
Chapter 6

Higher Dimensional Cosmological Model

Universe with Quadratic Equation of

State in Lyra Geometry

4

6.1 Introduction:

In the General theory of relativity, Einstein described gravitation in terms of geometry. The

field equations of Einstein’s admit/represent only non static cosmological models for nonzero

energy density. Based on the cosmological principle, Einstein introduced the cosmological

constant into his field equations in order to obtain a static model of the universe. Later,

Weyl (1918a) proposed a more general theory in which electromagnetism together with

gravitation is described geometrically. He showed how one can introduce a vector field in

the Riemannian space-time with an intrinsic geometrical significance. But this theory was

based on non-integrability of length of vector under parallel displacement so that it had

some unsatisfactory features and hence this theory did not gain general acceptance, which is

known as Weyl’s geometry still today. After having these concepts, Lyra (1951) suggested

a modification of Riemannian geometry, which may also be considered as a modification

of Weyl’s geometry, by introducing a gauge function into the structureless manifold which

removes the non-integrability condition of the length of a vector under parallel transport and a

cosmological constant is naturally introduced from the geometry. This modified Riemannian
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geometry is known as Lyra’s geometry. Halford (1970, 1972) pointed out that in the normal

general relativistic treatment the constant displacement vector field φk in Lyra’s geometry

plays the role of cosmological constant and the scalar-tensor treatment based on Lyra’s

geometry predicts the same effect, within observational limits, as far as the classical solar

system test are concerned (as in the Einstein’s theory of relativity).

In 1984 Marciano (1984) has suggested that the experimental observation of fundamen-

tal constant with varying time could produce the evidence of extra dimensions. Also in the

same year 1984 Witten (1984) shown that the cosmos at its early stage of evolution might

have had a higher dimensional era. In fact with the passage of time the standard dimensions

are expanded while the extra dimensions are shrinking to the Plankian dimension, which is

beyond our ability to detect with the presently available experimental facilities. This fact has

attracted many researchers to investigate problems in the field of higher dimensions.

Since our universe is expanding with acceleration as suggested by [Silk (1989); Perlmutter

(1999); Riess et al. (1998); Jimenez et al. (2003)] but the satisfactory explanation about

physical mechanism and driving force of accelerated expansion of the universe is yet to

achieve as human mind has not achieved perfection. It is supposed that the dark energy is

responsible to produce sufficient acceleration in late time of evolution of the universe. There-

fore it is essential to study the fundamental nature of the dark energy. Several approaches

have been made to understand the dark energy. The cosmological constant is assumed to

be the simplest candidate of dark energy. Therefore various cosmologists suggested many

alternative models with different equations of state, scalar fields, with Lyra Geometry, f(R)

Lagrangian, additional space dimensions and many others [Bhamra (1974); Karade (1978);

Sen and Vanstone (1972); Reddy and Innaiah (1986); Asgar and Ansary (2014b); Sahoo

and Sivakumar (2015); Amendola et al. (2007); Felice and Tsujikawa (2005); Sotiriou and

Faraoni (2010)].

In order to study dark energy and general relativistic dynamics for different cosmologi-

cal models, Quadratic equation of state plays a vital role. The general form of quadratic

equation of state is given by

p = p0 +αρ +βρ2 ,

where p0,α,β are the parameters. This equation represents the first term of the Taylor’s

expansion of any equation of state of the form p = p(ρ) about ρ = 0.
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Dark energy universe with different equations of state has been discussed by Nojiri and

Odintsov (2004, 2005a), Nojiri et al. (2005b, 2011), Capozziello et al. (2006a) and Bamba et

al. (2012) describing dark energy or unified dark matter.

Ananda and Bruni (2005) discussed the cosmological models by considering different form of

non-linear quadratic equation of state. They have shown that the behaviour of the anisotropy

at the singularity found in the brane scenario can be recreated in the general relativistic

context by considering general form of quadratic equation of state. Also by considering

quadratic equation of state of the form

p = αρ +
ρ2

ρc
,

also Ananda and Bruni (2006) have discussed the anisotropic homogeneous and inhomoge-

neous cosmological models in general relativity and tried to isotropize the universe at early

times when the initial singularity is approached. In our present study, we have consider the

quadratic equation of state of the form

p = αρ2 −ρ ,

where α ̸= 0 is a constant quantity but we can take p0 = 0 to avoid complexities in our

calculations. This will not affect the quadratic nature of the equation of state.

Many authors like Chavanis (2013a), Maharaj and Takisa (2012), Rahaman et al. (2009a),

Feroze and Siddiqui (2011) have studied cosmological models based on quadratic equation

of state under different circumstances.

Recently Reddy et al. (2015), Adhav et al. (2015), Rao et al. (2015) studied Bianchi

type cosmological models with quadratic equation of state in general and modified theories

of relativity.

