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CHAPTER 5

PLITHOGENIC NEUTROSOPHIC
HYPERSOFT ALMOST
TOPOLOGICAL GROUP

In this chapter, the concept of the neutrosophic hypersoft topological

group is studied. Moreover, some definitions related to the NHTG are

introduced, and the PNHATG and its related propositions are studied.

Definition 5.0.1 blank

Let NHS (UN , E) = N be the family of all NHS over UN via attributes

in E and ℸUN ⊆ NHS(UN , E). Then ℸUN is said to be NHT on N if

the following conditions are hold:

(a) ϕUN , 1UN ∈ ℸUN .

(b) The intersection of any finite number of members of ℸUN also be-

longs to ℸUN .

(c) The union of any collection of members of ℸUN belongs to ℸUN .

The results discussed in this chapter has published in the journal,
Basumatary, B., & Wary, N., et al. (2021). On some properties of plithogenic neutrosophic hypersoft
almost topological group. Neutrosophic Sets and Systems, 43, 169-179.
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Then (N,ℸUN ) is said to be NHTS. Every member of ℸUN is called

ℸUN - open neutrosophic hypersoft set. An NHS is called ℸUN - closed

if and only if its complement is ℸUN - open.

Definition 5.0.2 blank

Let the pair (F,Eα) = H be a NHG of a crisp group U . Let ℸUG

be the NHT on H then (H,ℸUG
) is said to be NHTG if the following

conditions are satisfied:

(a) The mapping ψ : (H,ℸUG
) × (H,ℸUG

) → (H,ℸUG
) such that

ψ(x, y) = xy, for all x, y ∈ H = (F,Eα), is relatively neutro-

sophic hypersoft continuous.

(b) The mapping µ : (H,ℸUG
) → (H,ℸUG

) such that µ(x) = x−1,

for all x ∈ H = (F,Eα), is relatively neutrosophic hypersoft

continuous.

where x = (b1, r1) and y = (b2, r2). Then the pair (H,ℸUG
) is known

as NHTG.

Definition 5.0.3 blank

Let the pair (F,Eα) = H be a NHG of a crisp group U . Let ℸUG
be

the NHTG on H . Then for fixed σ = (a1, a2) ∈ H , the left translation

lσ : (H,ℸUG
) → (H,ℸUG

) is defined by lσ(x) = σx,∀ x ∈ H ,

σx =
{
⟨σ, TUG

(σx), IUG
(σx), FUG

(σx)⟩ : x ∈ H = (F,Eα)
}
.

Similarly, the right translation rσ : (H,ℸUG
) → (H,ℸUG

) is defined by

rσ(x) = xσ,∀ x ∈ H ,

xσ =
{
⟨σ, TUG

(xσ), IUG
(xσ), FUG

(xσ)⟩ : x ∈ H = (F,Eα)
}
.

Lemma 5.0.1 blank

Suppose (F,Eα) = H be a NHG of a crisp group U . Let ℸUG
be an
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NHTG in H . Then for each σ = (a1, a2) ∈ Ge, the translations lσ and

rσ respectively neutrosophic hypersoft homomorphism of (H,ℸUG
) into

itself.

Proof
From the Proposition 3.11 [67], we have lσ[H] = G and rσ[H] = H ,

for all σ ∈ He and let π : (H,ℸUG
) → (H,ℸUG

)× (H,ℸUG
) defined by

π(x) = (σ, x) for each x ∈ H . Then rσ : β ◦ π. Since σ ∈ He, TUG
(σ)

= TUG
(e), IUG

(σ) = IUG
(e) and FUG

(σ) = FUG
(e). Thus, TUG

(σ) ⊇
TUG

(x), IUG
(σ) ⊇ IUG

(x) and FUG
(σ) ⊆ FUG

(x), for each x ∈ H . It

follows from Proposition 3.34 [68] that π : (H,ℸUG
) → (H,ℸUG

) ×
(H,ℸUG

) is relatively neutrosophic hypersoft continuous. By the hy-

pothesis β is relatively neutrosophic hypersoft continuous. So, rσ is

relatively neutrosophic hypersoft continuous. Moreover rσ−1 = rσ−1.

Similarly, we have shown the relatively neutrosophic hypersoft contin-

uous of lσ−1 = lσ−1.

