CHAPTER 3

CHAPTER 3

NEUTROSOPHIC BITOPOLOGICAL GROUP

In this chapter, the NBTG is introduced and the important properties of NBTGs are studied.

Definition 3.0.1

Let \mathcal{G} be a NG on X, where X is a group. Let $\exists_1^{\mathcal{G}}, \exists_2^{\mathcal{G}}$ be two NTs on \mathcal{G} , then $(\mathcal{G}, \exists_1^{\mathcal{G}}, \exists_2^{\mathcal{G}})$ is said to be NBTG if the following conditions are satisfied:

- (i) The mapping $g : (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}})$ to $(\mathcal{G}, \exists_i^{\mathcal{G}})$ defined as $g(x, y) \mapsto xy, \forall x, y \in X$ for each i = 1, 2; is relatively neutrosophic i continuous.
- (ii) The mapping $h : (\mathcal{G}, \exists_i^{\mathcal{G}})$ to $(\mathcal{G}, \exists_i^{\mathcal{G}})$ defined as $h(x) \mapsto x^{-1}, \forall x \in X$ for each i = 1, 2; is relatively neutrosophic *i*-continuous.

The results discussed in this chapter has published in the journal,

Basumatary, B., & Wary, N. (2020). A study on neutrosophic bitopological group. *Neutrosophic Sets and Systems*, 38, 164-179.

Definition 3.0.2

Let \mathcal{G} be a NG of a group X. Then for fixed $a \in X$, the left translation $l_a : (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \to (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}})$ is defined as $l_a(x) \mapsto ax, \forall x \in X$, where $ax = \{ \langle a, \mathcal{T}_i^{\mathcal{G}}(ax), \mathcal{I}_i^{\mathcal{G}}(ax), \mathcal{F}_i^{\mathcal{G}}(ax) \rangle : x \in X \}$ for each i = 1, 2. Similarly, the right translation $r_a : (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \to (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}})$ is defined as $r_a(x) \mapsto xa, \forall x \in X$, where $ax = \{ \langle a, \mathcal{T}_i^{\mathcal{G}}(xa), \mathcal{I}_i^{\mathcal{G}}(xa), \mathcal{F}_i^{\mathcal{G}}(xa) \rangle : x \in X \}$ for each i = 1, 2.

Lemma 3.0.1

Let \mathcal{G} be a NBTG in X with two NTs $\exists_1^{\mathcal{G}}, \exists_2^{\mathcal{G}}$, where X is a group. Then for each $a \in \mathcal{G}_e$, the left translation l_a and right translation r_a are relatively neutrosophic homeomorphism of $(\mathcal{G}, \exists_1^{\mathcal{G}}, \exists_2^{\mathcal{G}})$ into itself.

Proof

From Proposition 3.11 [67], we have $l_a[\mathcal{G}] = \mathcal{G}$ and $r_a[\mathcal{G}] = \mathcal{G}$, for all $a \in \mathcal{G}_e$ and let $h : (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}})$ defined as $h(x) \mapsto (a, x)$, for each i = 1, 2 and $x \in X$. Then $r_a : \psi \circ h$. Since $a \in \mathcal{G}_e, \mathcal{T}_i^{\mathcal{G}}(a) = \mathcal{T}_i^{\mathcal{G}}(e), \mathcal{I}_i^{\mathcal{G}}(a) = \mathcal{I}_i^{\mathcal{G}}(e), \text{ and } \mathcal{F}_i^{\mathcal{G}}(a) = \mathcal{F}_i^{\mathcal{G}}(e),$ for each i = 1, 2. Thus, $\mathcal{T}_i^{\mathcal{G}}(a) \geq \mathcal{T}_i^{\mathcal{G}}(x), \mathcal{I}_i^{\mathcal{G}}(a) \geq \mathcal{I}_i^{\mathcal{G}}(x),$ and $\mathcal{F}_i^{\mathcal{G}}(a) \leq \mathcal{F}_i^{\mathcal{G}}(x)$ for each $x \in X$. For each i = 1, 2 from proposition 3.34 [68] that $\phi : (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}})$ is relatively neutrosophic *i*-continuous. By the assumption, for each $i = 1, 2; \tau_a$ is relatively neutrosophic *i*-continuous. Moreover, $r_a^{-1} = r_{a^{-1}}$. Similarly, for each i = 1, 2, we have shown the relatively neutrosophic *i*-continuous of $l_a^{-1} = l_{a^{-1}}$.

