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CHAPTER 6

NEUTROSOPHIC MULTI
TOPOLOGICAL GROUP

In this chapter, to study some properties of the NMTG, the definitions of

NMSOS, NMSCoS, NMROS, NMRCoS, and NMCM are introduced and

studied the definition of a NMTG and some of its properties. Also, since

the concept of the almost topological group is very new, the definition

of the NMATG has been introduced.

Definition 6.0.1 blank

Let (X,ℸX) be NMTS. Then for a NMS A =
{
⟨x, µNi

, σNi
, δNi

⟩ : x ∈
X
}

, neutrosophic interior of A can be defined as

NM ∼ Int(A) =
{
⟨x,∪µNi

, ∩ σNi
, ∩ δNi

⟩ : x ∈ X
}

.

Definition 6.0.2 blank

Let (X,ℸX) be NMTS. Then for a NMS A =
{
⟨x, µNi

, σNi
, δNi

⟩ : x ∈
X
}

, neutrosophic closure of A can be defined as

The results discussed in this chapter has published in the journal,
Basumatary, B., & Wary, N., et al. (2021). A study on some properties of neutrosophic multi topolog-
ical group. Symmetry, 13, 1689.
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NM ∼ Cl(A) =
{
⟨x,∩µNi

, ∪ σNi
, ∪ δNi

⟩ : x ∈ X
}

.

Definition 6.0.3 blank

Let G be a NMG on a group X . Let ℸX be a NMT on G then (G,ℸX) is

known as a neutrosophic multi topological group (NMTG) if it satisfies

the given conditions:

(i) The mapping α : (G,ℸX)×(G,ℸX) → (G,ℸX) defined by α(m,n) =

mn,∀m,n ∈ X , is relatively neutrosophic multi continuous and

(ii) The mapping β : (G,ℸX) → (G,ℸX) defined by β(m) = m−1,∀m ∈
X , is relatively neutrosophic multi continuous.

Definition 6.0.4 blank

Let A be an NMS of a NMTS (X,ℸX), then A is called a NMSOS of

X if ∃ a B ∈ ℸX such that A ⊆MN ∼ Int(MN ∼ Cl
(
B)

)
.

Example 6.0.1 blank

Let X = {a, b} and

A =

{
⟨a, 0.8, 0.1, 0.2⟩, ⟨a, 0.7, 0.1, 0.3⟩, ⟨a, 0.6, 0.2, 0.4⟩,
⟨b, 0.7, 0.2, 0.3⟩, ⟨b, 0.6, 0.3, 0.4⟩, ⟨b, 0.4, 0.2, 0.5⟩

}
;

B =

{
⟨a, 0.9, 0.1, 0.1⟩, ⟨a, 0.8, 0.1, 0.2⟩, ⟨a, 0.7, 0.2, 0.3⟩,
⟨b, 0.8, 0.2, 0.2⟩, ⟨b, 0.7, 0.2, 0.3⟩, ⟨b, 0.5, 0.2, 0.4⟩

}
.

Then ℸ = {0X , 1X ,B} is neutrosophic multi topological space.

Then Cl(B) = 1X , Int(Cl
(
B)

)
= 1X .

Hence, B is NMSOS.

Definition 6.0.5 blank

Let A be an NMS of a NMTS (X,ℸX), then A is called a NMSCoS of

X if ∃ a Bc ∈ ℸX such that MN ∼ Cl
(
MN ∼ Int(B)

)
⊆ A.
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Lemma 6.0.1 blank

Let ϕ : X → Y be a mapping and Aα be a family of NMSs of Y , then

(i) ϕ−1(∪Aα) =
⋃
ϕ−1(Aα) and

(ii) ϕ−1(∩Aα) = ∩ϕ−1(Aα).

The proof is straightforward.

Lemma 6.0.2 blank

Let A and B be NMSs of X and Y respectively, then

1X −A× B = (Ac × 1X) ∪ (1X × Bc).

Proof
Let (p, q) be any element of X × Y , then

(1X −A× B)(p, q) = max
{(

1X −A(p), 1X − B(q)
)}

= max
{
(Ac × 1X)(p, q), (Bc × 1X)(p, q)

}
= (Ac × 1X) ∪ (1X × Bc)(p, q), for each (p, q) ∈ X × Y.

Lemma 6.0.3 blank

Let ϕ : Xi → Yi and Ai be NMSs of Yi, i = 1, 2; then (ϕ1×ϕ2)−1(A1×
A2)= ϕ1

−1(A1)× ϕ2
−1(A2).

Proof
For each (p1, p2) ∈ X1 ×X2, we have

(ϕ1 × ϕ2)
−1(A1 ×A2)(p1, p2) = (A1 ×A2)

(
(ϕ1(p1), ϕ2(p2)

)
= min

{
A1ϕ1(p1),A2ϕ2(p2)

}
= min

{
ϕ−1
1 (A1)(p1), ϕ

−1
2 (A2)(p2)

}
=

(
ϕ−1
1 (A1)× ϕ−1

2 (A2)
)
(p1, p2).
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Lemma 6.0.4 blank

Let ψ : X → X × Y be the graph of a mapping ψ : X → Y . Then,

if A and B be NMSs of X and Y respectively, then ψ−1(A × B) =

A ∩ ϕ−1(B).

Proof
For each p ∈ X , we have

ψ−1(A× B)(p) = (A× B)ψ(p)

= (A× B)
(
p, ϕ(p)

)
= min

{
A(p),B

(
ϕ(p)

)}
=

(
A ∩ ϕ−1(B)

)
(p).

