
Chapter 9

Could the Lyra Manifold be the Hidden

Source of the Dark Energy ?

5

9.1 Introduction:

Many researchers and Scientists are putting huge effort to explain the dynamics of the uni-

verse and to understand the future evolution of the universe from the ancient times. However,

till today we are not in a state to provide an exactly clear statement about the origin and

evolution of our universe. From different literatures and philosophical point of views we

found that different mines provide different opinions about our universe. The universe is full

of mysterious elements and numerous effects of interactions which cannot be detected and

difficult to explain even with advanced technology. Due to these reasons the most challenging

problems in Astrophysics and modem cosmology is to understand the late time acceleration

of the universe. In recent years most of researchers have drawn considerable attention in the

context of dark energy and modified theories of gravity to study the various aspects of the

universe. On the other hand many prominent results of the cosmological observations like

Type SNeIa supernovae [Riess et al. (1988, 2004); Perlmutter et al. (1999); Amanullah et al.

(2010); Astier et al. (2006); Suzuki et al. (2012)], CMB (Cosmic Microwave Background)

anisotropies [Bennett et al. (2003); Spergel et al. (2003)], the large scale galaxies structures

of universe [Daniel et al. (2008); Allen et al. (2004)], Baryon Acoustic Oscillations [Ander-

son et al. (2013); Eisenstein et al. (2005)], WMAP (Wilkinson Microwave Anisotropy Probe)

[Komatsu et al. (2009); Hinshaw et al. (2013)] Sachs-Wolfe effects [Nishizawa (2014)] and
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SDSS [Seljak et al. (2005); Tegmark et al. (2004); Abazajian et al. (2004); McCarthy et

al. (2008)] are noticed to us for the cosmic acceleration with direct and indirect evidence.

Not only the above mentioned observations and surveys, but some other new cosmological

results and data sets like Planck [Ade et al. (2014, 2016)], Atacama Cosmology Telescope

(ACT) [Sievers et al. (2013)], South Pole Telescope Sunyaev-Zel’dovice (SPT-SZ) survey

[Story et al. (2013)] have measured the temperature and polarization of CMB to exquisite

precision, are also supporting this fact. These results are more acceptable to the community

and beneficial to the researchers to understand about the universe in this modern era.

From the recent literatures and findings we know that dark energy dominates the universe

with positive energy density and negative pressure, responsible to produce sufficient accelera-

tion in late time evolution of the Universe. Some of the important claimants of dark energy

are tachyons [Padmanabhan and Choudhury (2002)], chaplygin gas [Elmardi et al. (2016)],

phantom [Dabrowski (2008)], k-essence and quintessence [Putter and Linder (2007)] along

with other four elements i.e. dark matter, baryons, radiation and neutrinos. But so far there

is no direct detection of such exotic fluids. Although the literature is now flooded with

hundreds of model for dark energy what we lack is precise cosmological data coming from

variety of observations involving both background and inhomogeneous universe that can

discriminate among these models. In this connection if we accept that Einstein was correct

with his general relativity theory to explain accelerated expansion of the universe could also

be explained by negative pressure working against gravity. The belief of Einstein to the

static universe made him to think about negative pressure which will stop the attraction of

the gravity. However, we know that we have non static universe, moreover we know that

we have accelerated expansion. According to the above observational data analysis, it can

be estimated the amount of the negative pressure in our universe, which we call it as dark

energy. The simple question about the nature of the dark energy is still one of the intriguing

questions and left free space for new speculations.

After Einstein many Physicists have been investigating about gravitation in different contexts.

Hermann Weyl [Weyl (1918a)] attempted to generalize the idea of geometrizing the gravi-

tation and electromagnetism by applying different techniques and methods. He described

both gravitation and electromagnetism geometrically by formulating a new kind of gauge

theory involving metric tensor with an intrinsic geometrical significance. With the concept of

Einstein’s general theory of relativity Lyra [Lyra (1951)] suggested a modification by intro-

ducing a gauge function into the structure-less manifold which removes the non-integrability

condition of the length of a vector under parallel transport. Such theories are commonly
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known as the modified theories of the gravitation or alternate theory of gravitation. Some

important modified theories of gravitation are Brans-Dicke theory [Brans and Dicke (1961)],

Scalar-tensor theories [Barker (1978)], Vector-tensor theory [Bekenstein (2004)], Weyl’s

theory [Weyl (1918b)], F(R) Gravity [Nojiri et al. (2003); Sotiriou (2010); Nojiri et al.

(2011); Buchdahl (1970)], Mimetic Gravity [Chamseddine et al. (2013)], Mimetic F(R)

gravity [Nojiri et al. (2014b); Myrzakulov et al. (2015)], Lyra geometry [Scheibe (1952)] and

many more. We can explain about the accelerating expansion of the universe in the context

of these modified theories of gravitation. Out of these modified theories of gravitation, here

we will discuss about the Lyra geometry.

As we know that Lyra geometry is a modification of Riemannian geometry by introducing a

gauge function into the structure less manifold which removes the non-integrability condition

of the length of a vector under parallel transport. Lyra geometry along with constant gauge

vector φi will either play the role of cosmological constant or creation field (equal to Hoyle’s

creation field [Hoyle (1948); Hoyle and Narlikar (1963); Hoyle and Narlikar (1964)]) which

is discussed by Soleng (1987). Many researchers proposed different cosmological models

in different context of Lyra geometry. Sen (1957) formulated a new scalar-tensor theory of

gravitation based on Lyra geometry in which he found that static model with finite density in

Lyra geometry is similar to the Einstein’s static model, but it exhibited red shift which is a

significant difference of the model. Later, Sen and Dunn (1971) and Rosen (1983), suggested

that this theory was based on non-integrability of length transfer so that it had some unsatis-

factory features and hence this theory did not gain general acceptance. Halford (1970, 1972)

pointed out that in the normal general relativistic treatment the constant displacement vector

field φi in Lyra’s geometry plays the role of cosmological constant. Also, as in the Einstein’s

theory of relativity the scalar-tensor treatment based on Lyra’s geometry predicts the same

effect, within observational limits, as far as the classical solar system test are concerned .

Many authors [Rahaman et al. (2003, 2005); Casana et al. (2005, 2006) ; Mohanty et al.

(2007, 2009b); Mahanta et al. (2012); Asgar et al. (2014a); Mollah et al. (2015); Mollah

and Singh (2016) attempted to solve Einstein’s field equations in the framework of Lyra’s

geometry and successfully find their solutions under different circumstances.