Motivated from the above mentioned research, here we have investigated five dimensional

Bianchi type-I cosmological models in the framework of Lyra geometry with quadratic

equation of state. Physical and geometrical properties of the model are discussed.
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6.2 Field Equations and their Solutions:

The field equations based on Lyra’s Geometry as obtained by Sen (1957) and Sen & Dunn

(1971) in normal gauge are written as:

Ri j −
1

2
gi jR+

3

2
φiφ j −

3

4
gi jφ

kφk = Ti j (6.1)

where we use the units in which 8πG
c4 = 1 [Wesson 1992; Baysal et. al. 2001; Bali and Dev

2002] and φi is the displacement vector given by

φi = (0,0,0,0,β (t)) (6.2)

Here we consider the five dimensional LRS-Bianchi type-I axially symmetric metric in the

form

ds2 = A2dx2 +B2(dy2 +dz2)+C2dψ2 −dt2 (6.3)

with the convention that x1 = x,x2 = y,x3 = z,x4 = ψ,x5 = t where A, B and C are functions

of time t only. Here the extra coordinate is taken to be space like.

The energy momentum tensor Ti j for perfect fluid is given by

Ti j = (ρ + p)uiu j + pgi j (6.4)

where, ρ is the energy density, p is the pressure and ui is the five velocity vector given by

ui = (0,0,0,0,1) (6.5)

which satisfies

gi ju
iu j = uiui =−1 (6.6)

Also, we have assume an equation of state (EoS) in the general form p = p(ρ) for the matter

of distribution.

In this case we have considered it in the quadratic form as

p = αρ2 −ρ (6.7)
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where α is a constant and strictly α ̸= 0 [Reddy et. al. 2015].

In comoving coordinate system, we have from (6.4)

T 1
1 = T 2

2 = T 3
3 = T 4

4 =−p ; T 5
5 = ρ and T i

j = 0 f or all i ̸= j (6.8)

Using commoving coordinate system, the Einstein’s equations (6.1) and (6.2) for the metric

(6.3) with the help of equation (6.4)-(6.8) can be written as

Ḃ2

B2
+2

ȦḂ

AB
+2

ḂĊ

BC
+

ȦĊ

AC
− 3

4
β 2 =−ρ (6.9)

2
B̈

B
+

C̈

C
+

Ḃ2

B2
+2

ḂĊ

BC
+

3

4
β 2 =−p (6.10)

Ä

A
+

B̈

B
+

C̈

C
+

ȦḂ

AB
+

ḂĊ

BC
+

ȦĊ

AC
+

3

4
β 2 =−p (6.11)

Ä

A
+2

B̈

B
+

Ḃ2

B2
+2

ȦḂ

AB
+

3

4
β 2 =−p (6.12)

where, the overhead dot (.) denote the derivative with respect to time t.

Let us define the spatial volume V and average scale factor R(t) for axially symmetric

LRS Bianchi type-I metric as

V = R4(t) = AB2C (6.13)

The mean Hubble’s Parameter H is given by

H =
Ṙ

R
=

1

4

(
Ȧ

A
+2

Ḃ

B
+

Ċ

C

)
(6.14)

The scalar expansion θ and shear scalar σ2 are given by

θ =
Ȧ

A
+2

Ḃ

B
+

Ċ

C
(6.15)

and
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σ2 =
1

2

(
4

∑
i=1

H2
i −4H2

)
=

1

2

(
Ȧ2

A2
+2

Ḃ2

B2
+

Ċ2

C2
− θ 2

4

)
(6.16)

The average anisotropy parameter ∆ is defined as

∆ =
1

4

[
4

∑
i=1

(
Hi −H

H

)2

,

]
(6.17)

where Hi ; i = 1,2,3,4 represents the directional Hubble’s parameter in the directions of x, y,

z and ψ respectively, which are given by

Hx =
Ȧ

A
, Hy = Hz =

Ḃ

B
, Hψ =

Ċ

C
,

and ∆ = 0 corresponds to isotropic expansion.

Also, the deceleration parameter q is defined as

q =
d

dt

(
1

H

)
−1 (6.18)

Since equations (6.9)-(6.12) represents a system of four independent (simultaneous) equations

involving six unknowns viz. A,B,C,β ,ρ and p , so in order to obtain deterministic solution

of the above system of equations we need to two more physical equations [conditions] or

mathematical equations [relations] involving these unknowns.