Lemma 6.0.5 blank

For a family {A}α of NMSs of NMTS (X,ℸX),∪NM ∼ Cl(Aα) ⊆
NM ∼ Cl

(
∪ (Aα)

)
. In case B is a finite set, ∪NM ∼ Cl(Aα) ⊆

NM ∼ Cl
(
∪(Aα)

)
. Also, ∪NM ∼ Int(Aα) ⊆ NM ∼ Int

(
∪(Aα)

)
, where a subfamily B of (X,ℸX) is said to be subbase for (X,ℸX) if

the collection of all intersections of members of B forms a base for

(X,ℸX).

Lemma 6.0.6 blank

For an NMS A of a NMTS (X,ℸX),

(a) 1NM −NM ∼ Int(A) = NM ∼ Cl(1NM −A), and

(b) 1NM −NM ∼ Cl(A) = NM ∼ Int(1NM −A).

The proof is straightforward.

Theorem 6.0.1 blank

The following statements are equivalent:
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(a) A is a NMCoS,

(b) Ac is a NMOS,

(c) NM ∼ Int
(
NM ∼ Cl(A)

)
⊆ A, and

(d) NM ∼ Cl
(
NM ∼ Int(Ac)

)
⊇ Ac.

Theorem 6.0.2 blank

(i) Arbitrary union of NMSOSs is a NMSOS, and

(ii) Arbitrary intersection of NMSCoSs is a NMSCoS.

Remark 6.0.1 blank

It is clear that every NMOS (NMCoS) is a NMSOS (NMSCoS). The

converse is not true.

Example 6.0.2 blank

From Example 6.0.1, it is clear that B is a NMSOS, but B is not NMOS.

Theorem 6.0.3 blank

If (X,ℸX) and (Y,ℸY ) are NMTSs and X is product related to Y .

Then the product A× B of a NMSOS A of X and a NMSOS B of Y is

a NMSOS of the neutrosophic multi product space X × Y .

Definition 6.0.6 blank

An NMS A of a NMTS (X,ℸX) is called a NMROS of (X,ℸX) if

NM ∼ Int
(
NM ∼ Cl(A)

)
= A.

Example 6.0.3 blank

Let X = {a, b} and

A =

{
⟨a, 0.4, 0.5, 0.5⟩, ⟨a, 0.3, 0.5, 0.6⟩, ⟨a, 0.2, 0.6, 0.7⟩,
⟨b, 0.5, 0.7, 0.6⟩, ⟨b, 0.4, 0.5, 0.7⟩, ⟨b, 0.3, 0.5, 0.8⟩

}
.
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Then ℸ =
{
0X , 1X ,A

}
is neutrosophic multi topological space.

Clearly, NM ∼ Cl(A) = Ac, NM ∼ Int
(
NM ∼ Cl(A)

)
= A.

Hence, A is NMROS.

Definition 6.0.7 blank

An NMS A of a NMTS (X,ℸX) is called a NMRCoS of (X,ℸX) if

NM ∼ Cl
(
NM ∼ Int(A)

)
= A.

Theorem 6.0.4 blank

An NMS A of NMTS (X,ℸX) is a NMROS iff Ac is NMRCoS.

Remark 6.0.2 blank

It is obvious that every NMROS (NMRCoS) is a NMOS (NMCoS). The

converse need not be true.

Example 6.0.4 blank

Let X = {a, b} and ℸ =
{
0X , 1X ,A,B,A

⋃
B
}

is neutrosophic multi

topological space, where

A =

{
⟨a, 0.4, 0.5, 0.6⟩, ⟨a, 0.3, 0.5, 0.7⟩, ⟨a, 0.2, 0.6, 0.8⟩,
⟨b, 0.7, 0.5, 0.3⟩, ⟨b, 0.6, 0.5, 0.4⟩, ⟨b, 0.4, 0.5, 0.6⟩

}
;

B =

{
⟨a, 0.6, 0.5, 0.4⟩, ⟨a, 0.7, 0.5, 0.3⟩, ⟨a, 0.8, 0.4, 0.2⟩,
⟨b, 0.3, 0.5, 0.7⟩, ⟨b, 0.4, 0.5, 0.6⟩, ⟨b, 0.6, 0.5, 0.4⟩

}
;

A
⋃

B =

{
⟨a, 0.6, 0.5, 0.4⟩, ⟨a, 0.7, 0.5, 0.3⟩, ⟨a, 0.8, 0.4, 0.2⟩,
⟨b, 0.7, 0.5, 0.3⟩, ⟨b, 0.6, 0.5, 0.4⟩, ⟨b, 0.4, 0.5, 0.6⟩

}
.

Here, NM ∼ Cl(A) = Bc, NM ∼ Int
(
NM ∼ Cl(A)

)
= A, and

NM ∼ Cl(B) = Ac, NM ∼ Int
(
NM ∼ Cl(B)

)
= B.

Then NM ∼ Cl(A
⋃
B) = 1X .

Thus, NM ∼ Int
(
NM ∼ Cl(A

⋃
B)

)
= 1X .

Hence, A and B is NMROS, but A
⋃

B is not NMROS.
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Remark 6.0.3 blank

The union (intersection) of any two NMROSs (NMRCoS) need not be a

NMROS (NMRCoS).

Theorem 6.0.5 Blank

(i) The intersection of any two NMROSs is a NMROS, and

(ii) The union of any two NMRCoSs is a NMRCoS.

Theorem 6.0.6 Blank

(i) The closure of a NMOS is a NMRCoS, and

(ii) The interior of a NMCoS is a NMROS.