From the critical study we know that space-time symmetry plays a vital role in the features

of space-time that can be described as exhibiting some form of symmetry. The importance

of symmetries in relativity and cosmology is to simplify Einstein’s field equations and to

provide a classification of the space time according to the structure of the corresponding

Lie algebra. Some authors [Henriksen and Wesson (1978); Mohanty and Samanta (2009a);
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Rao and Neelima (2013a) ; Cahill and Taub (1971)] solved Einstein’s field equations for

an axially symmetric space-time by imposing certain conditions upon the scale factor of

the space time together with some conditions on matter which represents such space-time

and some restrictions on its physical properties. To explain the accelerated expansion of

the universe many prominent researchers like [Shchigolev (2013); Hova (2013); Ali and

Rahaman (2013); Megied et al. (2014); Khurshudyan et al. (2014a, b); Saadat (2015); Darabi

et al. (2015); Ziaie et al. (2013); Pucheu et al. (2016)] have investigated and proposed

different cosmological models and ideas of the universe within the framework of Lyra’s

geometry and other theories of relativity in different context.

It is also seems that, majority of researchers in the field of Astrophysics, Cosmology and

Particle Physics were doing their research in this area by considering only 4-dimensional

case. But in this modern era peoples are more interested to study higher dimensional case,

since the solutions of Einstein field equations in higher dimensional space times are believed

to have physical relevance possibly at extremely early times before the universe underwent

the compactification transitions. We also found that by using a suitable scalar field we can

show that the phase transitions on the early universe can give rise to such objects which are

nothing but the topological knots in the vacuum expectation value of the scalar field and most

of their energy is concentrated in a small region. So it is necessary for us to study the cosmo-

logical problems by considering higher-dimensional space-time to unify gravity with other

interactions. In cosmology, particularly for study of the early stage of universe the present

four-dimensional stage of the universe might have been preceded by a multi-dimensional

stage. Recently, Singh and Mollah (2016) studied about higher-dimensional LRS Bianchi

type-I cosmological model universe interacting with perfect fluid in Lyra geometry with

different cases. Many authors [Bali and Kumawat (2010); Pradhan et al. (2013); Accioly

(1985); Kandalkar et al. (2009); Adhav et al. (2013); Rao and Neelima (2013b); Adhav

(2011); Pradhan and Singh (2011b); Asgar and Ansary (2014b)] have studied Bianchi type

models in order to examine the role of certain anisotropic sources during the formation of

the large-scale structures that we see in the present universe and for better understanding the

small amount of observed anisotropy in the universe. Banerjee et al., (1990) have investigated

Bianchi type-I cosmological models with viscous fluid in higher dimensional space time.

Also, Krori et al. (1994); Gron (1988); Collins et al. (1980) studied Bianchi type-I string

cosmological model in higher dimensions.

Motivated from the above, in this chapter we discussed about five dimensional spatially ho-

mogeneous and anisotropic Locally Rotationally Symmetric (LRS) Bianchi Type I universe
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with time dependent deceleration parameters in Lyra manifold considering different cases

and find out the realistic solutions which are supporting to the present observational facts.

We also found that the geometry itself of Lyra manifold behaves as a new source of dark

energy which will be beneficial for further research work.

This chapter is organized as follows: In the section 9.2 we are presenting the formula-

tion of the problem and the physical properties for the model are defined. In the next section

i.e. in section 9.3, considering deceleration parameter in four different forms, we have

obtained six different cosmological models (in four cases together with three sub cases of

case-II), by solving the field equations obtained in the previous section. Some important

physical parameters representing the models are also obtained in this section. In Section

9.4, Physical interpretations of all the model universes are discussed. In the final section,

conclusion and summary of our research paper is presented.

9.2 Formulation of Problem:

The Einstein’s field equations based on Lyra geometry is proposed by Sen (1957) and Sen

and Dunn (1971) in normal gauge may be written as

Ri j −
1

2
gi jR+

3

2
φiφ j −

3

4
gi jφ

kφk =−Ti j (9.1)

where φi is the displacement vector and other symbols have their usual meanings as in the

Riemannian geometry. The displacement vector φi is taken in the form

φi = (0,0,0,0,β (t)) (9.2)

In this Paper we consider the five dimensional LRS Bianchi type-I axially symmetric space

time in the form

ds2 = A2(dx2 +dy2 +dz2)+B2dψ2 −dt2 (9.3)

where A and B are functions of cosmic time t only, where the fifth coordinate is taken to be

space-like. Here the spatial curvature has been taken as zero Gron (1988).

The energy momentum tensor Ti j for the perfect fluid is given by

Ti j = (ρ + p)uiu j + pgi j (9.4)
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where, ρ is the energy density , p is the fluid pressure and ui is the five velocity vector given

by ui = (0,0,0,0,1) satisfying

gi ju
iu j = uiui =−1 (9.5)

The physical quantities like Spatial Volume V , Hubble’s Parameter H , Expansion scalar θ ,

Shear scalar σ , mean anisotropy parameter ∆ etc. plays a vital role for a cosmological model.

These parameters for the axially symmetric LRS Bianchi type-I metric (9.3) are defined as

V = R4(t) = A3B (9.6)

H =
Ṙ

R
=

1

4

(
3

Ȧ

A
+

Ḃ

B

)
(9.7)

θ = 4H = 3
Ȧ

A
+

Ḃ

B
(9.8)

σ2 =
1

2

(
4

∑
i=1

H2
i −4H2

)
(9.9)

∆ =
1

4

4

∑
i=1

(
Hi −H

H

)2

(9.10)

where Hi ; i = 1,2,3,4 represent the directional Hubble’s parameters in x,y,z,ψ directions

respectively and ∆ = 0 corresponds to isotropic expansion.

Using the comoving coordinate system, the field equations (9.1) for the metric (9.3) with the

help of equation (9.4) yield

3
Ȧ2

A2
+3

ȦḂ

AB
− 3

4
β 2 =−ρ (9.11)

2
Ä

A
+

B̈

B
+

Ȧ2

A2
+2

ȦḂ

AB
+

3

4
β 2 =−p (9.12)

3
Ä

A
+3

Ȧ2

A2
+

3

4
β 2 =−p (9.13)
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where the overhead dots (.) denote the derivatives with respect to time t.