Out of these two additional physical conditions we may consider

(i) One physical condition as the quadratic equation of state (6.7) given above and

(ii) the scalar expansion θ is proportional to the shear scalar σ2 so that we may consider

as

C = Bn (6.19)

From Equations (6.10)-(6.12) we have

B̈

B
− C̈

C
+

Ḃ2

B2
+

ȦḂ

AB
− ḂĊ

BC
− ȦĊ

AC
= 0 (6.20)



6.2 Field Equations and their Solutions: 99

and

Ä

A
− B̈

B
+

ȦḂ

AB
− ḂĊ

BC
+

ȦĊ

AC
− Ḃ2

B2
= 0 (6.21)

Equation (6.19) together with the equations (6.20) and (6.21) give us-

B̈

B
+(n+1)

(
Ḃ

B

)2

+
ȦḂ

AB
= 0 i f n ̸= 1 (6.22)

Ä

A
− B̈

B
+(n+1)

ȦḂ

AB
− (n+1)

(
Ḃ

B

)2

= 0 (6.23)

Adding (6.22) and (6.23) we get

Ȧ

A

{
Ä

A
+(n+2)

Ḃ

B

}
= 0 (6.24)

This yields the following three cases:

Case (I) :
Ä

A
+(n+2)

Ḃ

B
= 0

Case (II) :
Ȧ

A
= 0 ⇒ Ȧ = 0

Case (II) :
Ȧ

A
= 0 and

Ä

A
+(n+2)

Ḃ

B
= 0 .

Out of the above three cases the solutions given by Case (I) and Case (III) are not so interest-

ing and realistic solutions in some parameters so we intend to determine the cosmological

models with quadratic equation of state for the Cases (II).

Here in this case
Ȧ

A
= 0 ⇒ Ȧ = 0 ⇒ A = constant = k4
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Using this value of A in equations (6.22) and (6.19) we have

A = k4

B = [(n+2)(k6t + k7)]
1

n+2

C = [(n+2)(k6t + k7)]
n

n+2

where k4,k5,k6 and k7 are constants.

Therefore the equations (6.6)-(6.9) reduces to

(2n+1)k2
6

[(n+2)(k6t + k7)]
2
− 3

4
β 2 =−ρ (6.25)

and

− (2n+1)k2
6

[(n+2)(k6t + k7)]
2
+

3

4
β 2 =−p (6.26)

So from equation (6.7), we have

ρ = 0 (6.27)

and

p = 0 (6.28)

It means that our model represents a vacuum universe.

The equation (6.25) or (6.26) will give us

3

4
β 2 =

(2n+1)k2
6

(n+2)2 (k6t + k7)
2

(6.29)

Now the metric (6.3) can be written as
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ds2 = k2
4dx2+[(n+2)(k6t + k7)]

2
n+2 (dy2+dz2)+[(n+2)(k6t + k7)]

2n
n+2 dψ2−dt2 (6.30)

The equation (6.30) represents a perfect fluid cosmological model with quadratic equation of

state in Lyra geometry.

From equations (6.13)-(6.17) we have the spatial volume V , Hubble’s parameter H, ex-

pansion factor θ , Shear scalar σ and anisotropy parameter ∆ as

V = (n+2)k4(k6t + k7) (6.31)

H =
k6

4(k6t + k7)
(6.32)

θ = 4H =
k6

k6t + k7
(6.33)

σ2 =
(3n2 −4n+4)k2

6

8(n+2)2(k6t + k7)2
(6.34)

σ2

θ 2
=

(3n2 −4n+4)

8(n+2)2
= constant (6.35)

q =
k2

6

(k6t + k7)2
−1 (6.36)

6.3 Physical and Geometrical Properties of the Solutions:

We have observed from equation (6.29) that the displacement vector β = 2√
3

k6

√
2n+1

n+2
when

t = 0 and n ̸= −2 i.e. β ̸= 0. Also β → 0 when t → ∞. Again from equation (6.31) it is

observed that initially when t = 0 then V = k4k7(n+2) if n ̸=−2 and gradually increases

and finally when t → ∞ then V → ∞. Again from equations (6.32) and (6.33) we have seen

that at the initial stage i.e. when t → 0 then the Hubble’s parameter H and expansion factor

θ are constants but as the time progresses gradually they decreases and finally when t → ∞

both H and θ become zero, which means that the Universe is expanding with the increase

of time but the rate of expansion becomes slow as time increases Also we have observed

that σ2

θ 2 = 3n2−4n+4
8(n+2)2 = constant ̸= 0 if n ̸=−2 for all values of t, so our universe is always an
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anisotropic one. But when n =−2 then σ
θ → ∞ for all values of t. Here the shear scalar is

finite at t = 0 and decreases as t increases. The expansion in the model stops at infinite time.

Also from equation (6.36) we see that the deceleration parameter q < 0 when t > 1− k7
k6

or

t <−1− k7
k6

. It means that the universe is accelerating because acceleration at certain stage

in the evolution of the universe implies q < 0 for some time so our model is an inflationary.

6.4 Conclusion:

In this paper we studied five dimensional LRS Bianchi type I cosmological model in the

framework of Lyra’s geometry in presence of perfect fluid, by using quadratic equation of

state given by the equation (6.30) which is an inflationary model. Our work analyze the

general feature of LRS Bianchi Type-I cosmological model with time dependent displacement

vector so the concept of Lyra geometry is still exist even after the infinite times with different

ideas and concepts. So it will be interesting to study the different properties of different

topological defects within the framework of Lyra geometry and beneficial for further study

to investigate the different models of our universe.
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