Definition 6.0.8 blank

Let ϕ : (X,ℸX) → (Y,ℸY ) be a mapping from a NMTS (X,ℸX) to

another NMTS (Y,ℸY ), then ϕ is known as a NMCM, if ϕ−1(A) ∈ ℸX

for each A ∈ ℸY ; or equivalently ϕ−1(B) is a NMCoS of X for each

NMCoS B of Y .

Example 6.0.5 blank

Let X = Y = {a, b, c} and

A =


⟨a, 0.4, 0.5, 0.6⟩, ⟨a, 0.3, 0.5, 0.7⟩, ⟨a, 0.2, 0.6, 0.8⟩,
⟨b, 0.3, 0.5, 0.4⟩, ⟨b, 0.2, 0.5, 0.6⟩, ⟨b, 0.1, 0.5, 0.7⟩,
⟨c, 0.4, 0.5, 0.6⟩, ⟨c, 0.3, 0.5, 0.7⟩, ⟨c, 0.2, 0.6, 0.8⟩

 ;

B =


⟨a, 0.6, 0.1, 0.2⟩, ⟨a, 0.5, 0.1, 0.3⟩, ⟨a, 0.4, 0.2, 0.4⟩,
⟨b, 0.3, 0.5, 0.4⟩, ⟨b, 0.2, 0.5, 0.6⟩, ⟨b, 0.1, 0.5, 0.7⟩,
⟨c, 0.4, 0.5, 0.6⟩, ⟨c, 0.3, 0.5, 0.7⟩, ⟨c, 0.2, 0.6, 0.8⟩

 .

Then ℸX =
{
0X , 1X ,A

}
and ℸY =

{
0Y , 1Y ,B

}
are neutrosophic

multi topological spaces.
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Now, define a mapping f : (X,ℸX) → (Y,ℸY ) by f(a) = f(c) = c

and f(b) = b.

Thus, f is NMCM.

Definition 6.0.9 blank

Let ϕ : (X,ℸX) → (Y,ℸY ) be a mapping from a NMTS (X,ℸX) to

another NMTS (Y,ℸY ), then ϕ is called a NMOM, if ϕ(A) ∈ ℸY for

each A ∈ ℸX .

Definition 6.0.10 Let ϕ : (X,ℸX) → (Y,ℸY ) be a mapping from a

NMTS (X,ℸX) to another NMTS (Y,ℸY ), then ϕ is said to be a NM-

CoM if ϕ(B) is a NMCoS of Y for each NMCoS B of X .

Definition 6.0.11 blank

Let ϕ : (X,ℸX) → (Y,ℸY ) be a mapping from a NMTS (X,ℸX) to

another NMTS (Y,ℸY ), then ϕ is called a NMSCM, if ϕ−1(A) is the

NMSOS of X , for each A ∈ ℸY .

Definition 6.0.12 blank

Let ϕ : (X,ℸX) → (Y,ℸY ) be a mapping from a NMTS (X,ℸX)

to another NMTS (Y,ℸY ), then ϕ is called a NMSOM, if ϕ(A) is a

NMSOS for each A ∈ ℸX .

Example 6.0.6 blank

Let X = Y = {a, b, c} and

A =


⟨a, 0.6, 0.1, 0.2⟩, ⟨a, 0.5, 0.1, 0.3⟩, ⟨a, 0.4, 0.2, 0.4⟩,
⟨b, 0.3, 0.5, 0.4⟩, ⟨b, 0.2, 0.5, 0.6⟩, ⟨b, 0.1, 0.5, 0.7⟩,
⟨c, 0.4, 0.5, 0.6⟩, ⟨c, 0.3, 0.5, 0.7⟩, ⟨c, 0.2, 0.6, 0.8⟩

 ;

B =


⟨a, 0.3, 0.5, 0.4⟩, ⟨a, 0.2, 0.5, 0.6⟩, ⟨a, 0.1, 0.5, 0.7⟩,
⟨b, 0.6, 0.1, 0.2⟩, ⟨b, 0.5, 0.1, 0.3⟩, ⟨b, 0.4, 0.2, 0.4⟩,
⟨c, 0.4, 0.5, 0.6⟩, ⟨c, 0.3, 0.5, 0.7⟩, ⟨c, 0.2, 0.6, 0.8⟩

 .
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Then ℸX =
{
0X , 1X ,A

}
and ℸY =

{
0Y , 1Y ,B

}
are neutrosophic

multi topological spaces.

Clearly, A is neutrosophic multi semi-open set.

Then a mapping f : (X,ℸX) → (Y,ℸY ) by f(a) = b, f(b) = a and

f(c) = c.

Hence, f is NMSOM.

Definition 6.0.13 blank

Let ϕ : (X,ℸX) → (Y,ℸY ) be a mapping from a NMTS (X,ℸX)

to another NMTS (Y,ℸY ), then ϕ is called a NMSCoM, if ϕ(B) is a

NMSCoS for each NMCoS B of X .

Remark 6.0.4 blank

From Remark 6.0.1, a NMCM (NMOM, NMCoM) is also a NMSCM

(NMSOM, NMSCoM).

Example 6.0.7 blank

Let X = Y = {a, b, c} and

A =


⟨a, 0.4, 0.5, 0.6⟩, ⟨a, 0.3, 0.5, 0.7⟩, ⟨a, 0.2, 0.6, 0.8⟩,
⟨b, 0.3, 0.5, 0.4⟩, ⟨b, 0.2, 0.5, 0.6⟩, ⟨b, 0.1, 0.5, 0.7⟩,
⟨c, 0.4, 0.5, 0.6⟩, ⟨c, 0.3, 0.5, 0.7⟩, ⟨c, 0.2, 0.6, 0.8⟩

 ;

B =


⟨a, 0.4, 0.5, 0.6⟩, ⟨a, 0.3, 0.5, 0.7⟩, ⟨a, 0.2, 0.6, 0.8⟩,
⟨b, 0.4, 0.6, 0.4⟩, ⟨b, 0.3, 0.5, 0.5⟩, ⟨b, 0.2, 0.5, 0.6⟩,
⟨c, 0.6, 0.5, 0.5⟩, ⟨c, 0.4, 0.5, 0.6⟩, ⟨c, 0.2, 0.6, 0.9⟩

 .