Again the energy conservation equation T
i j

; j = 0 gives us

ρ̇ +(ρ + p)

(
3

Ȧ

A
+

Ḃ

B

)
= 0 (9.14)

The field equations (9.11)-(9.13) are a system of three highly nonlinear differential equations

with five unknown parameters A, B, ρ , p and β . Therefore in order to obtain deterministic

solution of the above system of equations, it is required to assume two more additional

physical conditions/mathematical relations involving these unknowns. Hence we assume

(a) The expansion scalar θ is proportional to the shear scalar (σ) [Collin et al. (1980)]

which leads to

A = Bn (9.15)

where n ̸= 1 is a constant and

(b) Another additional condition is taken as the any one of the following time dependent

deceleration parameter

(i) Average scale factor as an integrating function of time [Saha et al.(2012)] as

R =
(
taet
) 1

b , (9.16)

where a and b are positive constants in which scale factor has two factors: one factor behaving

like exponential expansion and the other factor behaving like power law expansion. While the

power law behavior dominate the cosmic dynamics in early phase of cosmic evolution, the

exponential factor dominates at late phase. When a = 0, the exponential law is recovered and

for 1/b = 0, the scale factor reduces to the power law as suggested by Mishra and Tripathy

(2015b) and Akarsu et al. (2014). Here we are very much interested in a transient universe

with early deceleration and late acceleration so that at early time q can be positive whereas at

late time q assumes a negative value in conformity with the recent observational data.

Therefore, the value of deceleration parameter (DP) q becomes a function of time t as follows

q =−RR̈

Ṙ2
=

ab

(a+b)2
−1
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(ii) Variable deceleration parameter q =−RR̈
Ṙ2 = D ,

where R is the average scale factor and D is a variable.

(iii) Linearly varying deceleration parameter q =−RR̈
Ṙ2 =−kt +m−1 ,

where R is the average scale factor, k ≥ 0,m ≥ 0 are constants.

(iv) Special form of deceleration parameter q =−RR̈
Ṙ2 =−1+ c

1+Rc ,

where R is the average scale factor and c > 0 is a constant.

The above four conditions will respectively give us the four different different model universes

as follows-

9.3 Solution of Field Equations in Four Different Cases (of

Deceleration Parameter):

9.3.1 Case-I: Models with Time Dependent Deceleration Parameter:

In this case we consider the average scale factor as an integrating function of time as given in

the above equation (9.16) as

R =
(
taet
) 1

b ,

where a and b are positive constants.

From the above value of the average scale factor R, the value of deceleration parameter

q can be obtained as

q =−RR̈

Ṙ2
=

ab

(a+ t)2
−1. (9.17)

This law (9.17) gives us a time-dependent deceleration parameter which describes that ini-

tially our universe was decelerating but as the the time progresses our universe becomes an

accelerating. That is our universe is in transition from early decelerating phase to the present

accelerating phase.
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From equation (9.6) we have

R(t) =
(
A3B

) 1
4 , (9.18)

The metric (9.1) can be determined completely by this average scale factor R(t) given by

equation (9.18).

From equations (9.15), (9.16) and (9.18) we have

A =
(
taet
) 4n

b(3n+1) (9.19)

and

B =
(
taet
) 4

b(3n+1) (9.20)

By using Equations (9.19) and (9.20) the metric (9.3) can be written as

ds2 =
(
taet
) 8n

b(3n+1) (dx2 +dy2 +dz2)+
(
taet
) 8

b(3n+1) dψ2 −dt2 (9.21)

Equation (9.21) represents a Bianchi type-I cosmological model universe in Lyra geometry

with time dependent deceleration parameter.

Some Physical Properties of the Model (9.21) with Time Dependent Deceleration Pa-

rameter

The energy conservation equation (9.14) leads to

3

2
ββ̇ +

3

2
β 2

(
3

Ȧ

A
+

Ḃ

B

)
= 0 .

Now since the displacement vector β ̸= 0 so we have

β̇ +β

(
3

Ȧ

A
+

Ḃ

B

)
= 0 . (9.22)
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From equation (9.22) the displacement vector β is obtained as

β =
(
k0taet

)− 4
b . (9.23)

Energy density ρ and pressure p can be obtained from equations (9.11) and (9.13) as

ρ =− 48n(n+1)

b2(3n+1)2

(a

t
+1
)2

+
3

4

(
k0taet

)− 8
b , (9.24)

p =− 96n2

b2(3n+1)2

(a

t
+1
)2

+
12an

b(3n+1)2
− 3

4

(
k0taet

)− 8
b . (9.25)

The equations (9.6)-(9.10) gives us the Spatial Volume V , Hubble’s Parameter H , Expansion

scalar θ , Shear scalar σ , mean anisotropy parameter ∆ as

V =
(
taet
) 4

b (9.26)

H =
Ṙ

R
=

1

b

(a

t
+1
)

(9.27)

θ =
4

b

(a

t
+1
)

(9.28)

σ2 =
6(n−1)2

b2(3n+1)2

(a

t
+1
)2

(9.29)

∆ =
3(n−1)2

(3n+1)2
= constant (̸= 0 f or n ̸= 1) (9.30)

From equations (9.28) and (9.29) we have

σ2

θ 2
=

3(n−1)2

(3n+1)2
, which is a constant and is independent o f time t.

Hence

lim
t→∞

σ2

θ 2
=

3(n−1)2

(3n+1)2
̸= 0 f or n ̸= 1 . (9.31)
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The variations of some parameters with respect to time for this case are shown in Figs. 1-3.

Figure-9.1 : The plot of Deceleration Parameter q vs. Time t. Here, a = k0 = 1,b = 100 and

n = 2.

Figure-9.2 : The plot of Volume V vs. Time t. Here, a = k0 = 1,b = 100 and n = 2.
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Figure-9.3 : The plot of Energy density ρ vs. Time t. Here, a = k0 = 1,b = 100 and n = 2.

9.3.2 Case-II: Models with Variable Deceleration Parameter:

Let us consider that the deceleration parameter q to be a variable parameter [Pradhan et al

(2006)] as

q =−RR̈

Ṙ2
= D (variable) , (9.32)

where R is the average scale factor.

Equation (9.32) can be written as

R̈

Ṙ
+D

Ṙ2

R2
= 0 . (9.33)

In order to solve equation (9.33), we may consider D = D(R) . Now since R is a function of

time so we can assume D = D(t) = D(R(t)) and it is possible only when there is one to one

correspondence between R and t . Again since both R and t are increasing function so this is

possible only we can avoid singularity like big bang or big rip.

Therefore if we assume D = D(R) then the general solution of equation (9.33) is obtained as

∫
e
∫

B
R dR dR = t + c0 , (9.34)
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where c0 is an integrating constant. Without loss of generality we may choose c0 = 0

When c0 = 0 then in order to solve (9.34), we have to choose
∫

B
R

dR in such a way that (9.34)

becomes integrable. Hence we consider

∫
B

R
dR = logL(R) , (9.35)

where L(R) is a function of R only and it does not affect the nature of generality of solution.

