average Scale factor R vs. Time t , a = b = 1;m = 0.5.

Case-II: Whenever m = 0:

When m = 0 the from equations (5.22) and (5.30) we have the volume V as

V =V1e4at (5.50)

where V1 is a constant of integration. Without loss of generality, if we choose V1 = 1 then

from equation (5.50) we have
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V = e4at (5.51)

From equations (5.24)-(5.26) and (5.51), the scale factors A, B and C are found as

A = a1eatea3e−4at

(5.52)

B = b1eateb3e−4at

(5.53)

C = c1eatec3e−4at

(5.54)

where, a3 =−3D1+D3

16a
, b3 =

D1−D3

16a
and c3 =−D1+3D3

16a
are constants.

Therefore the metric (5.1) can be written as

ds2 = a2
1e2ate2a3e−4at

dx2 +b2
1e2ate2b3e−4at

(dy2 +dz2)+ c2
1e2ate2c3e−4at −dt2 (5.55)

which represents a Bianchi type I cosmological model universe under the Hubble’s expansion

law given by equation (5.21) when m = 0.

From equation (5.10) the displacement vector β is found as follows

β = β0e−4at (5.56)

where β0 > 0 is a constant.

From equations (5.14) and any one of (5.11)-(5.13), the energy density and pressure are

obtained as

ρ = 6a2 − 1

8
(3D2

1 +2D1D3 +3D2
3)e

−8at − 3

4
β 2

0 e−8at (5.57)

and

p =−
[

6a2 +
1

8
(3D2

1 +2D1D3 +3D2
3)e

−8at +
3

4
β 2

0 e−8at

]
(5.58)
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From equations (5.15)-(5.20), the expressions for kinematical parameters like Average Scale

Factor R, expansion scalar θ , Hubble’s parameter H, Shear scalar σ , anisotropy parameter ∆

and Deceleration parameter q are obtained as

R = eat (5.59)

θ = 4a (5.60)

H = a (5.61)

σ2 =
1

8
(3D2

1 +2D1D3 +3D2
3)e

−8at (5.62)

σ2

θ 2
=

1

128a2
(3D2

1 +2D1D3 +3D2
3)e

−8at (5.63)

Therefore

lim
n→∞

σ2

θ 2
= 0 (5.64)

∆ =
1

16a2
(3D2

1 +2D1D3 +3D2
3)e

−8at (5.65)

and

q =−1 (5.66)

The variations of some parameters with respect to time of the case-II are shown in Figs. 7-15.
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Figure-5.7 : Variation of Volume V vs. Time t , whenever a = 1.

Figure-5.8 : Variation of Average Scale Factor R vs. Time t , whenever a = 1.
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Figure-5.9 : Variation of Displacement Vector β vs. Time t , whenever a = β0 = 1.

Figure-5.10 : Variation of Energy density ρ vs. Time t , a = β0 = 1;D1 = D4 = D6 =

1;D3 = 2.
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Figure-5.11 : Variation of Pressure p vs. Time t , a = β0 = 1;D1 = D4 = D6 = 1;D3 = 2.

Figure-5.12 : Variation of Shear Scalar σ vs. Time t , whenever a = 1;D1 = D4 = D6 =

1;D3 = 2.
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Figure-5.13 : Variation of Anisotropy Parameter ∆ vs. Time t , whenever a = 1;D1 = D4 =

D6 = 1;D3 = 2.

Figure-5.14 : Variation of Deceleration Parameter q vs. Time t.
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Figure-5.15 : Variation of Expansion Scalar θ vs. Time t , a = 1.

5.3 Physical and Geometrical Properties of the Solutions:

Case-I:

From equation (5.32) it has been observed that the spatial volume V is zero at t = − b
am

and it becomes infinite as t → ∞. This behavior of volume V is shown in Figure 5.1. Again

from the expression of the average scale factor R obtained in equation (5.41), it is seen that R

has a constant value at t =− b
am

and it becomes infinite as t → ∞. The evolution of expansion

scalar θ has been shown in Figure 5.2 corresponding to the equation (5.44) and it is observed

that the expansion scalar θ starts with infinite value at initial epoch of cosmic time t =− b
am

but as time t progresses it decreases and becomes constant after some finite time that explains

the Big-Bang scenario. Also from the expression of Hubble’s expansion factor H given by

equation (5.44), we see that dH/dt is negative. These show that our model represents an

expanding universe that expands with an accelerated rate.

The expression (5.40) for the energy density ρ(t) shows that ρ is a decreasing function

of cosmic time t that tend to zero as t → ∞ and ρ > 0 for all values of t . Also from equation

(5.41) it is seen that the pressure p(t) is negative and is an increasing function of time t that

tend to zero as t → ∞. These behaviors of energy density ρ and pressure p are shown in

Figure 5.3 and Figure 5.4 respectively. Therefore our model represents a dark energy model.
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Again from equation (5.39), it has been observed that the displacement vector β (t) is a

decreasing function of time and it approaches a small positive value with increase in time.

Figure 5.5 shows this behavior of β . Thus the nature of β in our derived model of the

universe is consistent with recent observations [Perlmutter et al. (1997, 1999), Garnavich et

al. (1998), Schmidt et al. (1998), Riess et al. (2004)]. The equation (5.47) shows that the

limn→∞
σ2

θ 2 = 0 . Thus our inflationary model universe eventually approaches isotropy for

large values of t.

Case-II:

From the equations (5.51) and (5.59), it has been observed that initially at t = 0 both

the spatial volume V and average scale factor R have values 1 and increases exponentially to

infinite value whenever t → ∞. The variations of V and R are shown respectively in Figure

5.7 and Figure 5.8. In this case the expansion scalar θ obtained in equation (5.60) is found

to be a constant. Also from equation (5.61), the Hubble’s expansion factor H is found to be

constant. These show that our model universe starts evolving with unit volume at t = 0 and

is expanding with acceleration with time.

Figure 5.9 of equation (5.56) showing the behavior of the displacement vector β describes

that β is always positive which tend to zero 0 as t → ∞. Also from equation (5.62), it has

been observed that the shear scalar σ is a nonzero positive quantity for all values of comic

time t that tends to zero as t → ∞. The behavior of shear scalar is shown in Figure 5.12.

Also we find that limn→∞
σ2

θ 2 = 0 . This means that after a long time our model approach to

an isotropic model universe.

From equation (5.57), it can be noticed that the energy density ρ(t) is positive for all

values of time t that approaches to a finite quantity with the increase of time. This behavior

of energy density is shown in Figure 5.10. Again from equation (5.58) and Figure 5.11, it

is seen that the pressure p is always negative. Thus our model essentially represents a dark

energy model universe that is full of matter.

5.4 Conclusion:

In this paper we studied five dimensional LRS Bianchi type I cosmological model in the

framework of Lyra’s geometry in presence of perfect fluid, by using quadratic equation of
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state given by the equation (5.30) which is an inflationary model. Our work analyze the

general feature of LRS Bianchi Type-I cosmological model with time dependent displacement

vector so the concept of Lyra geometry is still exist even after the infinite times with different

ideas and concepts. So it will be interesting to study the different properties of different

topological defects within the framework of Lyra geometry and beneficial for further study

to investigate the different models of our universe.
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