Then ℸX =
{
0X , 1X ,A

}
and ℸY =

{
0Y , 1Y ,B

}
are neutrosophic

multi topological spaces.

Let us define a mapping f : (X,ℸX) → (Y,ℸY ) by f(a) = f(c) = c

and f(b) = b.

Thus, f is NMSCM, which is not NMCM.
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Theorem 6.0.7 blank

Let X1, X2, Y1 and Y2 be NMTSs such that X1 is product related to

X2. Then, the product ϕ1 × ϕ2 : X1 × X2 → Y1 × Y2 of NMSCMs

ϕ1 : X1 → Y1 and ϕ2 : X2 → Y2 is NMSCM.

Theorem 6.0.8 blank

Let X,X1 and X2 be a NMTSs and pi : X1 ×X2 → Xi (i = 1, 2) be

the projection of X1 × X2 onto Xi. Then, if ϕ : X → X1 × X2 is a

NMSCM, piϕ is also NMSCM.

Theorem 6.0.9 blank

Let ϕ : X → Y be a mapping from a NMTS X to another NMTS Y .

Then if the graph ψ : X → X ×Y of ϕ is NMSCM, ϕ is also NMSCM.

Remark 6.0.5 blank

The converse of Theorem 6.0.9 is not true.

Definition 6.0.14 blank

A mapping ϕ : (X,ℸX) → (Y,ℸY ) from a NMTS X to another NMTS

Y is known as NMACM, if ϕ−1(A) ∈ ℸX for each NMROS A of Y .

Example 6.0.8 blank

Let X = Y = {a, b} and

A =

{
⟨a, 0.4, 0.5, 0.5⟩, ⟨a, 0.3, 0.5, 0.6⟩, ⟨a, 0.2, 0.6, 0.7⟩,
⟨b, 0.5, 0.7, 0.6⟩, ⟨b, 0.4, 0.5, 0.7⟩, ⟨b, 0.3, 0.5, 0.8⟩,

}
;

B =

{
⟨a, 0.5, 0.7, 0.6⟩, ⟨a, 0.4, 0.5, 0.7⟩, ⟨a, 0.3, 0.5, 0.8⟩,
⟨b, 0.4, 0.5, 0.5⟩, ⟨b, 0.3, 0.5, 0.6⟩, ⟨b, 0.2, 0.6, 0.7⟩

}
.

Then ℸX =
{
0X , 1X ,A

}
and ℸY =

{
0Y , 1Y ,B

}
are neutrosophic

multi topological spaces.

Clearly, NM ∼ Cl(B) = Bc, NM ∼ Int
(
NM ∼ Cl(B)

)
= B.
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Hence, B is NMROS.

Now, let us define a mapping f : (X,ℸX) → (Y,ℸY ) by f(a) = b and

f(b) = a.

Thus, f is NMACM.

Theorem 6.0.10 blank

Let ϕ : (X,ℸX) → (Y,ℸY ) be a mapping. Then the following state-

ments are equivalent:

(a) ϕ is a NMACM,

(b) ϕ−1(F) is a NMCoS, for each NMRCoS F of Y ,

(c) ϕ−1(A) ⊆ NM ∼ Int
(
ϕ−1

(
NM ∼ Int

(
NM ∼ Cl(A)

)))
,

for each NMOS A of Y ,

(d) NM ∼ Cl
(
ϕ−1

(
NM ∼ Cl

(
NM ∼ Int(F)

)))
⊆ ϕ−1(F),

for each NMCoS F of Y .

Remark 6.0.6 blank

Clearly, a NMCM is a NMACM. That the converse need not be true.

Example 6.0.9 Let X = {a, b} and

A =

{
⟨a, 0.4, 0.5, 0.5⟩, ⟨a, 0.3, 0.5, 0.6⟩, ⟨a, 0.2, 0.6, 0.7⟩,
⟨b, 0.5, 0.7, 0.6⟩, ⟨b, 0.4, 0.5, 0.7⟩, ⟨b, 0.3, 0.5, 0.8⟩,

}
;

B =

{
⟨a, 0.5, 0.5, 0.6⟩, ⟨a, 0.6, 0.5, 0.7⟩, ⟨a, 0.2, 0.6, 0.9⟩,
⟨b, 0.4, 0.4, 0.7⟩, ⟨b, 0.3, 0.5, 0.5⟩, ⟨b, 0.4, 0.5, 0.6⟩

}
.

Then ℸX =
{
0X , 1X ,A

}
and ℸY =

{
0Y , 1Y ,B

}
are neutrosophic

multi topological spaces.

Clearly, NM ∼ Cl(B) = Bc, NM ∼ Int
(
NM ∼ Cl(B)

)
= B.

Hence, B is NMROS in ℸY .

Now, a mapping f : (X,ℸX) → (Y,ℸY ) defined by f(a) = a and
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f(b) = b.

Then clearly, f is NMACM but not NMCM.

Theorem 6.0.11 blank

Neutrosophic multi semi-continuity and neutrosophic multi almost con-

tinuity are independent notions.