Definition 5.0.4 blank

Let PNHS (UP , E) = P be the family of all PNHS over UP via at-

tributes in E and ℸUP ⊆ PNHS(UP , E). Then ℸUP is said to be PNHT

on P if the following conditions are satisfied:

(a) ϕUP , 1UP ∈ ℸUP .

(b) The intersection of any two NHSs in ℸUP belongs to ℸUP .

(c) The union of NHSs in ℸUP belongs to ℸUP .

Then (P,ℸUP) is said to be PNHTS.

Definition 5.0.5 blank

The complement Ac of a PNHOS in a NHTS (P,ℸUP) is said to be

PNHCoS in (P,ℸUP).
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Definition 5.0.6 blank

Let the pair (F,Eα) = M be a PNHS of a crisp group U . Let ℸUG

[from definition 5.0.2] be the PNHT on M then (M,ℸUG
) is said to be

PNHTG if the following conditions are satisfied:

(a) The mapping ψ : (M,ℸUG
) × (M,ℸUG

) → (M,ℸUG
) such

that ψ(x, y) = xy, for all x, y ∈ M = (F,Eα), is relatively

plithogenic neutrosophic hypersoft continuous.

(b) The mapping µ : (M,ℸUG
) → (M,ℸUG

) such that µ(x) = x−1,

for all x ∈ M = (F,Eα), is relatively plithogenic neutrosophic

hypersoft continuous.

where x = (b1, r1) and y = (b2, r2). Then the pair (M,ℸUG
) is called

a PNHTG.

Definition 5.0.7 blank

Let the pair (F,Eα) be a PNHS of a crisp group U , where Eα = A1 ×
A2 × . . .×An and Ai, i = {1, 2, . . . , n} are crisp groups. Let U, V be

two PNHS in (F,Eα). We define the product of UV PNHS U, V and

V −1 of V as follows:

UV (z) =
{
⟨z, TUV (z), IUV (z), FUV (z)⟩ : z = (b, r) ∈ (F,Eα)

}
where

TUV (z) = sup
{
min{TU(x), TV (y)}

}
,

IUV (z) = sup
{
min{IU(x), IV (y)}

}
,

FUV (z) = sup
{
min{FU(x), FV (y)}

}
,

where z = x.y and x = (b1, r1); y = (b2, r2) and for V =
{
⟨z,

TV (z), IV (z), FV (z)⟩ : z = (b, r) ∈ (F,Eα)
}

,
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we have V −1 =
{
⟨z, TV (z−1), IV (z

−1), FV (z
−1)⟩ : z = (b, r) ∈

(F,Eα)
}

.

Definition 5.0.8 blank

Let the ordered pair (F,Eα) be a PNHS, where Eα = A1 × A2 ×
. . . × An. Let (P,ℸUP) be a PNHTS and A =

{
⟨x, TA(x), IA(x),

FA(x)⟩ : x ∈ (F,Eα)
}

be a PNHS in (P,ℸUP), then the plithogenic

neutrosophic hypersoft interior of A is defined as

PNH − int(A) =
⋃{

G : G is PNHOS and G ⊆ A
}
.

Definition 5.0.9 blank

Let the ordered pair (F,Eα) be a PNHS, where Eα = A1 × A2 ×
. . . × An. Let (P,ℸUP) be a PNHTS and A =

{
⟨x, TA(x), IA(x),

FA(x)⟩ : x ∈ (F,Eα)
}

be a PNHS in (P,ℸUP), then the plithogenic

neutrosophic hypersoft closure of A is defined as

PNH − cl(A) =
⋂{

K : K is PNHCoS and K ⊇ A
}
.

Definition 5.0.10 blank

A mapping ϕ : (P,ℸUP1
) → (K,ℸUP2

) is a plithogenic neutrosophic

hypersoft continuous if the pre-image of each PNHOS in (K,ℸUP2
) is

PNHOS in (P,ℸUP1
).

Definition 5.0.11 blank

Let A be a PNHS of a PNHTS (P,ℸUP), then A is called a PNHSOS

of (P,ℸUP) if there exists a B ∈ ℸUP such that A ⊆ PNH − cl(B).