From equations (9.34) and (9.35) we have

∫
L(R)dR = t , (9.36)

Since the choice of function L(R) in equation (9.36) is quite arbitrary and we are interested in

obtaining the models of the universe which are not only physically viable but also consistent

with observations, so we have chosen the function L(R) in three different ways

L(R) =
1

k1R
,

where k1 is an arbitrary constant.

L(R) =
1

2k3

√
R+ k4

,

where k3 and k4 are arbitrary constants.

L(R) =
nRn−1

k5

√
1+R2n

,

where k5 is an arbitrary constant.

Subcase-1 of Case II : In the First case the function L(R) is chosen as

L(R) =
1

k1R
, (9.37)

where k1 is an arbitrary constant.

For this case, integrating equation (9.36) we may obtain the exact solution as
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R = k2ek1t , (9.38)

Where k2 is an integrating constant.

From equations (9.6), (9.15) and (9.38) we have

A = k
4n

3n+1

2 e
4nk1t

3n+1 , (9.39)

B = k
4

3n+1

2 e
4k1t

3n+1 , (9.40)

Using the values of A and B from equations (9.39) and (9.40), the metric (9.3) can be written

as

ds2 = k
8n

3n+1

2 e
8nk1t

3n+1 (dx2 +dy2 +dz2)+ k
8

3n+1

2 e
8k1t

3n+1 dψ2 −dt2 . (9.41)

Equation (9.41) represents a Bianchi type-I cosmological model universe in Lyra geometry

with variable deceleration parameter.

Some Physical Properties of the Model (9.41) with variable Deceleration Parameter

The equations (9.6)-(9.10) gives us the Spatial Volume V , Hubble’s Parameter H , Ex-

pansion scalar θ , Shear scalar σ , mean anisotropy parameter ∆ as

V = k4
2e4k1t , (9.42)

H = k1 = constant , (9.43)

θ = 4k1 = constant , (9.44)

σ2 =
6(n−1)2k2

1

(3n+1)2
, (9.45)

∆ =
3(n−1)2

(3n+1)2
. (9.46)
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From equations (9.44) and (9.45) we have

σ2

θ 2
=

3(n−1)2

8(3n+1)2
, which is a constant and is independent o f time t .

Hence

lim
t→∞

σ2

θ 2
=

3(n−1)2

8(3n+1)2
̸= 0 f or n ̸= 1 . (9.47)

Again from (9.22), (9.11) and (9.13), the displacement vector β , the energy density ρ and

the fluid pressure p are obtained as

β = l2e−4k1t , (9.48)

ρ =−48k2
1n(n+1)

(3n+1)2
+

3

4
l2e−4k1t , (9.49)

p =− 96n2k2
1

(3n+1)2
− 3

4
l2e−4k1t , (9.50)

where l2 is a constant.

Also the deceleration parameter q is obtained as

q =−1 . (9.51)

The variations of some parameters with respect to time for this sub case 1 are shown in Figs.

4-8.
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Figure-9.4 : The plot of Average Scale factor R(t) vs. Time t. Here, k1 = 0.01, k2 = 0.5 and

n = 2 .

Figure-9.5 : The plot of Volume V vs. Time t. Here, k1 = 0.01, k2 = 0.5 and n = 2 .
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Figure-9.6 : The plot of Displacement vector β vs. Time t. Here, k1 = 0.01, k2 = 0.5, n = 2

and l2 = 16 .

Figure-9.7 : The plot of Energy density ρ vs. Time t. Here, k1 = 0.01, k2 = 0.5, n = 2 and

l2 = 16 .
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Figure-9.8 : The plot of Pressure p vs. Time t. Here, k1 = 0.01, k2 = 0.5, n = 2 and l2 = 16

.

Subcase-2 of Case II : In the second case we choose L(R) as

L(R) =
1

2k3

√
R+ k4

, (9.52)

where k3 and k4 are arbitrary constants.

Therefore from equation (9.36) we get

R = α1t2 +α2t +α3 , (9.53)

where α1, α2 and α3 are arbitrary constants.

This value of R gives us the values of A and B, from equations (9.6), (9.15), as

A = (α1t2 +α2t +α3)
4n

3n+1 , (9.54)

B = (α1t2 +α2t +α3)
4

3n+1 . (9.55)

Using the values of A and B from equations (9.54) and (9.55) in the metric (9.3) we have
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ds2 = (α1t2 +α2t +α3)
8n

3n+1 (dx2 +dy2 +dz2)+(α1t2 +α2t +α3)
8

3n+1 dψ2 −dt2 . (9.56)

Equation (9.56) give us also another form of Bianchi type-I cosmological model universe in

Lyra geometry with variable deceleration parameter.

Some Physical Properties of the Model (9.56) with variable Deceleration Parameter

The equations (9.6)-(9.10) gives us the Spatial Volume V , Hubble’s Parameter H , Ex-

pansion scalar θ , Shear scalar σ , mean anisotropy parameter ∆ as

V = (α1t2 +α2t +α3)
4 , (9.57)

H =
2α1t +α2

α1t2 +α2t +α3
, (9.58)

θ =
4(2α1t +α2)

α1t2 +α2t +α3
, (9.59)

σ2 =
6(n−1)2

(3n+1)2

(2α1t +α2)
2

(α1t2 +α2t +α3)2
, (9.60)

∆ =
3(n−1)2

(3n+1)2
= constant ( ̸= 0 f or n ̸= 1) . (9.61)

From equations (9.59) and (9.60) we have

σ2

θ 2
=

3(n−1)2

8(3n+1)2
, which is a constant and is independent o f time t .

Hence

lim
t→∞

σ2

θ 2
=

3(n−1)2

8(3n+1)2
̸= 0 f or n ̸= 1 . (9.62)

Again from (9.22), (9.11) and (9.13), the displacement vector β , the energy density ρ and

the fluid pressure p are obtained as
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β =
α4

(α1t2 +α2t +α3)4
, (9.63)

ρ =−48(n+1)

(3n+1)2

(2α1t +α2)
2

(α1t2 +α2t +α3)2
+

3

4

α2
4

(α1t2 +α2t +α3)8
, (9.64)

p =− 12n(5n−1)

(3n+1)2

(2α1t +α2)
2

(α1t2 +α2t +α3)2
− 24n

3n+1

α1

(α1t2 +α2t +α3)2

− 3

4

α2
4

(α1t2 +α2t +α3)8
.

(9.65)

Also the deceleration parameter q is obtained as

q =−2α1(α1t2 +α2t +α3)

(2α1t +α2)2
. (9.66)

The variations of some parameters with respect to time for this sub case 2 are shown in Figs.

9-11.