Definition 6.0.15 blank

A NMTS (X,ℸX) is called a neutrosophic multi semi-regularly space

(NMSRS) if and only if the collection of all NMROSs ofX forms a base

for NMT ℸX .

Theorem 6.0.12 blank

Let ϕ : (X,ℸX) → (Y,ℸY ) be a mapping from a NMTS (X,ℸX) to a

NMSRS (Y,ℸY ). Then ϕ is NMACM iff ϕ is NMCM.

Theorem 6.0.13 blank

Let X1, X2, Y1 and Y2 be the NMTSs such that Y1 is product related

to Y2. Then the product ϕ1 × ϕ2 : X1 × X2 → Y1 × Y2 of NMACMs

ϕ1 : X1 → Y1 and ϕ2 : X2 → Y2 is NMACM.

Theorem 6.0.14 blank

Let X,X1 and X2 be a NMTSs and pi : X1 ×X2 → Xi (i = 1, 2) be

the projection of X1 × X2 onto Xi. Then if ϕ : X → X1 × X2 is a

NMACM, piϕ is also a NMACM.

Theorem 6.0.15 blank

Let X and Y be NMTSs such that X is product related to Y and let

ϕ : X → Y be a mapping. Then, the graph ψ : X → X × Y of ϕ is

NMACM iff ϕ is NMACM.

NOTE: The proof of the theorems from 6.0.1 to 6.0.15 is straightfor-

ward following Chapter-2.
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Definition 6.0.16 blank

Let G be a NMG on a group X . Now, if ℸX be a NMT on G, then

(G,ℸX) is said to be a NMATG if the given conditions are satisfied:

(i) α : (G,ℸX) × (G,ℸX) → (G,ℸX) : α(m,n) = mn is NMACM

and

(ii) β : (G,ℸX) → (G,ℸX) : β(m) = m−1 is NMACM.

Then (G,ℸX) is known as a NMATG.

Remark 6.0.7 blank

(G,ℸX) is a NMATG if the following conditions hold good:

(i) for g1, g2 ∈ G and every NMROS P containing g1g2 in G,∃ open

neighborhoods R and S of g1 and g2 in G such that R ∗ S ⊆ P
and

(ii) for g ∈ G and every NMROS Q in G containing g−1,∃ open neigh-

borhood R of g in G so that R−1 ⊆ S.

Remark 6.0.8 blank

For any P ,Q ⊆ G, we denote P ∗ Q by PQ and defined as PQ ={
gh : g ∈ P , h ∈ Q

}
and P−1 =

{
g−1 : g ∈ P

}
. If P = a for each

a ∈ G, we denote P ∗ Q by aQ and Q ∗ P by Pa.

Example 6.0.10 blank

Let G = (Z3,+) be a classical group and

A =


⟨0, 0.4, 0.5, 0.6⟩, ⟨0, 0.3, 0.5, 0.7⟩, ⟨0, 0.2, 0.6, 0.8⟩,
⟨1, 0.3, 0.5, 0.4⟩, ⟨1, 0.2, 0.5, 0.6⟩, ⟨1, 0.1, 0.5, 0.7⟩,
⟨2, 0.4, 0.5, 0.6⟩, ⟨2, 0.3, 0.5, 0.7⟩, ⟨2, 0.2, 0.6, 0.8⟩

 .

Then ℸX = {0G, 1G,A} is NTS and α : (G,ℸG)× (G,ℸG)→ (G,ℸG) :

α(m,n) = mn, β : (G,ℸG) → (G,ℸG) : β(m) = m−1 are NMACM.

Hence, (G,ℸG) is NMATG.

86



Theorem 6.0.16 blank

Let (G,ℸX) be a NMATG and let a be any element of G. Then

(i) µa : (G,ℸX) → (G,ℸX) : µa(x) = ax, ∀x ∈ G, is NMACM;

(ii) λa : (G,ℸX) → (G,ℸX) : λa(x) = xa,∀x ∈ G, is NMACM.

Proof

(i) Let p ∈ G and let R be a NMROS containing ap in G. By def-

inition 6.0.16, ∃ open neighborhoods P ,Q of a, p in G such that

PQ ⊆ R. Especially, aQ ⊆ R i.e., µa(Q) ⊆ R. This proves that

µa is NMACM at p and hence µa is NMACM.

(ii) Suppose p ∈ G and R ∈ NMRO (G) containing pa. Then ∃ open

sets p ∈ P and a ∈ Q in G such that PQ ⊆ R. This proves

Pa ⊆ R. This gives λa is NMACM at p. Since arbitrary element

p is in G, hence λa is NMACM.

Theorem 6.0.17 blank

Let U be NMROS in a NMATG (G,ℸX). The following conditions hold

good:

(a) mU ∈ NMROS(G),∀m ∈ G.

(b) Um ∈ NMROS(G),∀m ∈ G.

(c) U−1 ∈ NMROS(G).

Proof

(a) We first show that mU ∈ ℸX . Let p ∈ mU . Then by definition

6.0.16 of NMATGs, ∃ NMOSs m−1 ∈ W1 and p ∈ W2 in G such

that W1W2 ⊆ U . Especially, m−1W2 ⊆ U . That is, equivalently

W2 ⊆ mU . This indicates that p ∈ NM ∼ Int(mU) and thus,
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NM ∼ Int(mU) = mU . That is mU ∈ ℸX . Consequently,

mU ⊆ NM ∼ Int
(
NM ∼ Cl(mU)

)
.