Theorem 3.0.1

Let \mathcal{G} be a NBTG on X with two NTs $\exists_1^{\mathcal{G}}, \exists_2^{\mathcal{G}}$. Let W be a NOS of $(\mathcal{G}, \exists_i^{\mathcal{G}})$ for each i = 1, 2 and $x \in \mathcal{G}_e$, then xW and Wx are NOSs.

Proof

Since W is NOS of \mathcal{G} and $x \in \mathcal{G}_e$, $l_x : (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}})$ is neutrosophic homomorphism for each i = 1, 2. This implies that $l_a(W) = xW$ is NOS in \mathcal{G} . Similarly, Wx is NOS in \mathcal{G} .

Lemma 3.0.2

Let \mathcal{G} be NBTG on X, where X is a group. Then

- (i) The inverse mapping $f : (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}})$ defined as $f(x) \mapsto x^{-1}, \forall x \in X$, for each i=1, 2; is relatively neutrosophic *i*-continuous homeomorphism.
- (ii) The inner automorphism $h : (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}})$ defined by $h(g) = aga^{-1} = \{\langle g, \mathcal{T}_i^{\mathcal{G}}(aga^{-1}), \mathcal{I}_i^{\mathcal{G}}(aga^{-1}), \mathcal{F}_i^{\mathcal{G}}(aga^{-1}) \rangle\}, \text{ where } g \in X \text{ and } a \in \mathcal{G}_e, \text{ for each } i = 1, 2; \text{ is relatively neutrosophic home-omorphism.}$

Proof

(i) Clearly, f is one-to-one. Since $f(\mathcal{G}) = \{ \langle x, f(\mathcal{T}_i^{\mathcal{G}}(x)), f(\mathcal{I}_i^{\mathcal{G}}(x)), f(\mathcal{F}_i^{\mathcal{G}}(x)) \rangle : x \in \mathcal{G} \}$ for each i = 1, 2 where

$$\begin{split} f(\mathcal{T}_i^{\mathcal{G}}(x)) &= \begin{cases} \forall_{y \in f^{-1}(x)} \mathcal{T}_i^{\mathcal{G}}(y), & \text{if } f^{-1}(x) \neq 0 \\ 0, & \text{otherwise} \end{cases} \\ &= \begin{cases} \mathcal{T}_i^{\mathcal{G}}(x^{-1}), & \text{if } f^{-1}(x) \neq 0 \\ 0, & \text{otherwise} \end{cases} \\ &= \begin{cases} \mathcal{T}_i^{\mathcal{G}}(x), & \text{if } f^{-1}(x) \neq 0 \\ 0, & \text{otherwise} \end{cases} \end{split}$$

Also, $f(\mathcal{I}_i^{\mathcal{G}}(x)) = \mathcal{I}_i^{\mathcal{G}}(x)$ and $\phi(\mathcal{F}_i^{\mathcal{G}}(x)) = \mathcal{F}_i^{\mathcal{G}}(x)$. Thus, $f(\mathcal{G}) = \{ \langle x, \mathcal{T}_i^{\mathcal{G}}(x), \mathcal{I}_i^{\mathcal{G}}(x), \mathcal{F}_i^{\mathcal{G}}(x) \rangle : x \in \mathcal{G} \}$, for each i = 1, 2. Also, f is neutrosophic *i*-continuous for each i = 1, 2 by definition because $(\mathcal{G}, \exists_1^{\mathcal{G}}, \exists_2^{\mathcal{G}})$ is NBTG. Since $f^{-1}(x) = x^{-1}$ is relatively neutrosophic *i*-continuous for each i = 1, 2. Hence, for every $x \in X$, f is relatively neutrosophic open. Thus, f is relatively neutrosophic homeomorphism.

(ii) Since r_a and l_a are relatively neutrosophic homeomorphism and $r_a^{-1} = r_{a^{-1}}$. The inner automorphism h is a composition $r_{a^{-1}}$ and l_a . Hence, h is a relatively neutrosophic homeomorphism.