Figure-9.9 : The plot of Average Scale Factor R(t) vs. Time t. Here, α1 = 1, α2 = 4, α3 = 3,

α4 = 1 and n = 2 .
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Figure-9.10 : The plot of Volume V vs. Time t. Here, α1 = 1, α2 = 4, α3 = 3, α4 = 1 and

n = 2 .

Figure-9.11(a): The plot of Displacement Vector β (t) vs. Time t. Here, α1 = 1, α2 = 4,

α3 = 3, α4 = 1 and n = 2 .
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Figure-9.11(b): The plot of Deceleration Parameter q vs. Time t. Here, α1 = 1, α2 = 4,

α3 = 3, α4 = 1 and n = 2 .

Subcase-3 of Case II : Also in the third case we choose L(R) as

L(R) =
nRn−1

k5

√
1+R2n

, (9.67)

where k5 is an arbitrary constant.

Using (9.67) in (9.36) we have

R = [sinh(k5t)]
1
n . (9.68)

From equations (9.6), (9.15) and (9.68) we have

A = [sinh(k5t)]
4

3n+1 , (9.69)

B = [sinh(k5t)]
4

n(3n+1) . (9.70)

By the use of equations (9.69) and (9.70) the metric (9.3) takes the form

ds2 = [sinh(k5t)]
8

3n+1 (dx2 +dy2 +dz2)+ [sinh(k5t)]
4

n(3n+1) dψ2 −dt2 . (9.71)
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Equation (9.71) represents a Bianchi type-I cosmological model universe in Lyra geometry

with variable deceleration parameter.

Some Physical Properties of the Model (9.71) with variable Deceleration Parameter:

The equations (9.6)-(9.10) gives us the Spatial Volume V , Hubble’s Parameter H , Ex-

pansion scalar θ , Shear scalar σ , mean anisotropy parameter ∆ as

V = [sinh(k5t)]
4
n , (9.72)

H =
Ṙ

R
=

k5

n
coth(k5t) , (9.73)

θ =
4k5

n
coth(k5t) , (9.74)

σ2 =
6(n−1)2

n2(3n+1)2
k2

5 coth2(k5t) , (9.75)

∆ =
3(n−1)2

(3n+1)2
= constant ( ̸= 0 f or n ̸= 1) . (9.76)

From equations (9.74) and (9.75) we have

σ2

θ 2
=

3(n−1)2

8(3n+1)2
, which is a constant and is independent o f time t .

Hence

lim
t→∞

σ2

θ 2
=

3(n−1)2

8(3n+1)2
̸= 0 f or n ̸= 1 . (9.77)

Again from (9.22), (9.11) and (9.13), the displacement vector β , the energy density ρ and

the fluid pressure p are obtained as

β = [sinh(k5t)]−
4
n , (9.78)
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ρ =−48(n+1)

n(3n+1)
k2

5 coth2(k5t)+
3

4
[sinh(k5t)]−

8
n , (9.79)

p =− 96k2
5

(3n+1)2
coth2(k5t)+

12k2
5

(3n+1)
[coth2(k5t)−1]− 3

4
[sinh(k5t)]−

8
n . (9.80)

Also the deceleration parameter q is obtained as

q = n[1− tanh2(k5t)]−1 . (9.81)

The variations of some parameters with respect to time for this sub case 3 are shown in Figs.

12-14.

Figure-9.12 : The plot of Deceleration Parameter q vs. Time t. Here k5 = 1 and n = 2 .
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Figure-9.13 : The plot of Volume V vs. Time t. Here k5 = 1 and n = 2 .

Figure-9.14 : The plot of Energy density ρ vs. Time t. Here k5 = 1 and n = 2 .

9.3.3 Case-III: Models with Linearly Varying Deceleration Parameter:

In this case we consider the linearly varying deceleration parameter [Akarsu and Dereli

(2011)] as

q =−RR̈

Ṙ2
=−kt +m−1 , (9.82)
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where R is the average scale factor, k ≥ 0 , m ≥ 0 are constants.

For k = 0 , the equation (9.52) reduces to

q = m−1 , (9.83)

which is a constant and it corresponds to cosmological model with constant deceleration

parameter.

Therefore, the cosmological models that are obtained via constant deceleration parame-

ter may be generalized by using this law.

By solving equation (9.82), We obtain three different forms of the average scale factors as

R = R0e

2√
m2−kc0

tanh−1

(
kt−m

m2−kc0

)

; f or k > 0 and m ≥ 0 , (9.84)

R = R1 (mt + c1) ; f or k = 0 and m > 0 , (9.85)

R = R2ec2t ; f or k = 0 and m = 0 , (9.86)

where R0 , R1 , R2 , c0 , c1 and c2 are constants of integration. The last two equations (9.85)

and (9.86) are the solutions for constant deceleration parameters. We are not interested

in these two solutions but we are interested only on the first solution, which is new. For

convenience, in the following we consider the solution for k > 0 and m > o and omit the

integrating constant c0 by setting c0 = 0 in (9.84). By doing this, we also set the initial time

of the universe to t = 0. The reason for considering the solution only for k > 0 and m > o is

not only for simplicity but also for compatibility with the observed universe. k > 0 means we

are dealing with increasing acceleration q =−k < 0. Because t = 0 and k > 0 , is the only

way to shift the deceleration parameter to values higher than −1 is to set m > 0 . Under the

above considerations, the equation (9.84) is further reduces to

R = R0e
2
m tanh−1( kt−m

m ) ; f or k > 0 and m ≥ 0 . (9.87)

From equations (9.6) , (9.15) and (9.87) we got
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A = R
4n

3n+1

0 e
8n

m(3n+1)
tanh−1( kt−m

m ) , (9.88)

B = R
4

3n+1

0 e
8

m(3n+1)
tanh−1( kt−m

m ) . (9.89)

With the help of equations (9.88) and (9.89) , the metric (9.3) becomes

ds2 =R
8n

3n+1

0 e
16n

m(3n+1)
tanh−1( kt−m

m )(dx2 +dy2 +dz2)

+R
8

3n+1

0 e
16

m(3n+1)
tanh−1( kt−m

m )
dψ2 −dt2 .

(9.90)

Equation (9.90) represents a Bianchi type-I cosmological model universe in Lyra geometry

with linearly varying deceleration parameter.

Some Physical Properties of the Model (9.90) with linearly varying Deceleration Pa-

rameter

The equations (9.6)-(9.10) gives us the Spatial Volume V , Hubble’s Parameter H , Ex-

pansion scalar θ , Shear scalar σ , mean anisotropy parameter ∆ as

V = R4
0e

8
m tanh−1( kt−m

m ) , (9.91)

H =
Ṙ

R
=

2

2mt − kt2
, (9.92)

θ =
8

2mt − kt2
, (9.93)

σ2 =
24(n−1)2

(3n+1)2(2mt − kt2)2
, (9.94)

∆ =
3(n−1)2

(3n+1)2
= constant ( ̸= 0 f or n ̸= 1) . (9.95)

From equation (9.93) and (9.94) we have
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σ2

θ 2
=

3(n−1)2

8(3n+1)2
.