Now, we have to prove that NM ∼ Int
(
NM ∼ Cl(mU)

)
⊆

mU . As U is NMOS, NM ∼ Cl(U) ∈ NMRCS(G). By The-

orem 6.0.16, µm−1 : (G,ℸX) → (G,ℸX) is NMACM and there-

fore, mNM ∼ Cl(U) is NMCoS. Thus, NM ∼ Int
(
NM ∼

Cl(mU)
)
⊆ NM ∼ Cl(mU) ⊆ mNM ∼ Cl(U). i.e.,m−1NM ∼

Int
(
NM ∼ Cl(mU)

)
⊆NM ∼ Cl(U). SinceNM ∼ Int

(
NM ∼

Cl(mU)
)

is NMROS, it follows that m−1NM ∼ Int
(
NM ∼

Cl(mU)
)
⊆ NM ∼ Int

(
NM ∼ Cl(U)

)
= U , i.e., NM ∼

Int(NM ∼ Cl
(
mU)

)
⊆ mU . Thus,mU = NM ∼ Int

(
NM ∼

Cl(mU)
)

. This proves that mU ∈ NMROS(G).

(b) Following the same steps as in part (a) above, we can prove that

Um ∈ NMROS(G),∀m ∈ G.

(c) ) Let p ∈ U−1, then ∃ open set p ∈ W in G such that W−1 ⊆
U ⇒ W ⊆ U−1. So, U−1 has interior point p. Thus, U−1 is

NMOS. That is U−1 ⊆ NM ∼ Int
(
NM ∼ Cl(U−1)

)
. Now

we have to prove that NM ∼ Int
(
NM ∼ Cl(U−1)

)
⊆ U−1.

Since U is NMOS, NM ∼ Cl(U) is NMRCoS and thus NM ∼
Cl(U)−1 is NMCoS in G. So, NM ∼ Int

(
NM ∼ Cl(U−1)

)
⊆

NM ∼ Cl(U−1) ⊆ NM ∼ Cl(U)−1 ⇒ NM ∼ Int
(
NM ∼

Cl(U−1)
)
⊆

(
NM ∼ Cl(U)

)−1

⊆ U−1. Thus, U−1 = NM ∼

Int
(
NM ∼ Cl(U−1t)

)
. This proves that U−1 ∈ NMROS(G).

Corollary 6.0.1 blank

Let Q be any NMRCoS in a NMATG in G. Then
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(i) mQ ∈ NMRCS(G), for each m ∈ G.

(ii) Q−1 ∈ NMRCS(G).

The proof is straightforward.

Theorem 6.0.18 blank

Let U be any NMROS in a NMATG G. Then

(a) NM ∼ Cl(Um) = NM ∼ Cl(U)m, for each m ∈ G.

(b) NM ∼ Cl(mU) = mNM ∼ Cl(U), for each m ∈ G.

(c) NM ∼ Cl(U−1) = NM ∼ Cl(U)−1.

Proof

(a) Assume p ∈ NM ∼ Cl(Um) and consider q = pm−1. Let q ∈
W be NMOS in G. Then ∃ NMOSs m−1 ∈ V1 and p ∈ V2 in G,

such that V1V2 ⊆ NM ∼ Int
(
NM ∼ Cl(W )

)
. By hypothesis,

there is g ∈ Um
⋂
V2 ⇒ gm−1 ∈ U

⋂
V1V2 ⊆ U

⋂
NM ∼

Int
(
NM ∼ Cl(W )

)
⇒ U

⋂
NM ∼ Int

(
NM ∼ Cl(W )

)
̸=

0NM ⇒ U
⋂(

NM ∼ Cl(W )
)

̸= 0NM . Since U is NMOS,

U
⋂
W ̸= 0NM . That is, m ∈ NM ∼ Cl(U)m.

Conversely, let q ∈ NM ∼ Cl(U)m. Then q = pg for some p ∈
NM ∼ Cl(U). To prove NM ∼ Cl(U)m ⊆ NM ∼ Cl(Um).

Let pg ∈ W be an NMOS in G. Then ∃ NMOSs m ∈ V1 in G
and p ∈ V2 in G so that V1V2 ⊆ NM ∼ Int

(
NM ∼ Cl(W )

)
.

Since p ∈ NM ∼ Cl(U),U
⋂
V2 ̸= 0NM . There is g ∈ U

⋂
V2.

This implies gm ∈ (Um)
⋂
NM ∼ Int

(
NM ∼ Cl(W )

)
⇒

(Um)
⋂(

NM ∼ Cl(W )
)
̸= 0NM . From Theorem 6.0.17, Um

is NMOS and thus (Um)
⋂
W ̸= 0NM , therefore q ∈ NM ∼

Cl(Um). Therefore NM ∼ Cl(Um) = NM ∼ Cl(U)m.
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(b) Following the same steps as in part (a) above, we can prove that

NM ∼ Cl(mU) = mNM ∼ Cl(U).

(c) Since NM ∼ Cl(U) is NMRCoS, NM ∼ Cl(U)−1 is NMCoS

in G. Therefore, U−1 ⊆ NM ∼ Cl(U)−1 this gives NM ∼
Cl(U−1) ⊆ NM ∼ Cl(U)−1. Next, let q ∈ NM ∼ Cl(U)−1.

Then q = p−1, for some p ∈ NM ∼ Cl(U). Let q ∈ V be

any NMOS in G. Then ∃ open set U in G such that p ∈ U with

U−1 ⊆ NM ∼ Int
(
NM ∼ Cl(V )

)
. Also, there is m ∈ A

⋂
U

which implies m−1 ∈ U−1
⋂
NM ∼ Int

(
NM ∼ Cl(V )

)
.

That is, U−1
⋂
NM ∼ Int

(
NM ∼ Cl(V )

)
̸= 0NM ⇒ U−1

⋂
NM ∼ Cl(V ) ̸= 0NM ⇒U−1

⋂
V ̸= 0NM , since U−1 is NMOS.