Theorem 3.0.2

Let \mathcal{G} be a NBTG in a group X and e be the identity of X. If $a \in \mathcal{G}_e$ and N is a nbhd of e such that $\mathcal{T}_i^N(e) = 1$, $\mathcal{I}_i^N(e) = 1$, $\mathcal{F}_i^N(e) = 0$ for each i = 1, 2 then aN is a nbhd of a such that $aN(a) = 1_N$.

Proof

Since N is a nbhd of e such that $\mathcal{T}_i^N = 1$, $\mathcal{I}_i^N = 1$, $\mathcal{F}_i^N = 0$ for each $i = 1, 2; \exists$ a NOS U such that $U \subseteq N$ and $\mathcal{T}_i^U(e) = \mathcal{T}_i^N(e) = 1$, $\mathcal{I}_i^U(e) = \mathcal{I}_i^N(e) = 1$, $\mathcal{F}_i^U(e) = \mathcal{F}_i^N(e) = 0$, for each i = 1, 2. Consider $l_a : (\mathcal{G}, \mathbf{T}_i^{\mathcal{G}}) \to (\mathcal{G}, \mathbf{T}_i^{\mathcal{G}})$ be a left translation defined as $l_a(g) \mapsto ag$, for each $g \in X$ and i = 1, 2. Then l_a is neutrosophic homeomorphism. Then aU is a NOS.

Now,

$$\begin{split} aU(a) &= \{ \langle a, \mathcal{T}_{i}^{aU}(a), \mathcal{I}_{i}^{aU}(a), \mathcal{F}_{i}^{aU}(a) \rangle \}, \text{for each } i = 1, 2. \\ &= \{ \langle a, \mathcal{T}_{i}^{U}(aa^{-1}), \mathcal{I}_{i}^{U}(aa^{-1}), \mathcal{F}_{i}^{U}(aa^{-1}) \rangle \} \\ &= \{ \langle a, \mathcal{T}_{i}^{U}(e), \mathcal{I}_{i}^{U}(e), \mathcal{F}_{i}^{U}(e) \rangle \} \\ &= \{ \langle a, 1, 1, 0 \rangle \} \\ \\ \text{Also, } aN(x) &= \{ \langle x, \mathcal{T}_{i}^{aN}(x), \mathcal{I}_{i}^{aN}(x), \mathcal{F}_{i}^{aN}(x) \rangle : x \in X \}, \\ &\text{ for each } i = 1, 2. \\ &= \{ \langle x, \mathcal{T}_{i}^{N}(a^{-1}x), \mathcal{I}_{i}^{N}(a^{-1}x), \mathcal{F}_{i}^{N}(a^{-1}x) \rangle : x \in X \} \end{split}$$

$$\geq \{\langle x, \mathcal{T}_i^U(a^{-1}x), \mathcal{I}_i^U(a^{-1}x), \mathcal{F}_i^U(a^{-1}x)\rangle : x \in X\}$$

$$= \{\langle x, \mathcal{T}_i^{aU}(x), \mathcal{I}_i^{aU}(x), \mathcal{F}_i^{aU}(x)\rangle\}$$

$$= aU(x)$$

$$aN(x) \geq aU(x); \text{ for each } x \in X.$$

$$and aN(a) = \{\langle a, \mathcal{T}_i^{aN}(a), \mathcal{I}_i^{aN}(a), \mathcal{F}_i^{aN}(a)\rangle\}, \text{ for each } i = 1, 2.$$

$$= \{\langle a, \mathcal{T}_i^N(aa^{-1}), \mathcal{I}_i^N(aa^{-1}), \mathcal{F}_i^N(aa^{-1})\rangle\}$$

$$= \{\langle a, \mathcal{I}_i^N(e), \mathcal{I}_i^N(e), \mathcal{F}_i^N(e)\rangle\}$$

$$= \{\langle a, 1, 1, 0\rangle\}$$

$$\Rightarrow aN(a) = \{\langle a, 1, 1, 0\rangle\}$$

Thus, \exists a NOS aU such that $aU \subseteq aN$ and $aU(a) = aN(a) = \{\langle a, 1, 1, 0 \rangle\}.$

Proposition 3.0.1

Let \mathcal{G} be a NBTG on X with two NTs $\exists_1^{\mathcal{G}}, \exists_2^{\mathcal{G}}$, where X is a group. Consider $\lambda : X \times X \to X$ be the mapping defined as $\lambda(g,h) = gh^{-1}$ for any $g,h \in X$. Then \mathcal{G} is a NBTG in X iff the mapping $\lambda : (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}})$ is relatively neutrosophic *i*-continuous for each i = 1, 2.