Definition 5.0.12 blank

Let A be a PNHS of a PNHTS (P,ℸUP), then A is called a PNHSCoS

of (P,ℸUP) if there exists a Bc ∈ ℸUP such that PNH − Int(B) ⊆ A.
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Definition 5.0.13 blank

A PNHS A of a PNHTS (P,ℸUP) is said to be a PNHROS of (P,ℸUP)

if PNH − int
(
PNH − cl(A)

)
= A.

Definition 5.0.14 blank

A PNHS A of a PNHTS (P,ℸUP) is said to be a PNHRCoS of (P,ℸUP)

if PNH − cl
(
PNH − int(A)

)
= A.

Theorem 5.0.1 blank

(i) The intersection of any two PNHROSs is a PNHROS, and

(ii) The union of any two PNHRCoSs is a PNHRCoS.

Proof

(i) Let A1 and A2 be any two PNHROSs of a PNHTS (P,ℸUP). Since

A1

⋂
A2 is PNHOS, we have A1

⋂
A2 ⊆ PNH − int

(
PNH −

cl(A1

⋂
A2)

)
. Now, PNH−int(PNH−cl

(
A1

⋂
A2)

)
⊆ PNH−

int
(

PNH−cl(A1)
)
= A1 and PNH− int

(
PNH−cl(A1

⋂
A2)

)
⊆ PNH−int

(
PNH−cl(A2)

)
= A2 implies that PNH−int

(
PNH−

cl(A1

⋂
A2)

)
⊆ A1

⋂
A2. Hence the theorem.

(ii) Let A1 and A2 be any two PNHROSs of a PNHTS (P, τUP) .

Since A1

⋃
A2 is PNHOS, we have A1

⋃
A2 ⊇ PNH−cl

(
PNH−

int(A1

⋃
A2)

)
. Now, PNH−cl

(
PNH−int(A1

⋃
A2)

)
⊇ PNH−

cl
(

PNH− int(A1)
)
= A1 and PNH−cl

(
PNH− int(A1

⋃
A2)

)
⊇ PNH − cl

(
PNH − int(A2)

)
= A2 implies that A1

⋃
A2 ⊆

PNH − cl
(

PNH − int(A1

⋃
A2)

)
. Hence the theorem.

Definition 5.0.15 blank

Let ϕ : (P,ℸUP1
) → (K,ℸUP2

) be a mapping from a PNHTS (P,ℸUP1
)
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to another PNHTS (K,ℸUP2
), then ϕ is called a PNHCM, if ϕ−1(A) ∈

ℸUP1
for each A ∈ ℸUP2

; or equivalently ϕ−1(B) is a PNHCoS of

(P,ℸUP1
) for each PNHCoS B of (K,ℸUP2

).

Definition 5.0.16 blank

Let ϕ : (P,ℸUP1
) → (K,ℸUP2

) be a mapping from a PNHTS (P,ℸUP1
)

to another PNHTS (K,ℸUP2
), then ϕ is called a PNHOM if ϕ(A) ∈

ℸUP2
for each A ∈ ℸUP1

.

Definition 5.0.17 blank

Let ϕ : (P,ℸUP1
) → (K,ℸUP2

) be a mapping from a PNHTS (P,ℸUP1
)

to another PNHTS (K, τUP2
), then ϕ is called a PNHCoM if ϕ(B) is a

PNHCoS of (K,ℸUP2
) for each PNHCoS B of (P,ℸUP1

).

Definition 5.0.18 blank

Let ϕ : (H,ℸUP1
) → (K,ℸUP2

) be a mapping from a PNHTS (H,ℸUP1
)

to another PNHTS (K,ℸUP2
), then ϕ is called a PNHSCM if ϕ−1(A) is

a PNHSOS of (H,ℸUP1
), for each A ∈ ℸUP2

.

Definition 5.0.19 blank

Let ϕ : (P,ℸUP1
) → (K,ℸUP2

) be a mapping from a PNHTS (P,ℸUP1
)

to another PNHTS (K,ℸUP2
), then ϕ is called a PNHSOM if ϕ(A) is a

PNHSOS for each A ∈ ℸUP1
.

Definition 5.0.20 blank

Let ϕ : (P,ℸUP1
) → (K,ℸUP2

) be a mapping from a PNHTS (P,ℸUP1
)

to another PNHTS (K,ℸUP2
), then ϕ is called a PNHSCoM if ϕ(B) is

a PNHSCoS for each PNHCoS B of (P,ℸUP1
).