Therefore, q ∈ NM ∼ Cl(U)−1. Hence NM ∼ Cl(U−1) ⊆
NM ∼ Cl(U)−1.

Theorem 6.0.19 blank

Let Q be NMRCoS subset in a NMATG G. Then the following asser-

tions are true:

(a) NM ∼ Int(mQ) = aNM ∼ Int(Q),∀m ∈ G.

(b) NM ∼ Int(Qm) = NM ∼ Int(Q)a,∀m ∈ G.

(c) NM ∼ Int(Q−1) = NM ∼ Int(Q)−1.

Proof

(a) Since Q is NMRCoS, NM ∼ Int(Q) is NMROS in G. Conse-

quently, mNM ∼ Int(Q) ⊆ NM ∼ Int(mQ). Conversely, let

q ∈ NM ∼ Int(mQ) be an arbitrary element. Suppose q = mp,

for some p ∈ Q. By hypothesis, this proves mQ is NMCoS and

that is NM ∼ Int(mQ) is NMROS in G. Assume that m ∈ U

and p ∈ V be NMOSs in G, such that UV ⊆ NM ∼ Int(mQ).
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Then mV ⊆ mQ, which follows that mV ⊆ mNM ∼ Int(Q).

Thus, NM ∼ Int(mQ) ⊆ mNM ∼ Int(Q).

(b) Following the same steps as in part (a) above, we can prove that

NM ∼ Int(Qm) ⊆ NM ∼ Int(Q)m.

(c) SinceNM ∼ Int(Q) is NMROS, soNM ∼ Int(Q)−1 is NMOS

in G. Therefore, Q−1 ⊆ NM ∼ Int(Q)−1 implies that NM ∼
Int(Q−1) ⊆ NM ∼ Int(Q)−1. Next, let q be an arbitrary ele-

ment of NM ∼ Int(Q)−1. Then q = p−1, for some p ∈ NM ∼
Int(Q). Let q ∈ V be NMOS in G. Then ∃ NMOS U is in G such

that p ∈ U withU−1 ⊆ NM ∼ Cl
(
NM ∼ Int(V )

)
. Also, there

is g ∈ Q
⋂
U which implies g−1 ∈ Q−1

⋂
NM ∼ Cl

(
NM ∼

Int(V )
)

. That is Q−1
⋂
NM ∼ Cl

(
NM ∼ Int(V )

)
̸= 0NM ⇒

Q−1
⋂
NM ∼ Int(V ) ̸= 0NM ⇒ Q−1

⋂
V ̸= 0NM , since Q−1

is NMCoS. Hence NM ∼ Int(Q−1) = NM ∼ Int(Q)−1.

Theorem 6.0.20 blank

Let U be any NMSOS in a NMATG G. Then

(a) NM ∼ Cl(mU) ⊆ mNM ∼ Cl(U),∀m ∈ G.

(b) NM ∼ Cl(Um) ⊆ NM ∼ Cl(U)m,∀m ∈ G.

(c) NM ∼ Cl(U−1) ⊆ NM ∼ Cl(U)−1.

Proof

(a) As U is NMSOS, NM ∼ Cl(U) is NMRCoS. From Theorem

6.0.16, µm−1 : (G,ℸX) → (G,ℸX) is NMACM. So, mNM ∼
Cl(U) is NMCoS. Hence NM ∼ Cl(mU) ⊆mNM ∼ Cl(U).

(b) As U is NMSOS, NM ∼ Cl(U) is NMRCoS. From Theorem

6.0.16, λm−1 : (G,ℸX) → (G,ℸX) is NMACM. So, NM ∼
Cl(U)m is NMCoS. Thus, NM ∼ Cl(Um) ⊆ NM ∼ Cl(U)m.
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(c) Since U is NMSOS, so, NM ∼ Cl(U) is NMRCoS and hence

NM ∼ Cl(U)−1 is NMCoS. Consequently, NM ∼ Cl(U) ⊆
NM ∼ Cl(U)−1.

Theorem 6.0.21 blank

Let U be both NMSOS and NMSCoS subset of a NMATG G. Then the

following statements hold:

(a) NM ∼ Cl(mU) = mNM ∼ Cl(U), for each m ∈ G.

(b) NM ∼ Cl(Um) = NM ∼ Cl(U)m, for each m ∈ G.

(c) NM ∼ Cl(U−1) = NM ∼ Cl(U)−1.

Proof

(a) Since U is NMSOS, NM ∼ Cl(U) is NMRCoS, from which

it implies that NM ∼ Cl(mU) ⊆ mNM ∼ Cl(U). Further,

neutrosophic multi semi-openness of U gives NM ∼ Cl(U) =

NM ∼ Cl
(
NM ∼ Int(U)

)
⇒ mNM ∼ Cl(U) = mNM ∼

Cl
(
NM ∼ Int(U)

)
. As U is NMSCoS, NM ∼ Int(U) is NM-

ROS in G. From Theorem 6.0.20, mNM ∼ Cl(U) = mNM ∼
Cl

(
NM ∼ Int(U)

)
= NM ∼ Cl

(
mNM ∼ Int(U)

)
⊆

NM ∼ Cl(mU). Hence NM ∼ Cl(mU) = mNM ∼ Cl(U).

(b) Following the same steps as in part (a) above, we can prove that

NM ∼ Cl(Um) = NM ∼ Cl(U)m.