Proof

The mapping $\gamma : (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}})$ is relatively neutrosophic *i*-continuous for each i = 1, 2; by the corollary to Proposition 3.28 [68]. Also, since \mathcal{G} is a NBTG in X by the definition 3.0.1, we have $\psi : (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}})$ is relatively neutrosophic *i*-continuous for each i = 1, 2. Then $\beta : \psi \circ \gamma : (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}})$ $\to (\mathcal{G}, \exists_i^{\mathcal{G}})$ is relatively neutrosophic *i*-continuous for each i = 1, 2.

Conversely, let $\lambda : (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}})$ is RN *i*-continuous for each i = 1, 2. If e is the identity element of X, then $\exists_i^{\mathcal{G}}(e) \geq \mathcal{T}_i^{\mathcal{G}}(g), \mathcal{I}_i^{\mathcal{G}}(e) \geq \mathcal{I}_i^{\mathcal{G}}(g)$ and $\mathcal{F}_i^{\mathcal{G}}(e) \leq \mathcal{F}_i^{\mathcal{G}}(g)$ for all $g \in X$. By the Proposition 3.34 [68], the mapping $\pi : (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}})$ defined by $\pi(h) = (e, h)$ is relatively neutrosophic *i*-continuous for each i = 1, 2. Thus, the mapping $\mu = \lambda \circ \pi : (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}})$ is relatively neutrosophic *i*-continuous for each i = 1, 2. The mapping $\gamma : (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}})$ is relatively neutrosophic *i*-continuous for each i = 1, 2 by the corollary to Proposition 3.28 [68]. Thus, $\psi = \lambda \circ \gamma : (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}})$ is relatively neutrosophic *i*-continuous for each i = 1, 2. Therefore, \mathcal{G} is a NBTG in X.

Proposition 3.0.2

Let $f: X \to Y$ be a group homomorphism and $\exists_1^{\mathcal{G}}, \exists_2^{\mathcal{G}}$ and $\mathcal{U}_1^{\mathcal{G}}, \mathcal{U}_2^{\mathcal{G}}$ be the NTs on X and Y respectively, where $\exists_i^{\mathcal{G}}$ is the inverse image of $\mathcal{U}_i^{\mathcal{G}}$ under f and let \mathcal{G} be a NBTG in Y. Then the inverse image $f^{-1}(\mathcal{G})$ of \mathcal{G} is a NBTG in X.

Proof

Consider the mapping $\alpha : X \times X \to X$ defined by $\alpha(g_1, g_2) = g_1 g_2^{-1}$ for any $g_1, g_2 \in X$. We are to show that the mapping $\alpha : (f^{-1}(\mathcal{G}), \neg_i^{f^{-1}(\mathcal{G})}) \times (f^{-1}(\mathcal{G}), \neg_i^{f^{-1}(\mathcal{G})}) \to (f^{-1}(\mathcal{G}), \neg_i^{f^{-1}(\mathcal{G})})$ is relatively neutrosophic *i*-continuous for each i = 1, 2. Since $\neg_i^{\mathcal{G}}$ is the inverse image of $\mathcal{U}_i^{\mathcal{G}}$ under $f, f : (X, \neg_i^{\mathcal{G}}) \to (X, \mathcal{U}_i^{\mathcal{G}})$ is relatively neutrosophic *i*-continuous for each i = 1, 2. Also, $f(f^{-1}(\mathcal{G})) \subset \mathcal{G}$. By Proposition 3.9 [68], $f : (f^{-1}(\mathcal{G}), \neg_i^{f^{-1}(\mathcal{G})}) \to (\mathcal{G}, \mathcal{U}_i^{\mathcal{G}})$ is relatively neutrosophic *i*-continuous for each i = 1, 2. Let $U = \neg_i^{f^{-1}(\mathcal{G})}$. Then $\exists a V = \mathcal{U}_i^{\mathcal{G}}$ such that $f^{-1}(V) = U$.