Definition 5.0.21 blank

A mapping ϕ : (M,ℸUP1
) → (K,ℸUP2

) is said to be a PNHACM if

ϕ−1(A) ∈ (M,ℸUP1
) for each PNHROS A of (K,ℸUP2

).
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Definition 5.0.22 blank

Let the pair (F,Eα) = M be a PNHS of a crisp group U . Let ℸUG

[from definition 5.0.15] be the PNHT on M then (M,ℸUG
) is said to

be PNHATG if the following conditions are satisfied:

(i) The mapping ψ : (M,ℸUG
) × (M,ℸUG

) → (M,ℸUG
) such that

ψ(x, y) = xy, for all x, y ∈M = (F,Eα), is relatively plithogenic

neutrosophic hypersoft almost continuous.

(ii) The mapping µ : (M,ℸUG
) → (M,ℸUG

) such that µ(x) = x−1,

for all x ∈ M = (F,Eα), is relatively plithogenic neutrosophic

hypersoft almost continuous.

where x = (b1, r1) and y = (b2, r2). Then the pair (M,ℸUG
) is known

as PNHATG.

Theorem 5.0.2 blank

Let (M,ℸPG
) be a PNHATG and let σ = (a1, a2) ∈M be any element.

Then

(i) A mapping gσ : (M,ℸUG
) → (H,ℸUG

) such that gσ(x) = σx, for

all x ∈M , is PNHACM;

(ii) A mapping hσ : (M,ℸUG
) → (M,ℸUG

) such that hσ(x) = xσ, for

all x ∈M , is PNHACM.

Proof

(i) Let δ = (a3, a4) ∈ M and let W be a PNHROS containing σδ in

M . From Definition 5.0.22, ∃ plithogenic neutrosophic hypersoft

open nbds U ,V of σ, δ in Mso that UV ⊆ W . Especially, σV ⊆
W that is gσ(V) ⊆ W . This shows that gσ is PNHACM at δ and

therefore gσ is PNHACM.
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(ii) Suppose δ = (a3, a4) ∈M andW ∈ PNHROS(M) containing δσ.

Then ∃ PNHOSs δ ∈ U and σ ∈ V in M so that UV ⊆ W . This

shows Uσ ⊆ W , i.e., hσ(U) ⊆ W . This implies hσ is PNHACM

at δ. As arbitrary element δ is in M , therefore hσ is PNHACM.

Theorem 5.0.3 blank

Let U be PNHROS in a PNHATG (M,ℸUG
). Then the following con-

ditions are hold good, where σ = (a1, a2)

(i) σU ∈ PNHROS(M), for all σ ∈M .

(ii) Uσ ∈ PNHROS(M), for all σ ∈M .

(iii) U−1 ∈ PNHROS(M).

Proof

(i) First, we have to prove that σU ∈ ℸUG
. Let δ = (a3, a4) ∈ σU .

Then from Definition 5.0.22 of PNHATGs, ∃ PNHOSs σ−1 ∈ W1

and δ ∈ W2 in M so that W1W2 ⊆ U . Especially, σ−1W2 ⊆ U .

i.e., equivalently W2 ⊆ σU . This shows that δ ∈ PNH− int(σU)

and thus, PNH − int (σU) = σU . i.e., σU ∈ ℸUG
. Consequently,

σU ⊆ PNH − int
(
PNH − cl(σU)

)
.

Now, we have to prove that PNH − int
(
PNH − cl(σU)PNH

)
⊆

σU . Since U is PNHOS, PNH − cl(U) ∈ PNHRCoS(M). From

Theorem 5.0.2, gσ−1 : (M,ℸUG
) → (M,ℸUG

) is PNHACM and

therefore, σPNH − cl(U) is PNHCoS. Thus, PNH − int
(
PNH −

cl(σU)
)
⊆ PNH − cl(σU) ⊆ σPNH − cl(U). i.e., σ−1PNH −

int
(
PNH − cl(σU)

)
⊆ PNH − cl(U). Since PNH − int

(
PNH −

cl(σU)
)

is PNHROS, it follows that σ−1PNH−int
(
PNH−cl(σU)

)
⊆ PNH − int

(
PNH − cl(U)

)
= U , i.e., PNH − int

(
PNH −

cl(σU)
)
⊆ σU . Thus, σU = PNH − int

(
PNH − cl(σU)

)
. This

shows that σU ∈ PNHROS(M).
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(ii) Following Theorem 5.0.3 (i), the proof is straightforward.