(c) By hypothesis, this proves NM ∼ Cl(U) is NMRCoS and there-

foreNM ∼ Cl(U)−1 is NMCoS. Consequently,NM ∼ Cl(U−1)

⊆ NM ∼ Cl(U)−1. Next, since U is NMSOS, NM ∼ Cl(U) =
NM ∼ Cl

(
NM ∼ Int(U)

)
⇒ NM ∼ Cl(U)−1 = NM ∼

Cl
(
NM ∼ Int(U)

)
. Also, as U is NMSCoS, NM ∼ Int(U)
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is NMROS. From Theorem 6.0.18, NM ∼ Cl(U)−1 = NM ∼
Cl

(
NM ∼ Int(U)−1

)
⊆ NM ∼ Cl(U−1). This shows that

NM ∼ Cl(U−1) = NM ∼ Cl(U)−1.

Corollary 6.0.2 blank

From Theorem 6.0.21, the following statements are hold:

(a) NM ∼ Int(mU) = mNM ∼ Int(U), for each m ∈ G.

(b) NM ∼ Int(Um) = NM ∼ Int(U)m, for each m ∈ G.

(c) NM ∼ Int(U−1) = NM ∼ Int(U)−1.

Proof

(a) As U is NMSCoS, NM ∼ Int(U) is NMROS. From Theorem

6.0.16, µm−1 : (G,ℸX) → (G,ℸX) is NMACM. So, µ−1
m−1

(
NM

∼ Int(U)
)

= mNM ∼ Int(U) is NMOS. Thus, mNM ∼
Int(U) ⊆ NM ∼ Int(mU). Next, by assumption, it implies

that NM ∼ Int(U) = R NM ∼ Int
(
NM ∼ Cl(U)

)
⇒

mNM ∼ Int(U) = mNM ∼ Int
(
NM ∼ Cl(U)

)
. As U

is NMSOS, NM ∼ Cl(U) is NMRCoS. From Theorem 6.0.19,

mNM ∼ Int
(
NM ∼ Cl(U)

)
= NM ∼ Int

(
mNM ∼

Cl(U)
)
⊇ NM ∼ Int(mU). That is, NM ∼ Int(mU) ⊆

mNM ∼ Int(U). Therefore, we have, NM ∼ Int(mU) =

mNM ∼ Int(U). Hence proved.

(b) As U is NMSCoS, NM ∼ Int(U) is NMROS. From Theorem

6.0.16, µm−1 : (G,ℸX) → (G,ℸX) is NMACM. So, λ−1
m−1

(
NM

∼ Int(U)
)
=mNM ∼ Int(U) is NMOS. Thus,NM ∼ Int(U)m

⊆ NM ∼ Int(Um). Next, by assumption, this proves that

NM ∼ Int(U) = NM ∼ Int
(
NM ∼ Cl(U)

)
⇒ NM ∼
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Int(U)m = NM ∼ Int
(
NM ∼ Cl(U)

)
m. As U is NM-

SOS, NM ∼ Cl(U) is NMRCoS. From Theorem 6.0.19, NM ∼
Int

(
NM ∼ Cl(U)

)
m = NM ∼ Int

(
NM ∼ Cl(U)m

)
⊇

NM ∼ Int(Um). That is,NM ∼ Int(Um)⊆ NM ∼ Int(U)m.

Therefore,NM ∼ Int(Um) =NM ∼ Int(U)m. Hence proved.

(c) From assumption, this proves that NM ∼ Int(U) is NMROS

and therefore NM ∼ Int(U)−1 is NMOS. Consequently, NM ∼
Int(U−1) ⊆ NM ∼ Int(U)−1. Next, as U is NMSCoS, NM ∼
Int(U) = NM ∼ Int

(
NM ∼ Cl(U)

)
⇒ NM ∼ Int(U)−1 =

NM ∼ Int
(
NM ∼ Cl(U)

)−1

. Also, as U is NMSOS, NM ∼
Cl(U) is NMRCoS. From Theorem 6.0.19, NM ∼ Int(U)−1 =

NM ∼ Int
(
NM ∼ Cl(U)−1

)
⊆ NM ∼ Int(U−1). This

proves that NM ∼ Int(U−1) = NM ∼ Int(U)−1.

Theorem 6.0.22 blank

Let A be NMOS in a NMATG G. Then aA ⊆ NM ∼ Int
(
aNM ∼

Int
(
NM ∼ Cl(A)

))
for a ∈ G.

Proof
Since A is NMOS, so A ⊆ NM ∼ Int

(
NM ∼ Cl(A)

)
⇒ aA ⊆

aNM ∼ Int
(
NM ∼ Cl(A)

)
. From Theorem 6.0.17, aNM ∼

Int
(
NM ∼ Cl(A)

)
is NMOS

(
in fact, NMROS

)
. Hence aA ⊆

NM ∼ Int
(
aNM ∼ Int

(
NM ∼ Cl(A

))
.

Theorem 6.0.23 blank

Let Q be any neutrosophic multi closed subset in a NMATG G. Then

NM ∼ Cl
(
aNM ∼ Cl

(
NM ∼ Int(A)

))
⊆ aQ for each a ∈ G.

Proof
Since Q is NMCoS, so Q ⊇ NM ∼ Cl

(
NM ∼ Int(Q)

)
⇒ aQ ⊇
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aNM ∼ Cl
(
NM ∼ Int(Q)

)
. From Theorem 6.0.17, aNM ∼

Cl
(
NM ∼ Int(Q)

)
is NMCoS

(
in fact, NMRCoS

)
. Therefore,

aQ ⊇ NM ∼ Cl
(
aNM ∼ Cl

(
NM ∼ Int(A

))
. Hence NM ∼

Cl
(
aNM ∼ Cl

(
NM ∼ Int(A)

))
⊆ aQ.
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