Let $(g_1, g_2) \in X \times X$. Then

$$\mathcal{T}_i^{\alpha^{-1}(U)}(g_1, g_2) = \alpha^{-1} \Big(\mathcal{T}_i^U \Big)(g_1, g_2) = \mathcal{T}_i^U \Big(\alpha(g_1, g_2) \Big)$$
$$= \mathcal{T}_i^U \Big(g_1, g_2^{-1} \Big), \text{for each } i = 1, 2.$$

$$\begin{split} &= \mathcal{T}_{i}^{f^{-1}(V)}(g_{1},g_{2}^{-1}) \\ &= f_{(\mathcal{T}_{i}^{V})}^{-1}(g_{1},g_{2}^{-1}) \\ &= \mathcal{T}_{i}^{V}\Big(f(g_{1},g_{2}^{-1})\Big) \\ &= \mathcal{T}_{i}^{V}\Big(f(g_{1}),f(g_{2}^{-1})\Big) \\ &= \mathcal{T}_{i}^{V}\Big(f(g_{1}),(f(g_{2}))^{-1}\Big) \\ \end{split}$$
Thus, $\mathcal{T}_{i}^{\alpha^{-1}(U)}(g_{1},g_{2}) = \mathcal{T}_{i}^{V}\Big(f(g_{1}),(f(g_{2}))^{-1}\Big)$

Similarly, we have

$$\mathcal{I}_{i}^{\alpha^{-1}(U)}(g_{1},g_{2}) = \mathcal{I}_{i}^{V} \Big(f(g_{1}), \big(f(g_{2}) \big)^{-1} \Big) \text{and}$$

$$\mathcal{F}_{i}^{\alpha^{-1}(U)}(g_{1},g_{2}) = \mathcal{F}_{i}^{V} \Big(f(g_{1}), \big(f(g_{2}) \big)^{-1} \Big) \text{for each } i = 1, 2.$$

By the assumption, the mapping $\beta : (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (\mathcal{G}, \exists_i^{\mathcal{G}})$ given by $\beta(h_1, h_2) = h_1 h_2^{-1}$ for any $h_1, h_2 \in Y$ is relatively neutrosophic *i*continuous for each i = 1, 2. By corollary to the Proposition 3.28 [68] the product mapping $f \times f : (f^{-1}(\mathcal{G}), \exists_i^{f^{-1}(\mathcal{G})}) \times (f^{-1}(\mathcal{G}), \exists_i^{f^{-1}(\mathcal{G})}) \to (\mathcal{G}, \exists_i^{\mathcal{G}})$ is the neutrosophic *i*-continuous for each i = 1, 2. Now, let $(g_1, g_2) \in X \times X$. Then

$$\begin{aligned} \mathcal{T}_{i}^{V}\Big(f(g_{1}), \big(f(g_{2})\big)^{-1}\Big) &= \mathcal{T}_{i}^{\beta^{-1}(V)}\big(f(g_{1}), f(g_{2})\big) \\ &= \mathcal{T}_{i}^{(f \times f)^{-1}(\beta^{-1}(V))}\big(g_{1}, g_{2}\big), \\ \mathcal{I}_{i}^{V}\Big(f(g_{1}), \big(f(g_{2})\big)^{-1}\Big) &= \mathcal{I}_{i}^{\beta^{-1}(V)}\big(f(g_{1}), f(g_{2})\big) \\ &= \mathcal{I}_{i}^{(f \times f)^{-1}(\beta^{-1}(V))}\big(g_{1}, g_{2}\big) \\ \text{and } \mathcal{F}_{i}^{V}\Big(f(g_{1}), \big(f(g_{2})\big)^{-1}\Big) &= \mathcal{F}_{i}^{\beta^{-1}(V)}\big(f(g_{1}), f(g_{2})\big) \\ &= \mathcal{F}_{i}^{(f \times f)^{-1}(\beta^{-1}(V))}\big(g_{1}, g_{2}\big) \end{aligned}$$

for each i = 1, 2.