Therefore

lim
t→∞

σ2

θ 2
=

3(n−1)2

8(3n+1)2
̸= 0 f or n ̸= 1 . (9.96)

Again from (9.22), (9.11) and (9.13), the displacement vector β , the energy density ρ and

the fluid pressure p are obtained as

β = β0e−
8
m tanh−1( kt−m

m ) , (9.97)

ρ =− 192n(n+1)

(3n+1)2(2mt − kt2)2
+

3

4
β 2

0 e−
16
m tanh−1( kt−m

m ) , (9.98)

p =− 48n(kt −m)

(3n+1)2(2mt − kt2)2
− 3

4
β 2

0 e−
16
m tanh−1( kt−m

m ) . (9.99)

Variations of the some important parameters with respect to time for Case III are shown in

Figs. 15-17.

Figure-9.15 : The plot of Deceleration Parameter q vs. Time t. Here k = 1(k > 0),m =

1(m ≥ 0) .
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Figure-9.16 : The plot of Volume V vs. Time t. Here k = 1(k > 0),m = 1(m ≥ 0),n = 2 and

R0 = 1 .

Figure-9.17 : The plot of Volume Energy density ρ vs. Time t. Here k = 1(k > 0),m =

1(m ≥ 0),n = 2 and R0 = 1 .

9.3.4 Case-IV: Models with Special form of Deceleration Parameter:

In this case we have considered a special form of deceleration parameter [Singha and Debnath

(2008)] as
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q =−RR̈

Ṙ2
=−1+

c

1+Rc
, (9.100)

where the average scale factor R is a function of time t and c > 0 is a constant.

The equation (9.100) gives us

R =
(

d2ed1ct −1
) 1

c
. (9.101)

Therefore from equations (9.6) , (9.15) and (9.101) we have

A =
(

d2ed1ct −1
) 4n

c(3n+1)
, (9.102)

B =
(

d2ed1ct −1
) 4

c(3n+1)
. (9.103)

Therefore by using equations (9.102) and (9.103) , the metric (9.3) can be obtained as

ds2 =
(

d2ed1ct −1
) 8n

c(3n+1)
(dx2 +dy2 +dz2)+

(
d2ed1ct −1

) 8
c(3n+1)

dψ2 −dt2 . (9.104)

Equation (9.104) represents a Bianchi type-I cosmological model universe in Lyra geometry

with special form of deceleration parameter.

Some Physical Properties of the Model (9.104) with special form of Deceleration Pa-

rameter

The equations (9.6)-(9.10) gives us the Spatial Volume V , Hubble’s Parameter H , Ex-

pansion scalar θ , Shear scalar σ , mean anisotropy parameter ∆ as

V =
(

d2ed1ct −1
) 4

c
, (9.105)

H =
Ṙ

R
= d1d2

(
d2ed1ct −1

)−1

, (9.106)
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θ = 4d1d2

(
d2ed1ct −1

)−1

, (9.107)

σ2 =
6(n−1)2d2

1d2
2

(3n+1)2

(
d2ed1ct −1

)−2

, (9.108)

∆ =
3(n−1)2

(3n+1)2
= constant ( ̸= 0 f or n ̸= 1) . (9.109)

From equation (9.107) and (9.108) we have

σ2

θ 2
=

3(n−1)2

8(3n+1)2
.

Therefore

lim
t→∞

σ2

θ 2
=

3(n−1)2

8(3n+1)2
̸= 0 f or n ̸= 1 . (9.110)

Again from (9.22), (9.11) and (9.13), the displacement vector β , the energy density ρ and

the fluid pressure p are obtained as

β = β1

(
d2ed1ct −1

)− 4
c
, (9.111)

ρ =−48n(n+1)d2
1d2

2

(3n+1)2

(
d2 − e−d1ct

)−2

+
3

4
β 2

1

(
d2ed1ct−1

)− 8
c
, (9.112)

p =−96n2d2
1d2

2

(3n+1)2

(
d2 − e−d1ct

)−2

+
12nd2

1d2ce−d1ct

3n+1

(
d2 − e−d1ct

)−2

− 3

4
β 2

1

(
d2ed1ct−1

)− 8
c
.

(9.113)

Also from equations (9.100) and (9.101), the deceleration parameter q is found as

q =−1+
1

d2
e−d1ct . (9.114)

Variations of the some important parameters with respect to time for case IV are shown in

Figs. 18-20.
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Figure-9.18 : The plot of Deceleration Parameter q vs. Time t. Here c = d1 = d2 = β1 = 1

and n=2 .

Figure-9.19 : The plot of Volume V vs. Time t. Here c = d1 = d2 = β1 = 1 and n=2.
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Figure-9.20 : The plot of Energy density ρ vs. Time t. Here c = d1 = d2 = β1 = 1 and n=2 .

9.4 Physical Interpretations of the Solutions:

9.4.1 Case-I: Models with Time Dependent Deceleration Parameter:

(i) The equation (9.23) gives the displacement vector β as β = (k0taet)−
4
b , which is a

decreasing function of cosmic time t and finally it becomes zero when t → ∞.

(ii) From equations (9.24) and (9.25) we have seen that the energy density ρ and pres-

sure p diverge at t = 0 but when t → ∞ then the energy density ρ becomes zero whereas the

pressure takes the finite value 12an
b(3n+1)2 .

(iii) Again from equation (9.26) it is clear that initially when t = 0 the spatial volume

V = 0 gradually increases with the passage of time t and it becomes infinite when t → ∞.

Also from equations (9.27) and (9.28) we have seen that both Hubble’s parameter H and

expansion scalar θ are infinite at t = 0 and expands with the increase of cosmic time. Thus

our model universe is evolves at time t = 0 and is expanding that explains the Big-Bang

scenario of our model universe.

(iv) The average scale factor given by equation (9.16) is zero at initial epoch of time (t=0), so

our model has a point type singularity.

(v) Also from equations (9.17) and (9.27) we observed that at t → ∞ the deceleration
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parameter q =−1 and dH
dt

= 0. Thus for t → ∞ the Hubble’s parameter H is maximum and

the model will be increasing at fastest rate for t → ∞.