(iii) Let x ∈ U−1, then ∃ PNHOS δ ∈ W in H so that W−1 ⊆ U ⇒
W ⊆ U−1. Therefore U−1 has interior point δ. Thus, U−1 is

PNHOS. i.e., U−1 ⊆ PNH− int
(
PNH− cl(U−1)

)
. Now we have

to prove that PNH − int
(
PNH − cl(U−1)

)
⊆ U−1. Since U is

PNHOS, PNH−cl(U) is PNHRCoS and hence PNH−cl(U)−1 is

PNHCoS inM . Therefore, PNH−int
(
PNH−cl(U−1)

)
⊆ PNH−

cl(U−1) ⊆ PNH − cl(U)−1 ⇒ PNH − int
(
PNH − cl(U−1)

)
⊆(

PNH − cl(U)
)−1 ⊆ U−1. Thus, U−1 = PNH − int

(
PNH −

cl(U−1)
)
. This shows that U−1 ∈ PNHROS(H).

Corollary 5.0.1 blank

Let Q be any PNHRCoS in a PNHATG in M . Then

(i) σQ ∈ PNHRCoS(M), for each σ ∈M .

(ii) Q−1 ∈ PNHRCoS(M).

Theorem 5.0.4 blank

Let U be any PNHROS in a PNHATG M . Then

(a) PNH − cl(Uσ) = PNH − cl(U)σ, for each σ ∈ M , where σ =

(a1, a2).

(b) PNH − cl(σU) = σPNH − cl(U), for each σ ∈M .

(c) PNH − cl(U−1) = PNH − cl(U)−1.

Proof

(a) Taking δ = (a3, a4) ∈ PNH− cl(Uσ) and consider q = δσ−1. Let

q ∈ W be PNHOS in M . Then ∃ PNHOSs σ−1 ∈ V1 and δ ∈ V 2

in M , so that V1V2 ⊆ PNH− int(PNH−cl(W )
)
. By assumption,

there is g ∈ Uσ
⋂
V2 ⇒ gσ−1 ∈ U

⋂
V1V2 ⊆ U

⋂
PNH −
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int
(
PNH − cl(W )

)
⇒ U

⋂
PNH − int

(
PNH − cl(W )

)
̸= ϕUP

⇒ U
⋂(

PNH − cl(W )
)
̸= ϕUP . Since U is PNHOS, U

⋂
W ̸=

ϕUP . i.e., x ∈ PNH − cl(U)σ.

Conversely, let q ∈ PNH − cl(U)σ. Then q = δg for some

δ ∈ PNH − cl(U). To prove PNH − cl(U)a ⊆ PNH − cl(Ua).

Let δg ∈ W be an PNHOS in M . Then ∃ PNHOSs σ ∈ V1

in M and δ ∈ V2 in M so that V1V2 ⊆ PNH − int
(
PNH −

cl (W )
)
. Since δ ∈ PNH − cl(U), U

⋂
V2 ̸= ϕUP . There is

g ∈ U
⋂
V2. This gives gσ ∈ (Uσ)

⋂
PNH− int

(
PNH− cl(W )

)
⇒ (Uσ)

⋂(
PNH − cl(W )

)
̸= ϕUP . From Theorem 5.0.2, Uσ is

PNHOS and thus (Uσ)
⋂
W ̸= ϕUP , therefore q ∈ PNH−cl(Uσ).

Therefore PNH − cl(Uσ) = PNH − cl(U)σ.

(b) Following Theorem 5.0.4 (a), proof is straightforward.

(c) Since PNH− cl(U) is PNHRCoS, PNH− cl(U)−1 is PNHCoS in

M . So, U−1 ⊆ PNH − cl(U)−1 this implies PNH − cl(U−1) ⊆
PNH − cl(U)−1. Next, let q ∈ PNH − cl(U)−1. Then q = δ−1,

for some δ ∈ PNH − cl(U). Let q ∈ V be any PNHOS in M .