Thus, $\alpha^{-1}(U) \cap \left(f^{-1}(\mathcal{G}) \times f^{-1}(\mathcal{G})\right)$

$$= (f \times f)^{-1} (\beta^{-1}(V)) \cap (f^{-1}(\mathcal{G}) \times f^{-1}(\mathcal{G}))$$
$$= [\beta \circ (f \times f)]^{-1}(V) \cap (f^{-1}(\mathcal{G}) \times f^{-1}(\mathcal{G})).$$

So, $\alpha^{-1}(U) \cap \left(f^{-1}(\mathcal{G}) \times f^{-1}(\mathcal{G})\right) \in \exists_i^{f^{-1}(\mathcal{G})} \times \exists_i^{f^{-1}(\mathcal{G})}$, i.e., $\alpha : \left(f^{-1}(\mathcal{G}), \exists_i^{f^{-1}(\mathcal{G})}\right) \times \left(f^{-1}(\mathcal{G}), \exists_i^{f^{-1}(\mathcal{G})}\right) \to \left(f^{-1}(\mathcal{G}), \exists_i^{f^{-1}(\mathcal{G})}\right)$ is a relatively neutrosophic *i*-continuous for each i = 1, 2. By Result 3.9 [67], $f^{-1}(\mathcal{G})$ is NG in X. Hence, by Proposition 3.0.1, $f^{-1}(\mathcal{G})$ is NBTG in X.

Proposition 3.0.3

Let $f : X \to Y$ be a group homomorphism. Let $\exists_1^{\mathcal{G}}, \exists_2^{\mathcal{G}} and \mathcal{U}_1^{\mathcal{G}}, \mathcal{U}_2^{\mathcal{G}}$ be the NTs on X and Y respectively, where $\mathcal{U}_i^{\mathcal{G}}$ is the image under f and $\exists_i^{\mathcal{G}}$, for each i = 1, 2; and let \mathcal{G} be a NBTG in X. If \mathcal{G} is the neutrosophic invariant, then the image $f(\mathcal{G})$ of \mathcal{G} is a NBTG in Y.

Proof

Consider the mapping $\beta: Y \to Y$ defined by $\beta(h_1, h_2) = h_1 h_2^{-1}$ for any $h_1, h_2 \in Y$. We are to show that the mapping $\beta: \left(f(\mathcal{G}), \mathcal{U}_i^{f(\mathcal{G})}\right) \times \left(f(\mathcal{G}), \mathcal{U}_i^{f(\mathcal{G})}\right) \to \left(f(\mathcal{G}), \mathcal{U}_i^{f(\mathcal{G})}\right)$ is a relatively neutrosophic *i*- continuous for each i = 1, 2. Let \mathcal{G} is a neutrosophic invariant. By the Definition 3.0.2, $f(\mathcal{G})$ is a NG in Y. Let $U \in \exists_i^{\mathcal{G}}$. Also, $U \subset f^{-1}(f(U))$. Then \exists a family $\{U_\lambda\}_{\lambda \in \wedge} \subset \exists_i^{\mathcal{G}}$ such that $f^{-1}(f(U)) = \bigcup_{\alpha \in \wedge} U_\alpha$. So, $f^{-1}(f(U)) \in \exists_i^{\mathcal{G}}$. Since \mathcal{U}_i is the image of $\exists_i^{\mathcal{G}}$ under $f, f(U) \in \mathcal{U}_i^{\mathcal{G}}$, for each i = 1, 2. So, f is neutrosophic *i*-open. Now, let $U \in \exists_i^{\mathcal{G}}$. Then \exists a $U = U_1 \cap \mathcal{G}$. Since \mathcal{G} is neutrosophic invariant, by Proposition 3.12 [67], $f(U) = f(U_1) \cap f(\mathcal{G})$. Since f is neutrosophic *i*open, $f(U_1) = \exists_i^{\mathcal{G}}$, for each i = 1, 2. Then $f(U) \in \mathcal{U}_i^{f(\mathcal{G})}$, for each i = 1, 2. Thus, $f: (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (f(\mathcal{G}), \mathcal{U}_i^{f(\mathcal{G})})$ is relatively neutrosophic *i*-open for each i = 1, 2. By Proposition 3.31 [68], the product mapping $(f \times f) : (\mathcal{G}, \exists_i^{\mathcal{G}}) \times (\mathcal{G}, \exists_i^{\mathcal{G}}) \to (f(\mathcal{G}), \mathcal{U}_i^{f(\mathcal{G})})$ for each i = 1, 2; is relatively neutrosophic *i*-open.