(vi) The equations (9.30) and(9.31) give us that the mean anisotropy parameter ∆ and

limt→∞
σ2

θ 2 are non zero constants for all values of time t whenever n ̸= 1, so from the mathe-

matical point of view our model will be an anisotropic one. From this result we seem that

during the process of evolution of our model universe there may have some possibilities to

have an anisotropic universe for some duration. But it does not contradict to the present

observational fact that our present universe is an isotropic one, because the initial anisotropy

of the Bianchi Type-I universe quickly dies away and eventually it evolves into a FRW

universe as suggested by Jacobs (1968). Also, a Bianchi Type-I universe has a different

scale factor for each of the three spatial directions, and so anisotropy is introduced to the

system automatically representing an anisotropic universe. Departures from isotropy that

preserve homogeneity are described by Bianchi model with the overall geometry of space.

One may show [Ellis and MacCallum (1969)] that only certain Bianchi types specially type I,

V, IX etc allow for isotropic limit. But by conducting general test of isotropy using CMB

temperature and polarization data from Plank Saadeeh et al. (2016) strongly disfavoured the

anisotropic expansion of the universe with odds of 121,000:1 against. But still some share of

anisotropic is there, so we required for further investigation in this area mathematically as

well as observationally.

But interestingly when n = 1our model universe approach to an isotropic one which is

a good indication favouring the recent observational findings.

(vii) Again from equation (9.17) we have as t → ∞ the value of the deceleration param-

eter q becomes −1. Also when we plot the deceleration parameter versus time as shown in

Figure-9.1, it seems that our model universe is decelerating at the initial phase and changing

from decelerating to accelerating as time progresses. It means that our model universe might

have undergone a transition from early deceleration to late time acceleration at certain point

of time supporting the recent observational findings. Such type of situation can be stimulated

due to the time varying deceleration parameter which may be positive at the early stage and

evolves negative values at the late time. Here, in our problem the deceleration parameter is

generated from the scale factor R = (taet)
1
b which have a hybrid form containing the factors

of exponential behavior and power law behavior which are widely used in the very common

literatures for the investigation of background cosmology. Since the power law factor of

this scale factor dominates the early part of cosmic dynamics and the exponential factor part
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dominates at late time providing a realistic model universe.

(viii) From Figure-9.2 of equation (9.26) we have seen that the that the volume V is an in-

creasing function of time t and it becomes infinite as t → ∞. Initially the volume V increases

very rapidly but as the time progresses the rate of increase becomes slow.

(ix) The Figure-9.3 explains that the energy density of our model universe has a finite

value at initial epoch of time (t=0), that is at the beginning of evolution; and even when

t → ∞ it has some finite value and there is ni singularity; there by there is possibility that our

model is that of oscillating type.

9.4.2 Case-II: Models with Variable Deceleration Parameter:

Sub Case-1 of Case-II :

(i) From equation (9.38), it is clear that the average scale factor R(t) can never be neg-

ative if k2 > 0. From Figure-9.4, we have seen that in the early stages of the universe, i.e.

when t → 0 then the scale factor of the universe is almost constant and increasing very slowly

as the time progresses. But, after a certain period of time our universe exploded suddenly

and starts expansion at large scale, which is consistent with Big Bang scenario.

(ii) The Figure-9.5 explains that initially the volume V of the universe is constant and

it increases with the passage of time and finally the volume becomes infinite as t → ∞.

(iii) From equation (9.48) and its graph i.e. Figure-9.6, it has been observed that β is

always positive and is a decreasing function of time. In our model, displacement vector β

plays the role of cosmological constant and preserves the same character as Λ-term in the

Einstein’s theory of relativity, in fact with respect to the recent observations.

(iv) In the early stage i.e. When t → 0 then for very very small values of k1, we have

seen from equations (9.49)-(9.50) and their graphs i.e. Figure-9.7, Figure-9.8 that the en-

ergy density is a decreasing function of time and tend to a small positive quantity whereas

the pressure p is an increasing function of time and tend to a small negative quantity.

(v) Again, the equation (9.51) give us q =−1, so that our cosmological model represents an

accelerating universe.
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Sub Case-2 of Case-II :

(i) Equations (9.53) and (9.57) shows that both scale factor R(t) and volume V are pos-

itive for 0 ≤ t < ∞ if α1, α2 and α3 are positive constants. Also Figure-9.9 and Figure-9.10,

explains that both scale factor R(t) and volume V are increasing functions of time, implying

that our universe is expanding.

(ii) From Figure-9.11-a and equation (9.63), it has been observed that β is positive and is a

decreasing function of time and it tends to zero in infinite time. Characteristically β is similar

to that of Λ term in Einstein’s theory of gravity. In this model β also plays the same role as

cosmological constant and preserves the same character as Λ term in Einstein’s theory.

(iii) Again, from equations (9.64) and (9.65), we have seen that both energy density and

pressure are negative, but whenever t → ∞ both of them converges to zero.

(iv) From equations (9.61) and (9.62) it is observed that Both mean anisotropic param-

eter ∆ and limt→∞
σ2

θ 2 are constant and non zero for all values of time t whenever n ̸= 1

and n ̸= 1
3
, so our model remains anisotropic throughout the evolution of the universe. But

whenever n = 1 then both ∆ and limt→∞
σ2

θ 2 become zero for all values of time t so our model

universe will be an isotropic universe for this particular case.

Sub Case-3 of Case-II :

(i) From equations (9.72) and (9.74) it is clear that initially when t = 0 the spatial vol-

ume V = 0 and gradually increases with the passage of time t and it becomes infinite when

t → ∞ whereas the expansion scalar θ is infinite at t = 0.

Again at t → ∞ the equations (9.73) and (9.81) give us dH
dt

= 0 and deceleration parameter

q =−1 so the Hubble’s parameter H is maximum. Thus at t → ∞ our model is expanding at

fastest rate. Hence our model universe is evolves at time t = 0 and is expanding that explains

the Big-Bang scenario of our model universe.

(ii) The equation (9.78) shows that the displacement vector β = [sinh(k5t)]−
4
n is a decreasing

function of cosmic time t and finally it becomes zero when t → ∞.

(iii) From equations (9.79) and (9.80) we have seen that the energy density ρ and pres-
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sure p diverge at t = 0 and tend to zero at t → ∞.

(iv) The average scale factor given by equation (9.68) and the spatial scale factors given by

equations (9.69) and (9.70) are all zero at initial epoch of time t = 0, so our model has a

point type singularity.

(v) The equations (9.76) and (9.77) give us that the mean anisotropy parameter ∆ and

limt→∞
σ2

θ 2 are non zero constants for all values of time t whenever n ̸= 1, so our model

remains anisotropic throughout the evolution of the universe and our model universe does

not approach to isotropy.