Then ∃ PNHOS U in M so that δ ∈ U with U−1 ⊆ PNH −
int

(
PNH − cl(V )

)
. Also, there is σ ∈ A

⋂
U which implies

σ−1 ∈ A−1
⋂

PNH − int
(
PNH − cl(V )

)
. That is, A−1

⋂
PNH −

int
(
PNH − cl(V )

)
̸= ϕUP ⇒ U−1

⋂
PNH − cl(V ) ̸= ϕUP ⇒

A−1
⋂
V ̸= ϕUP , since U−1 is PNHOS. Therefore, q ∈ PNH −

cl(U)−1. Hence PNH − cl(U−1) ⊆ PNH − cl(U)−1.

Theorem 5.0.5 blank

Let Q be plithogenic neutrosophic hypersoft regularly closed subset in

a PNHATG M . Then the following statements are satisfied:

(a) PNH − int(σQ) = σPNH − int(Q), for all σ ∈ M , where σ =

(a1, a2).
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(b) PNH − int(Qσ) = PNH − int(Q)σ, for all σ ∈M .

(c) PNH − int(Q−1) = PNH − int(Q)−1.

Proof

(a) Since Q is PNHRCoS, PNH − int(Q) is PNHROS in M . Con-

sequently, σPNH − int(Q) ⊆ PNH − int(σQ). Conversely, let q

be an arbitrary element of PNH − int(σQ). Assume that q = σδ,

for some δ = (a3, a4) ∈ Q. By assumption, this shows σQ is PN-

HCoS and that is PNH−int(σQ) is PNHROS inM . Suppose σ ∈
U and δ ∈ V be PNHOSs in M , so that UV ⊆ PNH − int(σQ).

Then σV ⊆ σQ, which follows that σV ⊆ σPNH − int(Q).

Thus, PNH − int (σQ) ⊆ σPNH − int(Q). Hence the statement

follows.

(b) Following Theorem 5.0.5 (a), the proof is straightforward.

(c) Since PNH− int(Q) is PNHROS, so PNH− int(Q)−1 is PNHOS

in M . Therefore, Q−1 ⊆ PNH − int(Q)−1 implies that PNH −
int

(
Q−1

)
⊆ PNH−int(Q)−1. Next, let q be an arbitrary element

of PNH− int(Q)−1. Then q = δ−1, for some δ ∈ PNH− int(Q).

Let q ∈ V be PNHOS in M . Then ∃ PNHOS U is in M so that

δ ∈ U with U−1 ⊆ PNH − cl
(
PNH − int(V )

)
. Also, there is g ∈

Q
⋂
U which implies g−1 ∈ Q−1

⋂
PNH − cl

(
PNH − int(V )

)
.

That is Q−1
⋂

PNH−cl
(
PNH−int(V )

)
̸= ϕUP ⇒ Q−1

⋂
PNH−

int(V ) ̸= ϕUP ⇒ Q−1
⋂
V ̸= ϕUP , since Q−1 is PNHCoS. Hence

PNH − int(Q−1) = PNH − int(Q)−1.

Theorem 5.0.6 blank

Let A be any PNHSOS in a PNHATG M . Then

(a) PNH − cl(σA) ⊆ σPNH − cl(A), for all σ ∈ M , where σ =

(a1, a2).
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(b) PNH − cl(Aσ) ⊆ PNH − cl(A)σ, for all σ ∈M .

(c) PNH − cl(A−1) ⊆ PNH − cl(A)−1.

Proof

(a) As A is PNHSOS, PNH − cl(A) is PNHRCoS. From Theorem

5.0.2, gσ−1 : (M, τUG
) → (M,ℸUG

) is PNHACM. So, σPNH −
cl(A) is PNHCoS. Hence PNH − cl(σA) ⊆ σPNH − cl(A).

(b) As A is PNHSOS, PNH − cl (A) is PNHRCoS. From Theorem

5.0.2, hσ−1 : (M,ℸUG
) → (M,ℸUG

) is PNHACM. So, PNH −
cl(A)σ is PNHCoS. Thus, PNH − cl(Aσ) ⊆ PNH − cl(A)σ.

(c) Since A is PNHSOS, so, PNH − cl(A) is PNHRCoS and hence

PNH−cl(A)−1 is PNHCoS. Consequently, PNH−cl(A) ⊆ PNH−
cl(A)−1.
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