Let $V \in \mathcal{U}_i^{f(\mathcal{G})}$ and let $(g_1, g_2) \in X \times X$. Then

$$\begin{aligned} \mathcal{T}_{i}^{\beta \circ (f \times f)^{-1}(V)}(g_{1}, g_{2}) &= \left[\beta \circ (f \times f)\right]^{-1} \left(\mathcal{T}_{i}^{V}\right)(g_{1}, g_{2}), \text{for each } i = 1, 2. \\ &= \mathcal{T}_{i}^{V} \left[\beta \circ (f \times f)\right](g_{1}, g_{2}) \\ &= \mathcal{T}_{i}^{V} \left(f(g_{1}), f(g_{2})\right) \\ &= \mathcal{T}_{i}^{V} \left(f(g_{1}), (f(g_{2})^{-1})\right) \\ &= \mathcal{T}_{i}^{V} \left(f(g_{1}), f(g_{2}^{-1})\right) \quad [\text{Since } f \text{ is homomorphism}] \\ &= \mathcal{T}_{i}^{V} \left(f(g_{1}g_{2}^{-1})\right) \\ &= \mathcal{T}_{i}^{V} f\left(\alpha(g_{1}, g_{2})\right) \\ &= \mathcal{T}_{i}^{V} \left(f \circ \alpha(g_{1}, g_{2})\right) \\ &= (f \circ \alpha)^{-1} \left(\mathcal{T}_{i}^{V}(g_{1}, g_{2})\right) \\ &= \mathcal{T}_{i}^{(f \circ \alpha)^{-1}(V)}(g_{1}, g_{2}), \end{aligned}$$

where $\alpha: X \times X \to X$ is the mapping given by $\alpha(g_1, g_2) = g_1 g_2^{-1}$ for each $(g_1, g_2) \in X \times X$. Thus, $\mathcal{T}_i^{[\beta \circ (f \times f)]^{-1}(V)} = \mathcal{T}_i^{(f \circ \alpha)^{-1}(V)}, \mathcal{T}_i^{(f \times f)^{-1}[\beta^{-1}(V)]} = \mathcal{T}_i^{\alpha^{-1}(f^{-1}(V))}$. And $\mathcal{I}_i^{(f \times f)^{-1}[\beta^{-1}(V)]} = \mathcal{I}_i^{\alpha^{-1}(f^{-1}(V))}; \mathcal{F}_i^{(f \times f)^{-1}[\beta^{-1}(V)]} = \mathcal{F}_i^{\alpha^{-1}(f^{-1}(V))}$. So, $(f \times f)^{-1}[\beta^{-1}(V)] = \alpha^{-1}(f^{-1}(V))$. Since \mathcal{G} is NBTG in X, α : $(\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \times (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \to (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}})$ is relatively neutrosophic *i*- continuous for each i = 1, 2. Since $\mathcal{U}_i^{\mathcal{G}}$ is the image of $\mathsf{T}_i^{\mathcal{G}}$ under $f, f: (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \to (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \otimes (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \times (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \to (f(\mathcal{G}), \mathcal{U}_i^{f(\mathcal{G})}) \times (f(\mathcal{G}), \mathcal{U}_i^{f(\mathcal{G})})$ is relatively neutrosophic *i*- continuous for each i = 1, 2. Then $(f \times f): (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \times (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \to (f(\mathcal{G}), \mathcal{U}_i^{f(\mathcal{G})}) \times (f(\mathcal{G}), \mathcal{U}_i^{f(\mathcal{G})})$ is relatively neutrosophic *i*- continuous for each i = 1, 2. Thus, $(f \times f) \circ \beta: (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \times (\mathcal{G}, \mathsf{T}_i^{\mathcal{G}}) \to (f(\mathcal{G}), \mathcal{U}_i^{f(\mathcal{G})})$ is relatively neutrosophic *i*- continuous for each i = 1, 2. Since \mathcal{G} is neutrosophic invariant, $(f \times f)^{-1} [\beta^{-1}(V) \cap (f(\mathcal{G}) \times f(\mathcal{G}))] = (f \times f)^{-1} [\beta^{-1}(V)] \cap (\mathcal{G} \times \mathcal{G}).$ So, $(f \times f)^{-1} [\beta^{-1}(V) \cap (f(\mathcal{G}) \times f(\mathcal{G}))] \in \exists_i^{\mathcal{G}} \times \exists_i^{\mathcal{G}}$. Since $(f \times f)$ is relatively neutrosophic *i*-open for each i = 1, 2; $(f \times f)(f \times f)^{-1} [\beta^{-1}(V) \cap (f(\mathcal{G}) \times f(\mathcal{G}))] \in \mathcal{U}_i^{f(\mathcal{G})} \times \mathcal{U}_i^{f(\mathcal{G})}$ for each i = 1, 2. But $(f \times f)(f \times f)^{-1} [\beta^{-1}(V) \cap (f(\mathcal{G}) \times f(\mathcal{G}))] = \beta^{-1}(V) \cap (f(\mathcal{G}) \times f(\mathcal{G})).$ So, $\beta^{-1}(V) \cap (f(\mathcal{G}) \times f(\mathcal{G})) \in \mathcal{U}_i^{f(\mathcal{G})} \times \mathcal{U}_i^{f(\mathcal{G})}$ for each i = 1, 2. Hence, $f(\mathcal{G})$ is a NBTG in Y.

Proposition 3.0.4

Let \mathcal{G} be a NBTG in a group X with two NTs $\exists_1^{\mathcal{G}}, \exists_2^{\mathcal{G}}$. Let N be a normal subgroup of X and let f be the canonical homomorphism of X onto the quotient group X/N. If \mathcal{G} is constant on N, then \mathcal{G} is f invariant.

Proof

For any $x_1, x_2 \in N$, let $f(x_1) = f(x_2)$, then $x_1N = x_2N$. Thus, $\exists k_1, k_2 \in N$ such that $x_1k_1 = x_2k_2$. Since \mathcal{G} is a constant on N, $\mathcal{T}_i^{\mathcal{G}}(x) = \mathcal{T}_i^{\mathcal{G}}(e), \mathcal{I}_i^{\mathcal{G}}(x) = \mathcal{I}_i^{\mathcal{G}}(e)$ and $\mathcal{F}_i^{\mathcal{G}}(x) = \mathcal{F}_i^{\mathcal{G}}(e)$ for each i = 1, 2and $x \in X$. Then

$$\begin{aligned} \mathcal{T}_i^{\mathcal{G}}(x_1) &= \mathcal{T}_i^{\mathcal{G}}(x_2 k_2 k_1^{-1}) \\ &\geq \mathcal{T}_i^{\mathcal{G}}(x_2) \wedge \mathcal{T}_i^{\mathcal{G}}(k_2 k_1^{-1}) \\ &= \mathcal{T}_i^{\mathcal{G}}(x_2) \wedge \mathcal{T}_i^{\mathcal{G}}(e)(k_2 k_1^{-1} \in N) \\ &= \mathcal{T}_i^{\mathcal{G}}(x_2) \end{aligned}$$
$$i.e., \mathcal{T}_i^{\mathcal{G}}(x_1) \geq \mathcal{T}_i^{\mathcal{G}}(x_2) \end{aligned}$$

Similarly, we get $\mathcal{T}_i^{\mathcal{G}}(x_2) \geq \mathcal{T}_i^{\mathcal{G}}(x_1)$. Thus, $\mathcal{T}_i^{\mathcal{G}}(x_1) = \mathcal{T}_i^{\mathcal{G}}(x_2)$. Similarly, we can show that $\mathcal{I}_i^{\mathcal{G}}(x_1) = \mathcal{I}_i^{\mathcal{G}}(x_2)$ and $\mathcal{F}_i^{\mathcal{G}}(x_1) = \mathcal{F}_i^{\mathcal{G}}(x_2)$. Hence, \mathcal{G} is f invariant.