(vi) Again from equation (9.81) and from the graph of deceleration parameter vs. time

given by Figure-9.12, it is clear that the deceleration parameter q in this case also changes

sign from positive to negative, so we can conclude that initially our model universe is decel-

erating at initial phase and then changes from decelerating to accelerating.

(vii) Also from Figure-9.14 of equation (9.79) it is seen that initially our model universe has

infinite density and as the time progresses it becomes negative and finally energy density

tend to a negative finite value. Thus this model universe approaches to a steady state.

Hence all the three model universes in Case-II are consistent with the results of recent

cosmological observations.

9.4.3 Case-III: Models with Linearly Varying Deceleration Parameter:

(i) From equations (9.91) and (9.33) it is clear that initially when t = 0 the spatial volume

V has a constant value V = R4
0 and gradually increases with the passage of time t and it

becomes infinite when t → ∞ whereas the expansion scalar θ is a decreasing function of time

t which is infinite at t = 0 and finally it becomes zero when t → ∞.

The equations (9.92)-(9.94) implies that the Hubble’s parameter H, expansion scalar θ

and shear scalar σ diverge for t = 2m
k

.

(ii) The model (9.90) does not have any singularity, because the spatial scale factors A

and B given by equations (9.88) and (9.89) respectively are non zero for all values of t.

(iii) From equation (9.82) it is seen that initially when t = 0 then q = m− 1 so that the
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model universe is decelerating for m > 1 and accelerating for 0 ≤ m ≤ 1. But for t > m−1
k

,

q > 0 the model universe starts accelerating expansion and whenever t = m
k

, q =−1 imply-

ing that the universe experiences super exponential expansion and ends with q =−m−1 at

t = 2m
k

.

(iv) From equations (9.95) and (9.96) we have the mean anisotropy parameter ∆ = 3(n−1)2

(3n+1)2 =

constant ( ̸= 0 f or n ̸= 1) and limt→∞
σ2

θ 2 = 3(n−1)2

8(3n+1)2 (̸= 0 f or n ̸= 1) so the model is

anisotropic throughout the evolution of the universe except at m = 1 , hence the model does

not approach to isotropy.

(v) From equation (9.97) we have also got that the displacement vector β is a decreas-

ing function of time t and it has a finite value at the initial epoch of time i.e. at t = 0.

(vi) The equations (9.98) and (9.99) give that both the energy density ρ =−∞ and pressure

p =−∞ for t = 0 and they will take finite value 3
4
β 2

0 as t → ∞.

(vii) Again from equation (9.82) and Figure-9.15, it is clear that the deceleration parameter q

changes sign from positive to negative, so we can conclude that initially our model universe

is decelerating (at initial phase) and then changes from decelerating to accelerating.

Hence this model universe is also consistent with the result of recent cosmological ob-

servations.

9.4.4 Case-IV: Models with Special form of Deceleration Parameter:

(i) From equations (9.105) and (9.107) it is clear that initially when t = 0 the spatial volume

V has a finite value V = (d2 −1)
4
c and gradually increases with the passage of time t and

it becomes infinite when t → ∞ whereas the expansion scalar θ is a decreasing function of

time t which is finite at t = 0 and finally it becomes zero when t → ∞.

(ii) The model (9.101) does not have any singularity, because the spatial scale factors

A and B given by equations (9.102) and (9.103) respectively are non-zero for all values of t.

(iii) From equations (9.109) and (9.110) we have the mean anisotropy parameter ∆ =
3(n−1)2

(3n+1)2 = constant ( ̸= 0 f or n ̸= 1) and limt→∞
σ2

θ 2 = 3(n−1)2

8(3n+1)2 ( ̸= 0 f or n ̸= 1) so

the model is anisotropic throughout the evolution of the universe except at m = 1 , hence the
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model does not approach to isotropy.

(iv) From equation (9.111) we have got that the displacement vector β is a finite quan-

tity at t = 0 and become zero as t → ∞.

(v) The equations (9.112) and (9.113) give that both the energy density ρ =−∞ and pressure

p =−∞ for t = 0 and they will take finite values as t → ∞.

(vi) Again from equation (9.100) it is clear that the deceleration parameter q changes sign

from positive to negative, so we can conclude that initially our model universe is decelerating

(at initial phase) and then changes from decelerating to accelerating one.

From all the above different cases we find that the energy density and gauge function

are positive and decreasing function of time. We also observed the value of deceleration

parameter obtained from all the cases of our model universe are in fair agreement with the

result of cosmological observations like Type SNeIa supernova, CMB anisotropies, the large

scale galaxies structures of universe, Baryon Acoustic Oscillations, WMAP, and new data

sets like Planck results, ACT and SPT which have measured the CMB temperature and

polarisation anisotropies. From the values of pressure p and critical density ρ we found that

our model universe behaves as the dark energy model universe which is accelerated at the

late phase of the cosmic dynamics before it might be decelerating at the early phase.

9.5 Conclusion:

It may be a good idea to try to search for the hidden source of the dark energy which

dominates the universe with positive energy density and negative pressure, and responsible

to produce sufficient acceleration in late time evolution of the Universe. So within the

frame work of Lyra Geometry while investigating five dimensional LRS Bianchi type-I

model universe with time dependent deceleration parameter interacting with vector field φi

interestingly we found the above model universes behaves as a dark energy model universes

which are consistent with the observational findings. Here the displacement field, which is

considered as a component of total energy, plays the role of dark energy. In all the cases

which we consider here with are expanding and anisotropic through the evolution supporting

the present day observational findings. Thus it is seen that our models behaves as a dark

energy field universe. From our findings, we seem that Lyra manifold itself contribute to

dark energy consistent with the recent cosmological observations. Further study of such type
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of universe will be helpful for explaining the present accelerated expansion behavior of the

universe.


	9 Could the Lyra Manifold be the Hidden Source of the Dark Energy ?
	9.1 Introduction:
	9.2 Formulation of Problem:
	9.3 Solution of Field Equations in Four Different Cases (of Deceleration Parameter):
	9.3.1 Case-I: Models with Time Dependent Deceleration Parameter:
	9.3.2 Case-II: Models with Variable Deceleration Parameter:
	9.3.3 Case-III: Models with Linearly Varying Deceleration Parameter:
	9.3.4 Case-IV: Models with Special form of Deceleration Parameter:

	9.4 Physical Interpretations of the Solutions:
	9.4.1 Case-I: Models with Time Dependent Deceleration Parameter:
	9.4.2 Case-II: Models with Variable Deceleration Parameter:
	9.4.3 Case-III: Models with Linearly Varying Deceleration Parameter:
	9.4.4 Case-IV: Models with Special form of Deceleration Parameter:

	9.5 Conclusion:


